Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(13): 3993-4004, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38634646

ABSTRACT

Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.


Subject(s)
Biomass , Plant Leaves , Trees , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/anatomy & histology , Trees/growth & development , Trees/metabolism , Ricinus/growth & development , Ricinus/metabolism , Wood/growth & development , Wood/metabolism
2.
Toxins (Basel) ; 13(2)2021 01 29.
Article in English | MEDLINE | ID: mdl-33573016

ABSTRACT

Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antidotes/pharmacology , Poisoning/prevention & control , Ricin/antagonists & inhibitors , Ricinus/metabolism , Animals , Antibody Specificity , Antidotes/pharmacokinetics , Cell Survival/drug effects , Drug Therapy, Combination , Female , Humans , Jurkat Cells , Lethal Dose 50 , Mice, Inbred BALB C , Poisoning/immunology , Protein Isoforms , Ricin/immunology , Ricin/isolation & purification , Ricin/poisoning , Ricinus/growth & development
3.
Sci Rep ; 11(1): 2173, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500437

ABSTRACT

Rhizosphere and root endophytic bacteria are crucial for plant development, but the question remains if their composition is similar and how environmental conditions, such as water content, affect their resemblance. Ricinus communis L., a highly drought resistant plant, was used to study how varying soil water content affected the bacterial community in uncultivated, non-rhizosphere and rhizosphere soil, and in its roots. Additionally, the bacterial community structure was determined in the seeds of R. communis at the onset of the experiment. Plants were cultivated in soil at three different watering regimes, i.e. 50% water holding capacity (WHC) or adjusted to 50% WHC every two weeks or every month. Reducing the soil water content strongly reduced plant and root dry biomass and plant development, but had little effect on the bacterial community structure. The bacterial community structure was affected significantly by cultivation of R. communis and showed large variations over time. After 6 months, the root endophytic bacterial community resembled that in the seeds more than in the rhizosphere. It was found that water content had only a limited effect on the bacterial community structure and the different bacterial groups, but R. communis affected the bacterial community profoundly.


Subject(s)
Bacteria/metabolism , Endophytes/physiology , Plant Roots/microbiology , Rhizosphere , Ricinus/microbiology , Seeds/microbiology , Soil/chemistry , Water/chemistry , Biodiversity , Phylogeny , Principal Component Analysis , Ricinus/growth & development
4.
Ecotoxicol Environ Saf ; 183: 109574, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31442801

ABSTRACT

Soil contamination with lead (Pb) is a serious global concern, adversely affecting crop production. Pot experiments were conducted to assess the efficacy of Prosopis biochar and rice husk ash for plant growth and mitigating Pb translocation in Ricinus communis. Physico-chemical characterization of both the amendments was carried out on a dry weight basis. Seedlings of R.communis were grown in 0, 400 and 800 mg kg-1 Pb spiked soil amended with Prosopis juliflora biochar (PJB) and rice husk ash (RHA) at 0, 2.5% and 5% (w/w) of soil for 60 days. Addition of biochar and rice husk ash to soils increased the Pb tolerance in R.communis, improved soil pH, nutrient intake, and antioxidant enzymatic activities. The biochar amendment significantly (p < 0.05) increased plant growth parameters (height, leaf diameter, nodes, and leaf number), protein (72%) and chlorophyll contents (38-52%), as did RHA to a lesser extent (increase of 10-31% in chlorophyll and 77% protein content) compared to unamended plants. Soil usage of RHA resulted in a more consistent decrease in Pb accumulation in the root, shoot, and leaf relative to PJB. Treatment with PJB at 5% decreased the accumulation of Pb in roots by 59% whereas RHA decreased Pb concentration in roots by 87%. The two distinct amendments significantly reduced the availability of soil Pb and decreased oxidative damage, as evidenced by the lower production of proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) in plants. Changes in infrared spectra confirmed that oxygenated phosphate, amide, ester and ether functional groups played a key role in binding accumulated Pb in roots as well as alleviation of Pb-induced phytotoxicity. Our findings conclude the amendments can be used as a stress regulator in mitigating Pb toxicity, which is important for all economic crop plants, including R.communis.


