Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Nucleic Acids Res ; 52(8): 4111-4123, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554105

ABSTRACT

During assembly, ribosomal particles in bacteria fold according to energy landscapes comprised of multiple parallel pathways. Cryo-electron microscopy studies have identified a critical maturation step that occurs during the late assembly stages of the 50S subunit in Bacillus subtilis. This step acts as a point of convergency for all the parallel assembly pathways of the subunit, where an assembly intermediate accumulates in a 'locked' state, causing maturation to pause. Assembly factors then act on this critical step to 'unlock' the last maturation steps involving the functional sites. Without these factors, the 50S subunit fails to complete its assembly, causing cells to die due to a lack of functional ribosomes to synthesize proteins. In this review, we analyze these findings in B. subtilis and examine other cryo-EM studies that have visualized assembly intermediates in different bacterial species, to determine if convergency points in the ribosome assembly process are a common theme among bacteria. There are still gaps in our knowledge, as these methodologies have not yet been applied to diverse species. However, identifying and characterizing these convergency points can reveal how different bacterial species implement unique mechanisms to regulate critical steps in the ribosome assembly process.


Subject(s)
Bacillus subtilis , Cryoelectron Microscopy , Ribosomal Proteins , Ribosome Subunits, Large, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosomal Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Ribosomes/metabolism , Models, Molecular
2.
Nucleic Acids Res ; 52(7): 4053-4066, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38407413

ABSTRACT

During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Listeria monocytogenes , Ribosomes , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Ribosomes/metabolism , Listeria monocytogenes/metabolism , Listeria monocytogenes/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/chemistry , Protein Biosynthesis , Models, Molecular , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/ultrastructure , Peptide Elongation Factor G/metabolism , Peptide Elongation Factor G/chemistry
3.
J Mol Biol ; 436(4): 168423, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38185325

ABSTRACT

In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.


Subject(s)
Bacteriophage lambda , Escherichia coli , Peptide Chain Initiation, Translational , RNA, Messenger , Repressor Proteins , Ribosome Subunits, Large, Bacterial , Viral Regulatory and Accessory Proteins , Escherichia coli/genetics , Escherichia coli/virology , Ribosomal Proteins/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bacteriophage lambda/genetics , Bacteriophage lambda/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Repressor Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 119(29): e2202464119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858322

ABSTRACT

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.


Subject(s)
Amino Acyl-tRNA Synthetases , Escherichia coli Proteins , Ribosome Subunits, Large, Bacterial , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Cryoelectron Microscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Protein Conformation , RNA Splicing , RNA, Transfer/chemistry , Ribosome Subunits, Large, Bacterial/drug effects , Ribosome Subunits, Large, Bacterial/metabolism
5.
Nucleic Acids Res ; 50(19): 10801-10816, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35141754

ABSTRACT

RbgA is an essential protein for the assembly of the 50S subunit in Bacillus subtilis. Depletion of RbgA leads to the accumulation of the 45S intermediate. A strain expressing a RbgA variant with reduced GTPase activity generates spontaneous suppressor mutations in uL6. Each suppressor strain accumulates a unique 44S intermediate. We reasoned that characterizing the structure of these mutant 44S intermediates may explain why RbgA is required to catalyze the folding of the 50S functional sites. We found that in the 44S particles, rRNA helices H42 and H97, near the binding site of uL6, adopt a flexible conformation and allow the central protuberance and functional sites in the mutant 44S particles to mature in any order. Instead, the wild-type 45S particles exhibit a stable H42-H97 interaction and their functional sites always mature last. The dependence on RbgA was also less pronounced in the 44S particles. We concluded that the binding of uL6 pauses the maturation of the functional sites, but the central protuberance continues to fold. RbgA exclusively binds intermediates with a formed central protuberance and licenses the folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Ribosomal subunits in bacteria assemble according to energy landscapes comprised of multiple parallel pathways. In this study, the authors identified a critical maturation step in the late assembly stages of the large 50S ribosomal subunit in bacteria. This step represents a merging point where all parallel assembly pathways of the ribosomal particles converge. At this critical step, the convergent assembly intermediate that accumulates in cells exists in a 'locked' state, and its maturation is paused. The RbgA protein acts on this critical step to 'unlock' the last maturation steps involving folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Subject(s)
Ribosomal Proteins , Ribosome Subunits, Large, Bacterial , Ribosome Subunits, Large, Bacterial/metabolism , Ribosomal Proteins/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , RNA, Ribosomal/metabolism , GTP Phosphohydrolases/metabolism
6.
Mol Cell ; 81(6): 1200-1215.e9, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33639093

ABSTRACT

Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.


