Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215780

ABSTRACT

Viruses are obligate intracellular parasites that depend on the host's protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.


Subject(s)
Protein Biosynthesis , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Virus Diseases/metabolism , Viruses/genetics , Animals , Humans , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism , Ribosomes/virology , Virus Diseases/genetics , Virus Diseases/virology , Viruses/metabolism
2.
Adv Virus Res ; 103: 135-166, 2019.
Article in English | MEDLINE | ID: mdl-30635075

ABSTRACT

The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.


Subject(s)
Host Specificity , Mimiviridae/physiology , Protein Biosynthesis , Viral Proteins/genetics , Amoeba/virology , Genome, Viral , Giant Viruses/physiology , Host-Pathogen Interactions , Mimiviridae/isolation & purification , Ribosomes/genetics , Ribosomes/virology , Viral Proteins/metabolism , Virus Replication/physiology
3.
J Gen Virol ; 86(Pt 8): 2275-2280, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16033975

ABSTRACT

Triatoma virus (TrV) belongs to a new family of RNA viruses known as Dicistroviridae. Nucleotide sequence comparisons between different dicistroviruses allowed two putative internal ribosomal entry sites (IRESs) in the TrV RNA to be defined: the 5'UTR IRES of 548 nt and the intergenic region (IGR) IRES of 172 nt. Using monocistronic and bicistronic RNAs, it was shown that the TrV genome contains two functional IRESs that mediate translation initiation in a cap-independent manner. In addition, it was found that the two TrV IRESs were able to direct efficient translation of reporter genes in microinjected Xenopus oocytes, suggesting minimum requirements for host factors. The IGR IRES begins with a non-canonical CUC; however, mutations of this triplet to AUG or CCU did not impair IRES function, indicating that the CUC is not essential for the initiation process. Furthermore, translation efficiency from two TrV IRESs was differentially modulated by IFN-alpha and viral infection.


Subject(s)
Protein Biosynthesis , RNA Viruses/metabolism , RNA, Viral/metabolism , Triatoma/virology , 5' Untranslated Regions/physiology , Animals , Cell Line , Cricetinae , Culicidae , DNA, Intergenic/physiology , Genes, Reporter/physiology , Interferon-alpha/pharmacology , Luciferases/metabolism , Ribosomes/metabolism , Ribosomes/virology
SELECTION OF CITATIONS
SEARCH DETAIL