Subject(s)
Biodegradation, Environmental , Charcoal , Lead/metabolism , Oryza/chemistry , Ricinus/physiology , Soil Pollutants/metabolism , Antioxidants/metabolism , Biological Availability , Lead/toxicity , Oxidative Stress/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Ricinus/growth & development , Ricinus/metabolism , Soil Pollutants/toxicity
5.
Ecotoxicol Environ Saf ; 176: 42-49, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30921695

ABSTRACT

In order to investigate the toxicity-resistance of eighteen Chinese native plants in lead (Pb)-zinc (Zn) mine tailings, we categorized their resistance to Pb and Zn, and tested their potential for phytoremediation effectiveness of Pb and Zn. Fourteen woody plant species belonging to 12 families, and 4 herbaceous species belonging to 4 families, were grown in pots with mixtures of 100% tailing +0% peat (CK), 90% tailing +10% peat (A1), and 80% tailing + 20% peat (A2), respectively. Plant height and biomass, chlorophyll content, and Pb and Zn contents of non-rhizosphere spoil mixtures and plant tissues were measured. Fifteen of the plants grew in all three spoil mixtures. Both A1 and A2 had higher plant height and biomass increment and chlorophyll contents than CK. The content of Pb and Zn in plant shoots and roots was CK > A1 > A2. The value of BCF less than 0.1, compared to 1, was a more precise classification basis for plants excluding metals. Screening for Pb and Zn resistant plants and their bioremediation potential produced the following candidate species: Sapium sebiferum, Salix matsudana, Hibiscus cannabinus, Corchorus capsularis, Ricinus communis, and Populus nigra. These species were highly Pb and Zn tolerant species, with notable growth characteristics and capacities to bioaccumulate Pb and Zn from the mine tailings. Compared to CK, the removal of Pb and Zn from non-rhizosphere spoil increased by an average of 9.64% and 9.6%, respectively in A1, but decreased in A2. The results indicated candidate species and 10% peat addition in the tailing were significant in phytoremediation of Pb and Zn regarding environmental safety.


Subject(s)
Biodegradation, Environmental , Lead/analysis , Plant Development/physiology , Soil , Zinc/analysis , Biomass , China , Corchorus/growth & development , Corchorus/metabolism , Hibiscus/growth & development , Hibiscus/metabolism , Lead/metabolism , Mining , Plant Roots/metabolism , Plant Shoots/chemistry , Populus/growth & development , Populus/metabolism , Ricinus/growth & development , Ricinus/metabolism , Salix/growth & development , Salix/metabolism , Soil Pollutants/analysis , Wood/chemistry , Wood/growth & development , Wood/metabolism , Zinc/metabolism
6.
Environ Pollut ; 244: 257-269, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342366

ABSTRACT

Castor bean (Ricinus communis L.) an important non-edible oilseed crop, is a prominent feed stock towards the generation of renewable materials for industrial production which has multiple applications ranging from cosmetics to biofuels industry. India accounts for 76% of the total world production of castor oil seed. However, major concern for developing countries like India where expanding economy led to rapid increases in gases like NOx, CO and VOCs photochemically form ozone. Ozone is strong oxidant that damages agriculture, ecosystems, and materials with considerable reduction in crop yields and crop quality. One way to reduce ozone induced loss is to focus on the adapting crops to ozone exposure by selecting cultivars with demonstrated ozone resistance. An experiment was conducted for ozone risk assessment of castor cultivars to select cultivar with demonstrated resistance against ozone pollution. This study comprise an open top chamber experiment with three treatments viz. (i) control (ambient ozone concentration), (ii) enhanced ozone (average 75 ppb for 4 h daily throughout the growing season), and (iii) EDU application. Results suggested that the ozone pollution substantially affected growth and physiology of castor cultivars. Crop biomass and yield was also negatively influenced by ozone pollution. Developed defence provided strength to withstand against ozone pollution to the experimental crop cultivars. However, developed defence is cultivar specific and positively correlated with the resistance against ozone pollution. Study concluded that the damage to ozone is directly dependent on the antioxidative potential of plant species. However, ozone adaptability is based on the genetic makeup of the cultivar and yield related loss to ozone can be minimizing by selecting ozone tolerant variety as seen in cultivar Nidhi-999.


