Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
1.
Proc Natl Acad Sci U S A ; 121(18): e2317291121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648489

ABSTRACT

Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of Escherichia coli class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating ß subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y356[ß], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y356• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any ß metallocofactor highlights the adaptability of the 10-stranded αß barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.


Subject(s)
Escherichia coli , Protein Engineering , Ribonucleotide Reductases , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/genetics , Protein Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Catalytic Domain , Evolution, Molecular , Models, Molecular , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry
2.
Extremophiles ; 28(1): 18, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353731

ABSTRACT

We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.


Subject(s)
Geobacillus , Ribonucleotide Reductases , Ribonucleotide Reductases/genetics , Mixed Function Oxygenases/genetics , Geobacillus/genetics , Alkanes
3.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38261971

ABSTRACT

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Subject(s)
Cell Cycle Proteins , Proliferating Cell Nuclear Antigen , Schizosaccharomyces pombe Proteins , Binding Sites , DNA Replication , Intrinsically Disordered Proteins/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Ribonucleotide Reductases/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism
4.
Exp Parasitol ; 255: 108641, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949425

ABSTRACT

Visceral cestodiases, like echinococcoses and cysticercoses, are zoonoses of worldwide distribution and are responsible for public health problems in many countries, especially in underdeveloped regions. Current treatments have low efficiency and there are few drugs currently in use for chemotherapy, making the development of new anthelmintics an urgent matter. The nucleotide salvage pathways are the only ones available for nucleotide synthesis in cestodes and other parasitic helminths, and, here, we used in silico approaches to assess the potential of the enzymes in these pathways as targets for drug repurposing as anthelminthics. First, a genomic survey allowed to identify a repertoire of 28 enzymes of the purine and pyrimidine salvage pathways from the cestode Echinococcus granulosus sensu stricto. Regarding purines, the parasite relies on salvaging free bases rather than salvaging nucleosides. Pyrimidines, on the other hand, can be salvaged from both bases and nucleosides. Druggability of the parasite enzymes was assessed, as well as the availability of commercial inhibitors for them. Druggable enzymes were then ranked according to their potential for drug repurposing and the 17 most promising enzymes were selected for evolutionary analyses. The constructed phylogenetic trees allowed to assess the degree of conservation among ortholog enzymes from parasitic helminths and their mammalian hosts. Positive selection is absent in all assessed flatworm enzymes. A potential target enzyme for drug repurposing, ribonucleotide reductase (RNR), was selected for further assessment. RNR 3D-modelling showed structural similarities between the E. granulosus and the human orthologs suggesting that inhibitors of the human RNR should be effective against the E. granulosus enzyme. In line with that, E. granulosus protoscolices treated in vitro with the inhibitor hydroxyurea had their viability and DNA synthesis reduced. These results are consistent with nucleotide synthesis inhibition and confirm the potential of a nucleotide salvage inhibitors for repurposing as an anthelmintic.


Subject(s)
Anthelmintics , Echinococcus granulosus , Ribonucleotide Reductases , Animals , Humans , Drug Repositioning , Ribonucleotide Reductases/genetics , Phylogeny , Echinococcus granulosus/genetics , Anthelmintics/pharmacology , Nucleotides , Mammals
5.
PLoS One ; 18(9): e0291461, 2023.
Article in English | MEDLINE | ID: mdl-37699023

