Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Biochem Pharmacol ; 197: 114908, 2022 03.
Article in English | MEDLINE | ID: mdl-34999054

ABSTRACT

The diacylglycerol kinase (DGK) family of lipid enzymes catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Both DAG and PA are lipid signaling molecules that are of notable importance in regulating cell processes such as proliferation, apoptosis, and migration. There are ten mammalian DGK enzymes that appear to have distinct biological functions. DGKα has emerged as a promising therapeutic target in numerous cancers including glioblastoma (GBM) and melanoma as treatment with small molecule DGKα inhibitors results in reduced tumor sizes and prolonged survival. Importantly, DGKα has also been identified as an immune checkpoint due to its promotion of T cell anergy, and its inhibition has been shown to improve T cell activation. There are few small molecule DGKα inhibitors currently available, and the application of existing compounds to clinical settings is hindered by species-dependent variability in potency, as well as concerns regarding isotype specificity particularly amongst other type I DGKs. In order to resolve these issues, we have screened a library of compounds structurally analogous to the DGKα inhibitor, ritanserin, in an effort to identify more potent and specific alternatives. We identified two compounds that more potently and selectively inhibit DGKα, one of which (JNJ-3790339) demonstrates similar cytotoxicity in GBM and melanoma cells as ritanserin. Consistent with its inhibitor profile towards DGKα, JNJ-3790339 also demonstrated improved activation of T cells compared with ritanserin. Together our data support efforts to identify DGK isoform-selective inhibitors as a mechanism to produce pharmacologically relevant cancer therapies.


Subject(s)
Diacylglycerol Kinase/antagonists & inhibitors , Diacylglycerol Kinase/metabolism , Ritanserin/analogs & derivatives , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Jurkat Cells
2.
Biochem Biophys Res Commun ; 582: 100-104, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34700241

ABSTRACT

Aniridia is a panocular inherited rare eye disease linked to heterozygous mutations on the PAX6 gene, which fail to properly produce sufficient protein essential for normal eye development and function. Most of the patients suffer from aniridia-related keratopathy, a progressive opacification of the cornea. There is no effective treatment for this blinding disease. Here we screen for small compounds and identified Ritanserin, a serotonin 2A receptor antagonist, that can rescue PAX6 haploinsufficiency of mutant limbal cells, defective cell migration and PAX6-target gene expression. We further demonstrated that Ritanserin activates PAX6 production through the selective inactivation of the MEK/ERK signaling pathway. Our data strongly suggest that repurposing this therapeutic molecule could be effective in preventing or treating existing blindness by restoring corneal transparency.


Subject(s)
Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Ophthalmic Solutions/pharmacology , PAX6 Transcription Factor/genetics , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology , Stem Cells/drug effects , Aniridia/drug therapy , Aniridia/genetics , Aniridia/metabolism , Aniridia/pathology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Repositioning/methods , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Gene Expression Regulation , HEK293 Cells , Haploinsufficiency , Humans , Limbus Corneae/drug effects , Limbus Corneae/metabolism , Limbus Corneae/pathology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , PAX6 Transcription Factor/agonists , PAX6 Transcription Factor/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/pathology
3.
Cancer Res ; 81(8): 2086-2100, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33593821

ABSTRACT

Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.


Subject(s)
Diacylglycerol Kinase/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lymphangioleiomyomatosis/drug therapy , Pinocytosis/drug effects , Ritanserin/pharmacology , Tuberous Sclerosis Complex 2 Protein/deficiency , Tuberous Sclerosis/drug therapy , Angiolipoma/genetics , Animals , Autophagy/drug effects , Cell Proliferation , Chloroquine/pharmacology , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Down-Regulation , Drug Synergism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Kidney Neoplasms/genetics , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/etiology , Lymphangioleiomyomatosis/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Nude , Nutrients/metabolism , Phosphatidic Acids/metabolism , Phospholipids/metabolism , Pinocytosis/physiology , Tuberous Sclerosis/complications
4.
Int J Neuropsychopharmacol ; 23(12): 811-820, 2020 12 29.
Article in English | MEDLINE | ID: mdl-32821948