Subject(s)
Ozone/adverse effects , Phenylurea Compounds/pharmacology , Ricinus/drug effects , Agriculture , Air Pollutants/adverse effects , Antioxidants , Biomass , Drug Resistance , Environmental Pollution/adverse effects , India , Ozone/antagonists & inhibitors , Ricinus/growth & development , Risk Assessment
7.
Proteomics ; 19(3): e1800347, 2019 02.
Article in English | MEDLINE | ID: mdl-30474183

ABSTRACT

Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in-depth proteome analysis of the pollens from Ricinus communis at three different stages-that is, mature, hydrated, and in vitro germinated-is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label-free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in-deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.


Subject(s)
Plant Proteins/analysis , Pollen/chemistry , Ricinus/chemistry , Germination , Plant Proteins/metabolism , Pollen/growth & development , Pollen/metabolism , Proteomics , Ricinus/growth & development , Ricinus/metabolism , Water/metabolism
8.
Environ Sci Pollut Res Int ; 25(32): 32603-32616, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30242654

ABSTRACT

Spent mushroom substrate (SMS) as an organic amendment to plant production has received increasing attention on soil phytoremediation. However, organic amendments are known to contribute to greenhouse gas (GHG) emission from soils. Castor oil plant has a high biomass production and phytoremediation potential for heavy metal-contaminated soils. In the present study, the roles of SMS on phytoremediation efficiency of castor oil plant (Ricinus communis L.) from cadmium (Cd) and nickel (Ni)-contaminated soils were investigated, and the impact of SMS application on methane emission from the contaminated soil were evaluated. Pot experiments with SMS-amended and unamended contaminated soils were conducted to investigate Cd and Ni accumulation in R. communis and CH4 emission. After growing for 3 months in soils with the addition of Cd (10 mg/kg) and Ni (at rates of 200 and 600 mg/kg), the dry biomass and the concentrations of Cd and Ni in the R. communis were measured, and the mobility factors for Cd and Ni were calculated. To assess methane emission, CH4 fluxes and potential rates of CH4 production and oxidation were measured pre- and post-incubation. SMS addition significantly improved the growth of R. communis and gave 19.15~82.46% more dry weight as compared to the single plant cultivation in the contaminated soils. SMS also increased plant Cd uptake and the total amount of Cd accumulation in R. communis increased by 28.1-152.1%, respectively, in signal Cd treatment and Cd-Ni complexation treatment, as compared to the single plant cultivation. The high values of mobility factor for Cd in single plant cultivation and co-application of SMS and R. communis pointed to the potential of R. communis to the Cd mobilization from the contaminated soils. Moreover, the addition of SMS tended to stimulate CH4 uptake that the average increases in CH4 uptake rate were 3.84-fold (in controls) and 2.91-fold (in single Cd treated soils) by the co-application of SMS and R. communis as compared to the single plant cultivation. The results suggested that the application of SMS could improve the growth of R. communis in Cd and Ni-contaminated soil, enhance heavy metal bioaccumulation, and stimulate soil CH4 uptake. Therefore, SMS might be useful for enhancing phytoremediation of heavy metals and mitigate CH4 emission from the contaminated soil. In addition, results in the study implied that implementing carefully designed management strategies (e.g., application of organic residues) during contaminated soil remediation is a promising solution for agricultural waste management and soil phytoremediation.


Subject(s)
Agaricales/growth & development , Cadmium/metabolism , Environmental Restoration and Remediation/methods , Methane/metabolism , Nickel/metabolism , Ricinus/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Cadmium/analysis , Environmental Restoration and Remediation/instrumentation , Metals, Heavy/analysis , Metals, Heavy/metabolism , Nickel/analysis , Ricinus/growth & development , Soil/chemistry , Soil Pollutants/analysis
9.
Chemosphere ; 200: 257-265, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29494906