ABSTRACT

OBJECTIVES: Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide. Most cases are diagnosed at an advanced stage using current tumor markers. Here, we aimed to identify potential novel potential biomarkers for NSCLC. MATERIAL/METHODS: Four independent datasets from the Gene Expression Omnibus database were analyzed. The relative expression of ribonucleotide reductase regulatory subunit M2 (RRM2) mRNA in 30 paired of NSCLC paired tissues was measured by reverse transcription quantitative PCR. Serum levels of cytokeratin fragment 21-1 (CYFRA21-1), pro-gastrin-releasing peptide (ProGRP), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) were measured using electrochemiluminescence immunoassays, and serum RRM2 levels were evaluated by an enzyme-linked immunosorbent assay. RESULTS: The mRNA expression level of RRM2 was significantly increased in most NSCLC lesions compared to para-adjacent tissues. Serum RRM2 levels in NSCLC patients were significantly elevated compared to healthy controls and were also associated with distant metastasis and histological type, but not with tumor size or lymph node metastasis. Receiver operating characteristic curve analysis showed a higher diagnostic ratio for NSCLC using RRM2 alone compared to other traditional tumor markers. CONCLUSIONS: RRM2 is a potential sero-diagnostic biomarker for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Ribonucleotide Reductases , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Ribonucleotide Reductases/genetics
6.
J Virol ; 97(8): e0078123, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37565748

ABSTRACT

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Subject(s)
Epstein-Barr Virus Infections , Herpesviridae Infections , Herpesvirus 1, Human , Ribonucleotide Reductases , Humans , Infant, Newborn , Cytidine Deaminase/metabolism , Cytomegalovirus/genetics , DNA Replication , DNA, Viral/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 4, Human/genetics , Immediate-Early Proteins/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Viral Proteins/metabolism , Virus Replication
7.
Plant Sci ; 335: 111819, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562732

ABSTRACT

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Subject(s)
Arabidopsis , Ribonucleotide Reductases , Humans , SAM Domain and HD Domain-Containing Protein 1/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phenotype
8.
Gene ; 880: 147622, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37419428

ABSTRACT

INTRODUCTION: p53R2 is a p53-inducible protein that, as one of the subunits of ribonucleotide reductase, plays an important role in providing dNTPs for DNA repair. Although p53R2 is associated with cancer progression, its role in T-cell acute lymphoblastic leukemia (T-ALL) cells is unknown. Therefore, in this study, we evaluated the effect of p53R2 silencing on double-stranded DNA breaks, apoptosis and cell cycle of T-ALL cells treated with Daunorubicin. METHODS: Transfection was performed using Polyethyleneimine (PEI). Gene expression was measured using real-time PCR and protein expression was evaluated using Western blotting. Cell metabolic activity and IC50 were calculated using MTT assay, formation of double-stranded DNA breaks was checked using immunohistochemistry for γH2AX, and cell cycle and apoptosis were evaluated using flow cytometry. RESULTS: We found that p53 silencing synergistically inhibited the growth of T-ALL cells by Daunorubicin. p53R2 siRNA in combination with Daunorubicin but not alone increases the rate of DNA double-strand breaks in T-ALL cells. In addition, p53R2 siRNA significantly increased Daunorubicin-induced apoptosis. p53R2 siRNA also caused a non-significant increase in cells in G2 phase. CONCLUSION: The results of the present study showed that silencing of p53R2 using siRNA can significantly increase the antitumor effects of Daunorubicin on T-ALL cells. Therefore, p53R2 siRNA has the potential to be used as an adjuvant therapy in combination with Daunorubicin in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Ribonucleotide Reductases , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Cell Cycle Proteins/genetics , Daunorubicin/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Line, Tumor , Ribonucleotide Reductases/genetics
9.
Cell Rep ; 42(7): 112685, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37354461

ABSTRACT

The protein kinase ATR is essential for replication stress responses in all eukaryotes. Ribonucleotide reductase (RNR) catalyzes the formation of deoxyribonucleotide (dNTP), the universal building block for DNA replication and repair. However, the relationship between ATR and RNR is not well understood. Here, we show that ATR promotes the protein stability of RNR in Arabidopsis. Through an activation tagging-based genetic screen, we found that overexpression of TSO2, a small subunit of RNR, partially suppresses the hypersensitivity of the atr mutant to replication stress. Biochemically, TSO2 interacts with PRL1, a central subunit of the Cullin4-based E3 ubiquitin ligase CRL4PRL1, which polyubiquitinates TSO2 and promotes its degradation. ATR inhibits CRL4PRL1 to attenuate TSO2 degradation. Our work provides an important insight into the replication stress responses and a post-translational regulatory mechanism for RNR. Given the evolutionary conservation of the proteins involved, the ATR-PRL1-RNR module may act across eukaryotes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ribonucleotide Reductases , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , DNA Replication , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Sci Adv ; 9(20): eade7236, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37196077