Subject(s)
Escherichia coli Proteins , Evolution, Molecular , Genetic Loci , Hydro-Lyases , Monomeric GTP-Binding Proteins , Ribosome Subunits, Large, Bacterial , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/genetics , Ribosome Subunits, Large, Bacterial/metabolism
7.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33259810

ABSTRACT

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/ultrastructure , Bacterial Proteins/genetics , Cryoelectron Microscopy , Ribosome Subunits, Large, Bacterial/genetics , Ribosome Subunits, Large, Bacterial/ultrastructure
8.
Nucleic Acids Res ; 49(1): 444-457, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33330919

ABSTRACT

In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA's CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a 'closed' conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an 'open' conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Guanosine Pentaphosphate/biosynthesis , RNA, Transfer/metabolism , Ribosomes/metabolism , Acylation , Allosteric Site , Bacillus subtilis/genetics , Catalytic Domain , GTP Pyrophosphokinase/metabolism , Hydrolysis , Models, Genetic , Models, Molecular , Protein Conformation , RNA Processing, Post-Transcriptional , Ribosome Subunits, Large, Bacterial/metabolism
9.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32991829

ABSTRACT

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , RNA Precursors/metabolism , Ribonucleases/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Bacillus subtilis/ultrastructure , Bacterial Proteins/ultrastructure , Base Sequence , Cryoelectron Microscopy , Models, Molecular , RNA Precursors/ultrastructure , Ribonucleases/ultrastructure , Ribosome Subunits, Large, Bacterial/ultrastructure , Substrate Specificity
10.
J Biol Chem ; 295(38): 13314-13325, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32727850

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) are cationic antimicrobial peptides unusual for their ability to penetrate bacterial membranes and kill cells without causing membrane permeabilization. Structural studies show that many such PrAMPs bind deep in the peptide exit channel of the ribosome, near the peptidyl transfer center. Biochemical studies of the particular synthetic PrAMP oncocin112 (Onc112) suggest that on reaching the cytoplasm, the peptide occupies its binding site prior to the transition from initiation to the elongation phase of translation, thus blocking further initiation events. We present a superresolution fluorescence microscopy study of the long-term effects of Onc112 on ribosome, elongation factor-Tu (EF-Tu), and DNA spatial distributions and diffusive properties in intact Escherichia coli cells. The new data corroborate earlier mechanistic inferences from studies in vitro Comparisons with the diffusive behavior induced by the ribosome-binding antibiotics chloramphenicol and kasugamycin show how the specific location of each agent's ribosomal binding site affects the long-term distribution of ribosomal species between 30S and 50S subunits versus 70S polysomes. Analysis of the single-step displacements from ribosome and EF-Tu diffusive trajectories before and after Onc112 treatment suggests that the act of codon testing of noncognate ternary complexes (TCs) at the ribosomal A-site enhances the dissociation rate of such TCs from their L7/L12 tethers. Testing and rejection of noncognate TCs on a sub-ms timescale is essential to enable incorporation of the rare cognate amino acids into the growing peptide chain at a rate of ∼20 aa/s.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptide Elongation Factor Tu/metabolism , Protein Biosynthesis/drug effects , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Cytoplasm/metabolism
11.
J Mol Biol ; 432(19): 5259-5272, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32710983

ABSTRACT

BipA is a conserved translational GTPase of bacteria recently implicated in ribosome biogenesis. Here we show that Escherichia coli ΔbipA cells grown at suboptimal temperature accumulate immature large subunit particles missing several proteins. These include L17 and L17-dependent binders, suggesting that structural block 3 of the subunit folds late in the assembly process. Parallel analysis of the control strain revealed accumulation of nearly identical intermediates, albeit at lower levels, suggesting qualitatively similar routes of assembly. This came as a surprise, because earlier analogous studies of wild-type E. coli showed early binding of L17. Further investigation showed that the main path of 50S assembly differs depending on conditions of growth. Either supplementation of the media with lysine and arginine or suboptimal temperature appears to delay block 3 folding, demonstrating the flexible nature of the assembly process. We also show that the variant BipA-H78A fails to rescue phenotypes of the ΔbipA strain, indicating a critical role for GTP hydrolysis in BipA function. In fact, BipA-H78A confers a dominant negative phenotype in wild-type cells. Controlled production of BipA-H78A causes accumulation of 70S monosomes at the expense of polysomes, suggesting that the growth defect stems from a shutdown of translation.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , GTP Phosphohydrolases/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , GTP Phosphohydrolases/genetics , Guanosine Triphosphate/metabolism , Hydrolysis , Models, Molecular , Mutation , Protein Biosynthesis , Ribosome Subunits, Large, Bacterial/genetics
12.
Nat Commun ; 11(1): 2900, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518240

ABSTRACT

5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis.