ABSTRACT

Hydroponics experiment was conducted to investigate the effects of different levels of Pb on Para Grass (Brachiaria mutica) and Castorbean (Ricinus communis L). Generally, Para Grass exhibited higher tolerance to excessive concentrations of Pb in nutrient solution, whereas a consistent decline was observed in growth of Castorbean plants exposed to similar Pb levels. Malondialdehyde (MDA) and H2O2 contents exhibited contrasting results with a general decrease in Para Grass and a linear increase in case of Castorbean. In both species a decrease was noticed in the activities of superoxide dismutase (SOD) and guaiacol peroxidase (G-POD) while catalase (CAT) activity was significantly increased. Ultrastructural studies revealed increased starch grains and adversely affected thylakoid membranes in chloroplasts of leaf cells of plants treated with 500 µM Pb. Photosynthetic parameters such as CO2 assimilation rate, stomatal conductance (gs) and transpiration rate (E) decreased in both plant species under different levels of Pb. Maximum concentrations of Pb in shoots of Para Grass and Castorbean were 1.29 and 0.352 g kg-1, respectively while in roots maximum values were 8.88 and 49.86 g kg-1, respectively. The high concentrations of Pb (about 5%) in the roots of Castorbean plants suggest its possible role in the phytoremediation/rhizofiltration of Pb contaminated water.


Subject(s)
Antioxidants/pharmacology , Biodegradation, Environmental/drug effects , Brachiaria/growth & development , Lead/toxicity , Photosynthesis/drug effects , Ricinus/growth & development , Brachiaria/drug effects , Brachiaria/metabolism , Brachiaria/ultrastructure , Hydrogen Peroxide/pharmacology , Malondialdehyde/metabolism , Microscopy, Electron, Transmission , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/ultrastructure , Ricinus/drug effects , Ricinus/metabolism , Ricinus/ultrastructure , Superoxide Dismutase/metabolism
10.
Environ Sci Pollut Res Int ; 24(35): 27476-27483, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28980167

ABSTRACT

The biogeochemical cycling of sulfur (S) in soil has an important impact on the bioavailability of heavy metals and affects the utilization of soil polluted by heavy metals. In addition, S-containing compounds are involved in heavy metal detoxification. This study investigated the effects of S on the toxicity and bioavailability of copper (Cu) in castor (Ricinus communis L.) grown in Cu-contaminated mine tailings. The results showed that the application of S reduced the accumulation of Cu in castor and promoted its growth. With the addition of S, the malondialdehyde (MDA) content of castor leaves decreased significantly compared with control plants, indicating the alleviation of oxidative stress. Superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) content decreased significantly with the alleviation of oxidative stress. The sequential extraction of Cu fractions showed that the application of S significantly reduced the reducible Cu fraction, and increased the oxidizable Cu fraction. It also increased the residual Cu fraction in the soil. The transformation of chemical speciation reduced the bioavailability of Cu in soil, which then reduced the accumulation of Cu in castor. Our results demonstrated that S application was effective at promoting castor growth by reducing the bioavailability and uptake of Cu in Cu-contaminated mine tailings.


Subject(s)
Copper/analysis , Ricinus/drug effects , Soil Pollutants/analysis , Sulfur/pharmacology , Biological Availability , Copper/metabolism , Models, Theoretical , Oxidative Stress/drug effects , Ricinus/growth & development , Ricinus/metabolism , Soil/chemistry , Soil Pollutants/metabolism
11.
An. acad. bras. ciênc ; 89(3): 1925-1933, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-886733

ABSTRACT

ABSTRACT This study aimed to evaluate the radiosensitivity of castor bean seeds after applications of different doses of Cobalt60 gamma radiation. Seeds were pre-soaked for 24 hours in distilled water and then irradiated with 50, 100, 150, and 200 Gy, except the control. Sowing was performed in trays, which contained soil as substrate and were maintained in a greenhouse. The electrical conductivity, emergence, emergence speed index, growth parameters and activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase) were evaluated in the leaves and roots of castor bean seedlings. Gamma radiation did not affect the electrical conductivity of the seeds; however, at a dose of 200 Gy, the emergence and emergence speed index of the seedlings was negatively affected. An analysis of the morphophysiological parameters revealed a reduction in seedling size as the radiation dose increased. There was a significant increase in superoxide dismutase and ascorbate peroxidase activities at higher radiation doses in the leaves, but not in roots. Thus, the analysis of all the variables suggests a response pattern as to the morphophysiological and biochemical changes of castor bean seedlings due to the increase of gamma radiation, which may serve as a tool for generating greater genetic variability.