ABSTRACT

BACKGROUND: Cocaine (benzoylmethylecgonine) is one of the most widely used illegal psychostimulant drugs worldwide, and mortality from acute intoxication is increasing. Suppressing hyperthermia is effective in reducing cocaine-related mortality, but a definitive therapy has not yet been found. In this study, we assessed the ability of risperidone to attenuate acute cocaine-induced hyperthermia and delineated the mechanism of its action. METHODS: Rats were injected i.p. with saline, risperidone, ketanserin, ritanserin, haloperidol, or SCH 23 390 before and after injection of cocaine (30 mg/kg) or with WAY-00 635, SB 206 553, or sulpiride before cocaine injection; thereafter, the rectal temperature was measured every 30 minutes for up to 4 hours. In vivo microdialysis was used to reveal the effect of risperidone on cocaine-induced elevation of dopamine (DA), serotonin (5-HT), and noradrenaline concentrations in the anterior hypothalamus. For post-administration experiments, saline or risperidone (0.5 mg/kg) were injected into rats, and cocaine (30 mg/kg) was injected 15 minutes later. For every 30 minutes thereafter, DA, 5-HT, and noradrenaline levels were measured for up to 240 minutes after cocaine administration. RESULTS: Risperidone, 5-HT2A receptor antagonists, and D1 receptor antagonistic drugs prevented and reversed cocaine-induced hyperthermia. In contrast, receptor antagonists for 5-HT1A, 5-HT2B/2C, and D2 did not alter cocaine-induced hyperthermia. Risperidone treatment further attenuated cocaine-induced elevation of DA. CONCLUSIONS: Our results indicate that risperidone attenuates cocaine-induced hyperthermia primarily by blocking the activities of the 5-HT2A and D1 receptors and may be potentially useful for treating cocaine-induced acute hyperthermia in humans.


Subject(s)
Cocaine/pharmacology , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Hyperthermia/chemically induced , Hyperthermia/drug therapy , Risperidone/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Benzazepines/pharmacology , Cocaine/administration & dosage , Disease Models, Animal , Dopamine Antagonists/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Haloperidol/pharmacology , Ketanserin/pharmacology , Male , Rats , Rats, Wistar , Risperidone/administration & dosage , Ritanserin/pharmacology , Serotonin 5-HT2 Receptor Antagonists/administration & dosage
5.
J Biol Chem ; 295(24): 8174-8185, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32345612

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) channel is activated by heat and by capsaicin, the pungent compound in chili peppers. Calcium influx through TRPV1 has been shown to activate a calcium-sensitive phospholipase C (PLC) enzyme and to lead to a robust decrease in phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] levels, which is a major contributor to channel desensitization. Diacylglycerol (DAG), the product of the PLC-catalyzed PI(4,5)P2 hydrolysis, activates protein kinase C (PKC). PKC is known to potentiate TRPV1 activity during activation of G protein-coupled receptors, but it is not known whether DAG modulates TRPV1 during desensitization. We found here that inhibition of diacylglycerol kinase (DAGK) enzymes reduces desensitization of native TRPV1 in dorsal root ganglion neurons as well as of recombinant TRPV1 expressed in HEK293 cells. The effect of DAGK inhibition was eliminated by mutating two PKC-targeted phosphorylation sites, Ser-502 and Ser-800, indicating involvement of PKC. TRPV1 activation induced only a small and transient increase in DAG levels, unlike the robust and more sustained increase induced by muscarinic receptor activation. DAGK inhibition substantially increased the DAG signal evoked by TRPV1 activation but not that evoked by M1 muscarinic receptor activation. Our results show that Ca2+ influx through TRPV1 activates PLC and DAGK enzymes and that the latter limits formation of DAG and negatively regulates TRPV1 channel activity. Our findings uncover a role of DAGK in ion channel regulation.


Subject(s)
Diacylglycerol Kinase/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Capsaicin/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cytoplasm/metabolism , Diacylglycerol Kinase/antagonists & inhibitors , Diglycerides/metabolism , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Mice, Inbred C57BL , Models, Biological , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Ritanserin/pharmacology
6.
Acta Pharmacol Sin ; 41(9): 1158-1166, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32132658