Subject(s)
RNA, Ribosomal, 5S/metabolism , Ribosomes/metabolism , Catalytic Domain , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation , Genetic Engineering , Mutation , Nucleic Acid Conformation , Peptidyl Transferases/metabolism , RNA, Bacterial , RNA, Ribosomal, 23S/metabolism , Rec A Recombinases/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Bacterial/metabolism
13.
Proc Natl Acad Sci U S A ; 117(27): 15609-15619, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571953

ABSTRACT

Ribosome biogenesis is a complex process, and dozens of factors are required to facilitate and regulate the subunit assembly in bacteria. The 2'-O-methylation of U2552 in 23S rRNA by methyltransferase RrmJ is a crucial step in late-stage assembly of the 50S subunit. Its absence results in severe growth defect and marked accumulation of pre50S assembly intermediates. In the present work, we employed cryoelectron microscopy to characterize a set of late-stage pre50S particles isolated from an Escherichia coli ΔrrmJ strain. These assembly intermediates (solved at 3.2 to 3.8 Å resolution) define a collection of late-stage particles on a progressive assembly pathway. Apart from the absence of L16, L35, and L36, major structural differences between these intermediates and the mature 50S subunit are clustered near the peptidyl transferase center, such as H38, H68-71, and H89-93. In addition, the ribosomal A-loop of the mature 50S subunit from ΔrrmJ strain displays large local flexibility on nucleotides next to unmethylated U2552. Fast kinetics-based biochemical assays demonstrate that the ΔrrmJ 50S subunit is only 50% active and two times slower than the WT 50S subunit in rapid subunit association. While the ΔrrmJ 70S ribosomes show no defect in peptide bond formation, peptide release, and ribosome recycling, they translocate with 20% slower rate than the WT ribosomes in each round of elongation. These defects amplify during synthesis of the full-length proteins and cause overall defect in protein synthesis. In conclusion, our data reveal the molecular roles of U2552 methylation in both ribosome biogenesis and protein translation.


Subject(s)
Escherichia coli/physiology , Peptide Chain Elongation, Translational , Peptide Chain Initiation, Translational , RNA, Ribosomal, 23S/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , Gene Knockout Techniques , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Ribosome Subunits, Large, Bacterial/genetics , Ribosome Subunits, Large, Bacterial/ultrastructure , Uridine/metabolism
14.
Proc Natl Acad Sci U S A ; 117(1): 629-634, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871194

ABSTRACT

Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/physiology , Ribosome Subunits, Large, Bacterial/metabolism , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Humans , Lincosamides/pharmacology , Lincosamides/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Mutation , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/physiology , Protein Biosynthesis/drug effects , Protein Domains/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
15.
Nat Struct Mol Biol ; 27(1): 25-32, 2020 01.
Article in English | MEDLINE | ID: mdl-31873307

ABSTRACT

The bacterial ribosome is recycled into subunits by two conserved proteins, elongation factor G (EF-G) and the ribosome recycling factor (RRF). The molecular basis for ribosome recycling by RRF and EF-G remains unclear. Here, we report the crystal structure of a posttermination Thermus thermophilus 70S ribosome complexed with EF-G, RRF and two transfer RNAs at a resolution of 3.5 Å. The deacylated tRNA in the peptidyl (P) site moves into a previously unsuspected state of binding (peptidyl/recycling, p/R) that is analogous to that seen during initiation. The terminal end of the p/R-tRNA forms nonfavorable contacts with the 50S subunit while RRF wedges next to central inter-subunit bridges, illuminating the active roles of tRNA and RRF in dissociation of ribosomal subunits. The structure uncovers a missing snapshot of tRNA as it transits between the P and exit (E) sites, providing insights into the mechanisms of ribosome recycling and tRNA translocation.