Subject(s)
Ricinus/radiation effects , Seeds/radiation effects , Cobalt Radioisotopes , Germination/radiation effects , Gamma Rays , Ricinus/growth & development , Seeds/growth & development , Dose-Response Relationship, Radiation
12.
An Acad Bras Cienc ; 89(3): 1925-1933, 2017.
Article in English | MEDLINE | ID: mdl-28767891

ABSTRACT

This study aimed to evaluate the radiosensitivity of castor bean seeds after applications of different doses of Cobalt60 gamma radiation. Seeds were pre-soaked for 24 hours in distilled water and then irradiated with 50, 100, 150, and 200 Gy, except the control. Sowing was performed in trays, which contained soil as substrate and were maintained in a greenhouse. The electrical conductivity, emergence, emergence speed index, growth parameters and activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase) were evaluated in the leaves and roots of castor bean seedlings. Gamma radiation did not affect the electrical conductivity of the seeds; however, at a dose of 200 Gy, the emergence and emergence speed index of the seedlings was negatively affected. An analysis of the morphophysiological parameters revealed a reduction in seedling size as the radiation dose increased. There was a significant increase in superoxide dismutase and ascorbate peroxidase activities at higher radiation doses in the leaves, but not in roots. Thus, the analysis of all the variables suggests a response pattern as to the morphophysiological and biochemical changes of castor bean seedlings due to the increase of gamma radiation, which may serve as a tool for generating greater genetic variability.


Subject(s)
Cobalt Radioisotopes , Gamma Rays , Germination/radiation effects , Ricinus/radiation effects , Seeds/radiation effects , Dose-Response Relationship, Radiation , Ricinus/growth & development , Seeds/growth & development
13.
Ecotoxicol Environ Saf ; 144: 522-530, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28675866

ABSTRACT

Soils impacted by metallurgy activities pose serious risks to the health of exposed populations, whether by ingestion of soil or contaminated food and water. The municipality of Santo Amaro, Bahia state, presents the most important case of human lead contamination in Brazil. It occurred because of inadequate slag disposal. The aims of this research were to: (i) determine the environmentally available concentrations and the distribution of As, Cd, Pb, and Zn in soil fractions; (ii) estimate the non-carcinogenic and carcinogenic risks of these elements for children; and (iii) to evaluate the use of corn (Zea mays) and castor bean (Ricinus communis) either for phytoextraction induced by chelating agents or phytostabilization. Our data demonstrated that the environmentally available concentrations of As, Cd, Pb, and Zn in soils surrounding the Pb smelting plant are among the highest that have been reported. Apart from Cd, sequential extraction demonstrated that most metals are in recalcitrant forms in the soil. However, the daily exposure of children to Pb, Zn, Cd, and As exceeded the acceptable daily intake as established by the World Health Organization. Non-carcinogenic risk modeling indicated probable adverse health effects from chronic exposure to soil Pb. The mean estimated time for remediation of the area using phytoextraction was high, ranging from 76 to 259 years; therefore, this is not a viable alternative for remediating soils in the studied area. However, good development in the contaminated soil along with restriction of the metal(oid) translocation to shoots enables castor bean to phytostabilize metal(oid)s. Additionally, castor bean cultivation may be an alternative for an economic return because of biofuel production.


Subject(s)
Arsenic/analysis , Metals, Heavy/analysis , Ricinus/growth & development , Soil Pollutants/analysis , Soil/chemistry , Zea mays/growth & development , Biodegradation, Environmental , Brazil , Child , Cities , Environmental Monitoring , Humans , Metallurgy , Risk Assessment
14.
Sci Rep ; 6: 24309, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27076359

ABSTRACT

Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.