ABSTRACT

CaV1.2 channel blockers or 5-HT2 receptor antagonists constitute effective therapy for Raynaud's syndrome. A functional link between the inhibition of 5-HT2 receptors and CaV1.2 channel blockade in arterial smooth muscles has been hypothesized. Therefore, the effects of ritanserin, a nonselective 5-HT2 receptor antagonist, on vascular CaV1.2 channels were investigated through electrophysiological, functional, and computational studies. Ritanserin blocked CaV1.2 channel currents (ICa1.2) in a concentration-dependent manner (Kr = 3.61 µM); ICa1.2 inhibition was antagonized by Bay K 8644 and partially reverted upon washout. Conversely, the ritanserin analog ketanserin (100 µM) inhibited ICa1.2 by ~50%. Ritanserin concentration-dependently shifted the voltage dependence of the steady-state inactivation curve to more negative potentials (Ki = 1.58 µM) without affecting the slope of inactivation and the activation curve, and decreased ICa1.2 progressively during repetitive (1 Hz) step depolarizations (use-dependent block). The addition of ritanserin caused the contraction of single myocytes not yet dialyzed with the conventional method. Furthermore, in depolarized rings, ritanserin, and to a lesser extent, ketanserin, caused a concentration-dependent relaxation, which was antagonized by Bay K 8644. Ritanserin and ketanserin were docked at a region of the CaV1.2 α1C subunit nearby that of Bay K 8644; however, only ritanserin and Bay K 8644 formed a hydrogen bond with key residue Tyr-1489. In conclusion, ritanserin caused in vitro vasodilation, accomplished through the blockade of CaV1.2 channels, which was achieved preferentially in the inactivated and/or resting state of the channel. This novel activity encourages the development of ritanserin derivatives for their potential use in the treatment of Raynaud's syndrome.


Subject(s)
Calcium Channels, L-Type/metabolism , Electrophysiological Phenomena/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Ritanserin/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Arteries/cytology , Binding Sites , Calcium Channels, L-Type/chemistry , Ketanserin/metabolism , Ketanserin/pharmacology , Male , Molecular Docking Simulation , Muscle, Smooth, Vascular/cytology , Protein Binding , Rats, Wistar , Ritanserin/metabolism , Serotonin 5-HT2 Receptor Antagonists/metabolism , Vasoconstriction/drug effects
7.
Mol Pharmacol ; 94(5): 1246-1255, 2018 11.
Article in English | MEDLINE | ID: mdl-30158316

ABSTRACT

Ritanserin was tested in the clinic as a serotonin receptor inverse agonist but recently emerged as a novel kinase inhibitor with potential applications in cancer. Here, we discovered that ritanserin induced apoptotic cell death of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells via a serotonin-independent mechanism. We used quantitative chemical proteomics to reveal a ritanserin-dependent kinase network that includes key mediators of lipid [diacylglycerol kinase α, phosphatidylinositol 4-kinase ß] and protein [feline encephalitis virus-related kinase, rapidly accelerated fibrosarcoma (RAF)] signaling, metabolism [eukaryotic elongation factor 2 kinase, eukaryotic translation initiation factor 2-α kinase 4], and DNA damage response [tousled-like kinase 2] to broadly kill lung tumor cell types. Whereas ritanserin exhibited polypharmacology in NSCLC proteomes, this compound showed unexpected specificity for c-RAF in the SCLC subtype, with negligible activity against other kinases mediating mitogen-activated protein kinase signaling. Here we show that ritanserin blocks c-RAF but not B-RAF activation of established oncogenic signaling pathways in live cells, providing evidence in support of c-RAF as a key target mediating its anticancer activity. Given the role of c-RAF activation in RAS-mutated cancers resistant to clinical B-RAF inhibitors, our findings may have implications in overcoming resistance mechanisms associated with c-RAF biology. The unique target landscape combined with acceptable safety profiles in humans provides new opportunities for repositioning ritanserin in cancer.


Subject(s)
Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proteomics , Ritanserin/pharmacology , Amino Acid Sequence , Cell Line, Tumor , Drug Repositioning , HEK293 Cells , Humans , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/drug effects , Serotonin/metabolism
8.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29437972

ABSTRACT

JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML.IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood-cerebrospinal fluid barrier, the choroid plexus and leptomeninges are also poised to play roles in virus invasion of brain parenchyma, where infection of macroglial cells leads to the development of progressive multifocal leukoencephalopathy, a severely debilitating and often fatal infection. In this paper we show for the first time that primary choroid plexus epithelial cells and meningeal cells are infected by JCPyV, lending support to the association of JCPyV with meningoencephalopathies. These data also suggest that JCPyV could use these cells as reservoirs for the subsequent invasion of brain parenchyma.