Subject(s)
Bacterial Proteins/metabolism , RNA, Transfer/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Thermus thermophilus/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Peptide Elongation Factor G/chemistry , Peptide Elongation Factor G/metabolism , Protein Conformation , RNA, Transfer/chemistry , Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Ribosomes/chemistry , Thermus thermophilus/chemistry
16.
Sci Rep ; 9(1): 13528, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537834

ABSTRACT

We describe an NMR approach based on the measurement of residual dipolar couplings (RDCs) to probe the structural and motional properties of the dynamic regions of the ribosome. Alignment of intact 70S ribosomes in filamentous bacteriophage enabled measurement of RDCs in the mobile C-terminal domain (CTD) of the stalk protein bL12. A structural refinement of this domain using the observed RDCs did not show large changes relative to the isolated protein in the absence of the ribosome, and we also found that alignment of the CTD was almost independent of the presence of the core ribosome particle, indicating that the inter-domain linker has significant flexibility. The nature of this linker was subsequently probed in more detail using a paramagnetic alignment strategy, which revealed partial propagation of alignment between neighbouring domains, providing direct experimental validation of a structural ensemble previously derived from SAXS and NMR relaxation measurements. Our results demonstrate the prospect of better characterising dynamical and functional regions of more challenging macromolecular machines and systems, for example ribosome-nascent chain complexes.


Subject(s)
Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Escherichia coli Proteins/metabolism , Macromolecular Substances/metabolism , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protein Structural Elements/physiology , Ribosomes/metabolism , Ribosomes/ultrastructure , Structure-Activity Relationship , X-Ray Diffraction/methods
17.
Sci Rep ; 9(1): 11460, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391518

ABSTRACT

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/ultrastructure , Drug Resistance, Bacterial/genetics , Erythromycin/pharmacology , Ribosomal Proteins/ultrastructure , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cryoelectron Microscopy , Erythromycin/therapeutic use , Humans , Mutation , Protein Binding/genetics , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/ultrastructure , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Bacterial/drug effects , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosomes/drug effects , Ribosomes/metabolism , Ribosomes/ultrastructure , Single Molecule Imaging , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/ultrastructure
18.
Mol Cell Biochem ; 461(1-2): 23-36, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31309409

ABSTRACT

Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses. In the current study, we investigated the crosstalk between mitochondria and lysosomes in the presence of widely used antibiotics: erythromycin (ERM) and clindamycin (CLDM), which target the 50S subunit of bacterial ribosomes. We report here that both ERM and CLDM induced caspase activation and cell death in several different human cell lines. The activity of the mitochondrial respiratory chain was compromised in the presence of ERM and CLDM leading to bioenergetic crisis and generation of reactive oxygen species. Antibiotics treatment impaired autophagy flux and lysosome numbers, resulting in decreased removal of damaged mitochondria through mitophagy, hence accumulation of defective mitochondria. We further show that over-expression of transcription factor EB (TFEB) increased the lysosome number, restored mitochondrial function and rescued ERM- and CLDM-induced cell death. These studies indicate that antibiotics alter mitochondria and lysosome interactions leading to apoptotsis and may develop a novel approach for targeting inter-organelle crosstalk to limit deleterious antibiotic-induced side effects.


Subject(s)
Apoptosis/drug effects , Clindamycin/pharmacology , Erythromycin/pharmacology , Lysosomes/metabolism , Mitochondria/metabolism , Organelle Biogenesis , Anti-Bacterial Agents/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cell Line , Humans , Lysosomes/drug effects , Membrane Fusion/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Models, Biological , Reactive Oxygen Species/metabolism , Ribosome Subunits, Large, Bacterial/metabolism
19.
Nat Commun ; 10(1): 2579, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189921

ABSTRACT

When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.


Subject(s)
Escherichia coli Proteins/ultrastructure , Models, Molecular , Peptide Chain Termination, Translational/physiology , Peptide Termination Factors/ultrastructure , Protein Domains/physiology , Binding Sites/physiology , Codon, Terminator/metabolism , Cryoelectron Microscopy , Escherichia coli Proteins/metabolism , Peptide Termination Factors/metabolism , RNA, Transfer/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Time Factors
20.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31155236

ABSTRACT

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Subject(s)
Alanine/metabolism , Bacillus subtilis/metabolism , Prokaryotic Cells/metabolism , Proteolysis , Ribosome Subunits, Large, Bacterial/metabolism , Eukaryotic Cells/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Transfer/metabolism , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...