Subject(s)
Cadmium/analysis , Isotopes/analysis , Ricinus/chemistry , Solanum nigrum/chemistry , Mass Spectrometry , Ricinus/growth & development , Solanum nigrum/growth & development
15.
J Agric Food Chem ; 64(19): 3810-8, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27092815

ABSTRACT

Phloem-mobile insecticides are efficient for piercing and sucking insect control. Introduction of sugar or amino acid groups to the parent compound can improve the phloem mobility of insecticides, so a glycinergic-fipronil conjugate (GlyF), 2-(3-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-5-yl)ureido) acetic acid, was designed and synthesized. Although the "Kleier model" predicted that this conjugate is not phloem mobile, GlyF can be continually detected during a 5 h collection of Ricinus communis phloem sap. Furthermore, an R. communis seedling cotyledon disk uptake experiment demonstrates that the uptake of GlyF is sensitive to pH, carbonyl cyanide m-chlorophenylhydrazone (CCCP), temperature, and p-chloromercuribenzenesulfonic acid (pCMBS) and is likely mediated by amino acid carrier system. To explore the roles of amino acid transporters (AATs) in GlyF uptake, a total of 62 AAT genes were identified from the R. communis genome in silico. Phylogenetic analysis revealed that AATs in R. communis were organized into the ATF (amino acid transporter) and APC (amino acid, polyaminem and choline transporter) superfamilies, with five subfamilies in ATF and two in APC. Furthermore, the expression profiles of 20 abundantly expressed AATs (cycle threshold (Ct) values <27) were analyzed at 1, 3, and 6 h after GlyF treatment by RT-qPCR. The results demonstrated that expression levels of four AAT genes, RcLHT6, RcANT15, RcProT2, and RcCAT2, were induced by the GlyF treatment in R. communis seedlings. On the basis of the observation that the expression profile of the four candidate genes is similar to the time course observation for GlyF foliar disk uptake, it is suggested that those four genes are possible candidates involved in the uptake of GlyF. These results contribute to a better understanding of the mechanism of GlyF uptake as well as phloem loading from a molecular biology perspective and facilitate functional characterization of candidate AAT genes in future studies.


Subject(s)
Amino Acid Transport Systems/metabolism , Glycine/metabolism , Pyrazoles/metabolism , Ricinus/metabolism , Genes, Plant , Membrane Potentials , Phylogeny , Ricinus/genetics , Ricinus/growth & development
16.
Photosynth Res ; 128(2): 125-40, 2016 May.
Article in English | MEDLINE | ID: mdl-26589321

ABSTRACT

Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.


Subject(s)
Castor Oil/radiation effects , Lipid Metabolism , Photosynthesis/radiation effects , Ricinus/radiation effects , Biosynthetic Pathways , Carbon Cycle/radiation effects , Castor Oil/metabolism , Chlorophyll/metabolism , Darkness , Fluorescence , High-Throughput Nucleotide Sequencing , Inflorescence/genetics , Inflorescence/growth & development , Inflorescence/metabolism , Inflorescence/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Ricinus/genetics , Ricinus/growth & development , Ricinus/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Seeds/radiation effects , Sunlight , Transcriptome
17.
Bull Environ Contam Toxicol ; 96(2): 265-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26464392

ABSTRACT

Heavy metal pollution of soil is a global environmental problem and therefore its remediation is of paramount importance. Cadmium (Cd) is a potential toxicant to living organisms and even at very low concentrations. This study was aimed to assess the effectiveness of Ricinus communis for remediation of Cd contaminated soils. For this, growth and biomass of R. communis and Cd accumulation, translocation and partitioning in different plant parts were investigated after 8 months of plant growth in Cd contaminated soil (17.50 mg Cd kg−1 soil). Eight months old plants stabilized 51 % Cd in its roots and rest of the metal was transferred to the stem and leaves. There were no significant differences in growth, biomass and yield between control and Cd treated plants, except fresh weight of shoots. The seed yield per plant was reduced only by 5 % of Cd contaminated plants than control. The amount of Cd translocated to the castor seeds was nominal i.e. 0.007 µg Cd g−1 seeds. The bioconcentration factor reduced significantly in shoots and seeds in comparison to roots. The data indicates that R. communis is highly tolerant to Cd contamination and can be used for remediation of heavy metal polluted sites.