ABSTRACT

During therapy, adaptations driven by cellular plasticity are partly responsible for driving the inevitable recurrence of glioblastoma (GBM). To investigate plasticity-induced adaptation during standard-of-care chemotherapy temozolomide (TMZ), we performed in vivo single-cell RNA sequencing in patient-derived xenograft (PDX) tumors of GBM before, during, and after therapy. Comparing single-cell transcriptomic patterns identified distinct cellular populations present during TMZ therapy. Of interest was the increased expression of ribonucleotide reductase regulatory subunit M2 (RRM2), which we found to regulate dGTP and dCTP production vital for DNA damage response during TMZ therapy. Furthermore, multidimensional modeling of spatially resolved transcriptomic and metabolomic analysis in patients' tissues revealed strong correlations between RRM2 and dGTP. This supports our data that RRM2 regulates the demand for specific dNTPs during therapy. In addition, treatment with the RRM2 inhibitor 3-AP (Triapine) enhances the efficacy of TMZ therapy in PDX models. We present a previously unidentified understanding of chemoresistance through critical RRM2-mediated nucleotide production.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Glioblastoma , Ribonucleotide Reductases , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/therapeutic use , Temozolomide/pharmacology , Temozolomide/therapeutic use , Drug Resistance, Neoplasm/genetics
11.
Toxicol Appl Pharmacol ; 471: 116568, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37245555

ABSTRACT

Cyclin-dependent kinase 9 (CDK9) inhibitors are a novel category of anticancer treatment for cancers. However, their effects on hepatocellular carcinoma (HCC) are rarely investigated. Human ribonucleotide reductase (RR, which consists of RRM1 and RRM2 subunits) catalyzes the conversion of ribonucleoside diphosphate into 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools, which play essential roles in DNA synthesis and DNA repair. In this study, we identified that CDK9 protein expression in adjacent non-tumor tissues predicted HCC patients' overall and progression-free survivals. The anticancer activity of a CDK9-selective inhibitor, LDC000067, on HCC cells was positively associated with its ability to inhibit the expression of RRM1 and RRM2. LDC000067 downregulated RRM1 and RRM2 expression through post-transcriptional pathway. Specifically, LDC000067 triggered RRM2 protein degradation via multiple pathways, including proteasome-, lysosome-, and calcium-dependent pathways. Furthermore, CDK9 positively correlates with RRM1 or RRM2 expression in HCC patients, and the expressions of these three genes were associated with the higher infiltration of immune cells in HCC. Taken together, this study identified the prognostic relevance of CDK9 in HCC and the molecular mechanism for the anticancer effect of CDK9 inhibitors on HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Ribonucleotide Reductases , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Ribonucleotide Reductases/genetics , Cyclin-Dependent Kinase 9 , Diphosphates , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Cell Line, Tumor
12.
J Exp Bot ; 74(15): 4449-4460, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37103989

ABSTRACT

The four-celled stomatal complex consists of a pair of guard cells (GCs) and two subsidiary cells (SCs) in grasses, which supports a fast adjustment of stomatal aperture. The formation and development of SCs are thus important for stomatal functionality. Here, we report a maize lost subsidiary cells (lsc) mutant, with many stomata lacking one or two SCs. The loss of SCs is supposed to have resulted from impeded subsidiary mother cell (SMC) polarization and asymmetrical division. Besides the defect in SCs, the lsc mutant also displays a dwarf morphology and pale and striped newly-grown leaves. LSC encodes a large subunit of ribonucleotide reductase (RNR), an enzyme involved in deoxyribonucleotides (dNTPs) synthesis. Consistently, the concentration of dNTPs and expression of genes involved in DNA replication, cell cycle progression, and SC development were significantly reduced in the lsc mutant compared with the wild-type B73 inbred line. Conversely, overexpression of maize LSC increased dNTP synthesis and promoted plant growth in both maize and Arabidopsis. Our data indicate that LSC regulates dNTP production and is required for SMC polarization, SC differentiation, and growth of maize.