Subject(s)
Choroid Plexus , Epithelial Cells , JC Virus/metabolism , Leukoencephalopathy, Progressive Multifocal , Meninges , Ritanserin/pharmacology , Cell Line , Choroid Plexus/metabolism , Choroid Plexus/pathology , Choroid Plexus/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Leukoencephalopathy, Progressive Multifocal/drug therapy , Leukoencephalopathy, Progressive Multifocal/metabolism , Leukoencephalopathy, Progressive Multifocal/pathology , Leukoencephalopathy, Progressive Multifocal/virology , Meninges/metabolism , Meninges/pathology , Meninges/virology
9.
Neuro Oncol ; 20(2): 192-202, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29048560

ABSTRACT

Background: The mesenchymal phenotype in glioblastoma (GBM) and other cancers drives aggressiveness and treatment resistance, leading to therapeutic failure and recurrence of disease. Currently, there is no successful treatment option available against the mesenchymal phenotype. Methods: We classified patient-derived GBM stem cell lines into 3 subtypes: proneural, mesenchymal, and other/classical. Each subtype's response to the inhibition of diacylglycerol kinase alpha (DGKα) was compared both in vitro and in vivo. RhoA activation, liposome binding, immunoblot, and kinase assays were utilized to elucidate the novel link between DGKα and geranylgeranyltransferase I (GGTase I). Results: Here we show that inhibition of DGKα with a small-molecule inhibitor, ritanserin, or RNA interference preferentially targets the mesenchymal subtype of GBM. We show that the mesenchymal phenotype creates the sensitivity to DGKα inhibition; shifting GBM cells from the proneural to the mesenchymal subtype increases ritanserin activity, with similar effects in epithelial-mesenchymal transition models of lung and pancreatic carcinoma. This enhanced sensitivity of mesenchymal cancer cells to ritanserin is through inhibition of GGTase I and downstream mediators previously associated with the mesenchymal cancer phenotype, including RhoA and nuclear factor-kappaB. DGKα inhibition is synergistic with both radiation and imatinib, a drug preferentially affecting proneural GBM. Conclusions: Our findings demonstrate that a DGKα-GGTase I pathway can be targeted to combat the treatment-resistant mesenchymal cancer phenotype. Combining therapies with greater activity against each GBM subtype may represent a viable therapeutic option against GBM.


Subject(s)
Brain Neoplasms/drug therapy , Diacylglycerol Kinase/antagonists & inhibitors , Glioblastoma/pathology , Ritanserin/pharmacology , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Diacylglycerol Kinase/genetics , Female , Humans , Mice, Inbred BALB C , NF-kappa B/metabolism , Signal Transduction/drug effects
10.
Biochemistry ; 57(2): 231-236, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29155586

ABSTRACT

Diacylglycerol kinases (DGKs) regulate lipid metabolism and cell signaling through ATP-dependent phosphorylation of diacylglycerol to biosynthesize phosphatidic acid. Selective chemical probes for studying DGKs are currently lacking and are needed to annotate isoform-specific functions of these elusive lipid kinases. Previously, we explored fragment-based approaches to discover a core fragment of DGK-α (DGKα) inhibitors responsible for selective binding to the DGKα active site. Here, we utilize quantitative chemical proteomics to deconstruct widely used DGKα inhibitors to identify structural regions mediating off-target activity. We tested the activity of a fragment (RLM001) derived from a nucleotide-like region found in the DGKα inhibitors R59022 and ritanserin and discovered that RLM001 mimics ATP in its ability to broadly compete at ATP-binding sites of DGKα as well as >60 native ATP-binding proteins (kinases and ATPases) detected in cell proteomes. Equipotent inhibition of activity-based probe labeling by RLM001 supports a contiguous ligand-binding site composed of C1, DAGKc, and DAGKa domains in the DGKα active site. Given the lack of available crystal structures of DGKs, our studies highlight the utility of chemical proteomics in revealing active-site features of lipid kinases to enable development of inhibitors with enhanced selectivity against the human proteome.