Subject(s)
Cadmium/metabolism , Crops, Agricultural/metabolism , Ricinus/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Cadmium/analysis , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism , Ricinus/growth & development , Seeds/metabolism , Soil/chemistry , Soil Pollutants/analysis
18.
Proteomics ; 16(4): 629-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26683443

ABSTRACT

Floral and extrafloral nectaries are unique organs that secrete energy rich chemical components, but their contribution for nectar production is largely unknown. Here, we present the first comparative proteome dataset of four developmental stages of the extrafloral nectaries from castor plant (Ricinus communis), an important biofuel crop. Respectively, from stage I-IV, we identified 626, 613, 449 and 356 proteins, respectively, summing up 882 nonredundant proteins. Surprisingly, we identified two isoforms of the potent toxin ricin, indicating that ricin expression is not limited to seeds, but it may serve a general defense purpose for the castor plant. To date, this is the most complete dataset of proteins either from floral or extrafloral nectaries, thus contributing to lay the foundations for investigations on their ecological and evolutionary importance.


Subject(s)
Plant Proteins/metabolism , Ricinus/growth & development , Plant Proteins/analysis , Proteome/analysis , Proteome/metabolism , Proteomics , Ricin/analysis , Ricin/metabolism , Ricinus/metabolism
19.
Plant Sci ; 239: 180-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26398802

ABSTRACT

Ricinus communis seeds germinate to a high percentage and faster at 35 °C than at lower temperatures, but with compromised seedling establishment. However, seedlings are able to cope with high temperatures at later stages of seedling establishment if germination occurred at lower temperatures. Our objective was to assess the biochemical and molecular requirements of R. communis germination for successful seedling establishment at varying temperatures. For that, we performed metabolite profiling (GC-TOF-MS) and measured transcript levels of key genes involved in several energy-generating pathways, such as storage oil mobilization, ß-oxidation and gluconeogenesis of seeds germinated at three different temperatures. We identified a thermo-sensitive window during seed germination in which high temperatures compromise seedling development, most likely by down-regulating some energy-generating pathways. Overexpression of malate synthase (MLS) and glycerol kinase (GK) genes resulted in higher starch levels in Nicotiana benthamiana leaves, which highlights the importance of these genes in energy-generating pathways for seedling establishment. Additionally, we showed that GABA, which is a stress-responsive metabolite, accumulated in response to the water content of the seeds during the initial phase of imbibition. Herewith, we provide new insights into the molecular requirements for vigorous seedling growth of R. communis under different environmental conditions.


Subject(s)
Germination , Hot Temperature , Ricinus/growth & development , Ricinus/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seeds/growth & development , Seeds/metabolism
20.
Biomed Res Int ; 2015: 549863, 2015.
Article in English | MEDLINE | ID: mdl-26301249

ABSTRACT

Phytoremediation is an attractive alternative to conventional treatments of soil due to advantages such as low cost, large application areas, and the possibility of in situ treatment. This study presents the assessment of phytoremediation processes conducted under controlled experimental conditions to evaluate the ability of Ricinus communis L., tropical plant species, to promote the degradation of 15 persistent organic pollutants (POPs), in a 66-day period. The contaminants tested were hexachlorocyclohexane (HCH), DDT, heptachlor, aldrin, and others. Measurements made in rhizosphere soil indicate that the roots of the studied species reduce the concentration of pesticides. Results obtained during this study indicated that the higher the hydrophobicity of the organic compound and its molecular interaction with soil or root matrix the greater its tendency to concentrate in root tissues and the research showed the following trend: HCHs < diclofop-methyl < chlorpyrifos < methoxychlor < heptachlor epoxide < endrin < o,p'-DDE < heptachlor < dieldrin < aldrin < o,p'-DDT < p,p'-DDT by increasing order of log K ow values. The experimental results confirm the importance of vegetation in removing pollutants, obtaining remediation from 25% to 70%, and demonstrated that Ricinus communis L. can be used for the phytoremediation of such compounds.


Subject(s)
Biodegradation, Environmental , Environmental Pollution/adverse effects , Hydrocarbons, Chlorinated/adverse effects , Ricinus/growth & development , Environmental Monitoring , Hydrocarbons, Chlorinated/chemistry , Pesticides/adverse effects , Pesticides/chemistry , Ricinus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...