Subject(s)
Arabidopsis , Ribonucleotide Reductases , Zea mays/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Plant Stomata/physiology , Poaceae , Cell Differentiation , Arabidopsis/genetics
14.
Elife ; 122023 04 06.
Article in English | MEDLINE | ID: mdl-37022136

ABSTRACT

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of Escherichia coli where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines can adapt to limited supplies of deoxyribonucleosides, as might occur in the switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis reveals that several replicate lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to life without ribonucleotide reduction.


Subject(s)
Ribonucleotide Reductases , Ribonucleotides , Ribonucleotides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Symbiosis , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Deoxyribonucleotides/metabolism , Deoxyribonucleosides/metabolism
15.
J Hum Genet ; 68(8): 527-532, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36959467

ABSTRACT

RRM2B encodes the p53-inducible small subunit (p53R2) of ribonucleotide reductase, a key protein for mitochondrial DNA (mtDNA) synthesis. Pathogenic variants in this gene result in familial mitochondrial disease in adults and children, secondary to a maintenance disorder of mtDNA. This study describes two patients, mother and son, with early-onset chronic progressive external ophthalmoplegia (PEO). Skeletal muscle biopsy from the latter was examined: cytochrome c oxidase (COX)-negative fibres were shown, and molecular studies revealed multiple mtDNA deletions. A next-generation sequencing gene panel for nuclear-encoded mitochondrial maintenance genes identified two unreported heterozygous missense variants (c.514 G > A and c.682 G > A) in the clinically affected son. The clinically affected mother harboured the first variant in homozygous state, and the clinically unaffected father harboured the remaining variant in heterozygous state. In silico analyses predicted both variants as deleterious. Cell culture studies revealed that patients' skin fibroblasts, but not fibroblasts from healthy controls, responded to nucleoside supplementation with enhanced mtDNA repopulation, thus suggesting an in vitro functional difference in patients' cells. Our results support the pathogenicity of two novel RRM2B variants found in two patients with autosomal recessive PEO with multiple mtDNA deletions inherited with a pseudodominant pattern.


Subject(s)
Ophthalmoplegia, Chronic Progressive External , Ophthalmoplegia , Ribonucleotide Reductases , Adult , Child , Humans , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/pathology , Inheritance Patterns , DNA, Mitochondrial/genetics , Ribonucleotide Reductases/genetics , Cell Cycle Proteins/genetics
16.
Oxid Med Cell Longev ; 2023: 3878796, 2023.
Article in English | MEDLINE | ID: mdl-36713030

ABSTRACT

Background: Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods: TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results: The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion: Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.


Subject(s)
Liver Neoplasms , Ribonucleotide Reductases , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Prognosis , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Liver Neoplasms/genetics , Cell Line, Tumor
17.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119382, 2023 01.
Article in English | MEDLINE | ID: mdl-36283478

ABSTRACT

One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC. We show here that DRC activates ETC by a checkpoint kinase Dun1p-dependent mechanism. DRC induces transcription of RNR1-4 genes and elevates mtDNA copy number. Inactivation of RRM3 or SGS1, two DNA helicases important for DNA replication, activates DRC but does not render cells dependent on ETC. However, fitness of rrm3Δ and sgs1Δ cells requires Dun1p. The slow growth of rrm3Δdun1Δ and sgs1Δdun1Δ cells can be suppressed by introducing sml1Δ mutation, indicating that the slow growth is due to low levels of dNTPs. Interestingly, inactivation of ETC in dun1Δ cells results in a synthetic growth defect that can be suppressed by sml1Δ mutation, suggesting that ETC is important for dNTP synthesis in the absence of Dun1p function. Together, our results reveal an unexpected connection between ETC, replication stress, and Dun1p kinase.