Subject(s)
Diacylglycerol Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Proteomics/methods , Ritanserin/analogs & derivatives , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Diacylglycerol Kinase/metabolism , Dose-Response Relationship, Drug , Drug Design , Molecular Structure , Recombinant Proteins/metabolism , Ritanserin/chemistry , Ritanserin/metabolism , Ritanserin/pharmacology , Structure-Activity Relationship
11.
J Headache Pain ; 18(1): 104, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29022279

ABSTRACT

BACKGROUND: Dihydroergotamine (DHE) is an acute antimigraine agent that displays affinity for dopamine D2-like receptors, serotonin 5-HT1/2 receptors and α1/α2-adrenoceptors. Since activation of vascular α1/α2-adrenoceptors results in systemic vasopressor responses, the purpose of this study was to investigate the specific role of α1- and α2-adrenoceptors mediating DHE-induced vasopressor responses using several antagonists for these receptors. METHODS: For this purpose, 135 male Wistar rats were pithed and divided into 35 control and 100 pretreated i.v. with ritanserin (100 µg/kg; to exclude the 5-HT2 receptor-mediated systemic vasoconstriction). Then, the vasopressor responses to i.v. DHE (1-3100 µg/kg, given cumulatively) were determined after i.v. administration of some α1/α2-adrenoceptor antagonists. RESULTS: In control animals (without ritanserin pretreatment), the vasopressor responses to DHE were: (i) unaffected after prazosin (α1; 30 µg/kg); (ii) slightly, but significantly, blocked after rauwolscine (α2; 300 µg/kg); and (iii) markedly blocked after prazosin (30 µg/kg) plus rauwolscine (300 µg/kg). In contrast, after pretreatment with ritanserin, the vasopressor responses to DHE were: (i) attenuated after prazosin (α1; 10 and 30 µg/kg) or rauwolscine (α2; 100 and 300 µg/kg); (ii) markedly blocked after prazosin (30 µg/kg) plus rauwolscine (300 µg/kg); (iii) attenuated after 5-methylurapidil (α1A; 30-100 µg/kg), L-765,314 (α1B; 100 µg/kg), BMY 7378 (α1D; 30-100 µg/kg), BRL44408 (α2A; 100-300 µg/kg), imiloxan (α2B; 1000-3000 µg/kg) or JP-1302 (α2C; 1000 µg/kg); and (iv) unaffected after the corresponding vehicles (1 ml/kg). CONCLUSION: These results suggest that the DHE-induced vasopressor responses in ritanserin-pretreated pithed rats are mediated by α1- (probably α1A, α1B and α1D) and α2- (probably α2A, α2B and α2C) adrenoceptors. These findings could shed light on the pharmacological profile of the vascular side effects (i.e. systemic vasoconstriction) produced by DHE and may lead to the development of more selective antimigraine drugs devoid vascular side effects.


Subject(s)
Dihydroergotamine/pharmacology , Receptors, Adrenergic, alpha-1/physiology , Receptors, Adrenergic, alpha-2/physiology , Ritanserin/pharmacology , Vasoconstriction/physiology , Vasoconstrictor Agents/pharmacology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology , Vasoconstriction/drug effects
12.
J Pharmacol Sci ; 134(2): 131-138, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28647281

ABSTRACT

We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist). The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist) or SB-258585 (5-HT6 antagonist). These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.


Subject(s)
Nicotine/toxicity , Receptors, Serotonin/metabolism , Tremor/metabolism , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/therapeutic use , Amphetamines/pharmacology , Animals , Fenclonine/pharmacology , Humans , Male , Mice , Ondansetron/pharmacology , Piperazines/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use , Tremor/chemically induced , Tremor/drug therapy
13.
Biochem Pharmacol ; 123: 29-39, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27974147

ABSTRACT

Diacylglycerol kinase alpha (DGKα) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Recently, DGKα was identified as a therapeutic target in various cancers, as well as in immunotherapy. Application of small-molecule DGK inhibitors, R59022 and R59949, induces cancer cell death in vitro and in vivo. The pharmacokinetics of these compounds in mice, however, are poor. Thus, there is a need to discover additional DGK inhibitors not only to validate these enzymes as targets in oncology, but also to achieve a better understanding of their biology. In the present study, we investigate the activity of ritanserin, a compound structurally similar to R59022, against DGKα. Ritanserin, originally characterized as a serotonin (5-HT) receptor (5-HTR) antagonist, underwent clinical trials as a potential medicine for the treatment of schizophrenia and substance dependence. We document herein that ritanserin attenuates DGKα kinase activity while increasing the enzyme's affinity for ATP in vitro. In addition, R59022 and ritanserin function as DGKα inhibitors in cultured cells and activate protein kinase C (PKC). While recognizing that ritanserin attenuates DGK activity, we also find that R59022 and R59949 are 5-HTR antagonists. In conclusion, ritanserin, R59022 and R59949 are combined pharmacological inhibitors of DGKα and 5-HTRs in vitro.