Subject(s)
Ribonucleotide Reductases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Electron Transport/genetics , S Phase , Mutation , Nucleotides/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , DNA Helicases/metabolism
18.
J Invertebr Pathol ; 196: 107869, 2023 02.
Article in English | MEDLINE | ID: mdl-36455669

ABSTRACT

Long double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) has been a well-known mechanism against white spot syndrome virus (WSSV) in cultured shrimp. In the present study, we investigated the protective efficacy of dsRNAs targeting the ribonucleotide reductase 2 (rr2) gene of WSSV according to length and target sequence location. To produce different lengths of dsRNAs, the 640 bp rr2 fragment (fragment I) was split into two equal 320 bp fragments (fragment II and III), then each 320 bp fragment was redivided into two 160 bp fragments (fragment IV, V, VI, and VII). After the synthesis of seven kinds of dsRNA fragments, dsRNAs with the same length were mixed with each other, then used for the evaluation of dsRNA's length effect in Penaeus vannamei. The result showed that 160 bp long dsRNAs were as effective as 320 and 640 bp long dsRNAs in the protection of shrimp against WSSV infection, suggesting that the dsRNA length of 160 bp would be enough to be used as RNAi-mediated WSSV suppression in P. vannamei. However, as the 160 bp long dsRNAs used in the length effect experiment were not a single dsRNA population but a mixture of 160 bp dsRNA fragments covering the parent 640 bp long dsRNA, the sequence effect was not included in this RNAi efficacy. In the experiments to know the effect of not only length but also sequence of rr2-targeting long dsRNAs on the protective efficacy against WSSV, dsRNAs with a length of 640 bp (fragment I) and 320 bp (fragment II, III) showed a constant high defense ability, but the protection degree of long dsRNAs with a length of 160 bp was different depending on the kinds of the fragment, suggesting that the RNAi efficacy of some rr2-targeting long dsRNAs with a length of 160 bp might have sequences that are variable according to experimental conditions. In conclusion, this study showed that the protective ability of long dsRNAs in shrimp against WSSV infection can be affected by the length and sequence of the long dsRNAs.


Subject(s)
Penaeidae , Ribonucleotide Reductases , White spot syndrome virus 1 , Animals , RNA, Double-Stranded , White spot syndrome virus 1/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/pharmacology , RNA Interference
19.
Elife ; 112022 12 02.
Article in English | MEDLINE | ID: mdl-36458685

ABSTRACT

Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.


Subject(s)
Epstein-Barr Virus Infections , Ribonucleotide Reductases , Viruses , Humans , Animals , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Herpesvirus 4, Human , Immunity, Innate , Platyrrhini/metabolism , Cercopithecidae/metabolism , Cytidine Deaminase/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
20.
Protein Sci ; 31(12): e4483, 2022 12.
Article in English | MEDLINE | ID: mdl-36307939

ABSTRACT

Ribonucleotide reductases (RNRs) are used by all free-living organisms and many viruses to catalyze an essential step in the de novo biosynthesis of DNA precursors. RNRs are remarkably diverse by primary sequence and cofactor requirement, while sharing a conserved fold and radical-based mechanism for nucleotide reduction. In this work, we expand on our recent phylogenetic inference of the entire RNR family and describe the evolutionarily relatedness of insertions and extensions around the structurally homologous catalytic barrel. Using evo-velocity and sequence similarity network (SSN) analyses, we show that the N-terminal regulatory motif known as the ATP-cone domain was likely inherited from an ancestral RNR. By combining SSN analysis with AlphaFold2 predictions, we also show that the C-terminal extensions of class II RNRs can contain folded domains that share homology with an Fe-S cluster assembly protein. Finally, using sequence analysis and AlphaFold2, we show that the sequence motif of a catalytically essential insertion known as the finger loop is tightly coupled to the catalytic mechanism. Based on these results, we propose an evolutionary model for the diversification of the RNR family.


Subject(s)
Ribonucleotide Reductases , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Phylogeny , Catalysis , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...