Subject(s)
Diacylglycerol Kinase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Ritanserin/pharmacology , Thiazoles/pharmacology , Adenosine Triphosphate/metabolism , Diacylglycerol Kinase/metabolism , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , HeLa Cells , Humans , Kinetics
14.
Behav Brain Res ; 316: 294-304, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27616344

ABSTRACT

The electrical stimulation of the dorsolateral columns of the periaquedutal grey matter (dlPAG) or deep layers of the superior colliculus (dlSC) evokes defensive behaviours followed by an antinociceptive response. Monoaminergic brainstem reticular nuclei are suggested to comprise the endogenous pain modulatory system. The aim of the present work was to investigate the role played by 5-HT2 subfamily of serotonergic receptors of the nucleus raphe magnus (NRM) and the gigantocellularis/paragigantocellularis pars α reticular nuclei (Gi/PGiα) in the elaboration of instinctive fear-induced antinociception elicited by electrical stimulation of dlPAG or of dlSC. The nociceptive thresholds were measured by the tail-flick test in Wistar rats. The 5-HT2A/2C-serotonergic receptors antagonist ritanserin was microinjected at different concentrations (0.05, 0.5 and 5.0µg/0.2µL) either in Gi/PGiα or in NRM. The blockade of 5-HT2 receptors in both Gi/PGiα and NRM decreased the innate fear-induced antinociception elicited by electrical stimulation of the dlSC or the dlPAG. These findings indicate that serotonin is involved in the hypo-algesia induced by unconditioned fear-induced behavioural responses and the 5-HT2A/2C-serotonergic receptor subfamily in neurons situated in the Gi/PGiα complex and NRM are critically recruited in pain modulation during the panic-like emotional behaviour.


Subject(s)
Fear/physiology , Nucleus Raphe Magnus/metabolism , Periaqueductal Gray/physiology , Raphe Nuclei/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Superior Colliculi/physiology , Animals , Conditioning, Classical , Electric Stimulation , Male , Neural Pathways/physiology , Pain/pathology , Pain/physiopathology , Pain Measurement , Pain Threshold/physiology , Rats , Rats, Wistar , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology
15.
Behav Brain Res ; 314: 181-9, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27506653

ABSTRACT

Little is known about the pharmacological effects of amphetamine derivatives. In the present study, the effect on social preference and anxiety-like behavior of 2,5-dimetoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA), in comparison with 3,4 methylenedioxymethamphetamine (MDMA) was investigated in zebrafish, an emerging model to study emotional behavior in an inexpensive and quick manner. DOB (0.05-2mg/kg), PMA (0.0005-2mg/kg) or MDMA (0.25-20mg/kg), given i.m. to adult zebrafish, progressively increased the time spent in the proximity of nacre fish picture in a social preference test. However, high doses were ineffective. Similarly, in the novel tank diving and light-dark tests the compounds elicited a progressive anxiolytic effect in terms of time spent in the upper half of the tank and in the light compartment, respectively. All the above effects were interpolated by symmetrical parabolas. The 5-HT2A/C antagonist ritanserin (0.025-2.5mg/kg) in association with the maximal effective dose of MDMA, DOB and PMA blocked both the social and anxiolytic effect. Taken together these findings demonstrate for the first time the prosocial and anxiolytic properties of DOB and PMA and focus on the mechanisms of their action through the serotonergic-like system suggesting a potential clinical application.


Subject(s)
Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Ritanserin/pharmacology , Animals , Anxiety/drug therapy , Anxiety/psychology , Hallucinogens/pharmacology , Motor Activity/drug effects , Zebrafish
16.
Psychopharmacology (Berl) ; 233(15-16): 3031-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27318987

ABSTRACT

RATIONALE: The synthetic phenethylamines are recreational drugs known to produce psychostimulant effects. However, their abuse potential has not been widely studied. OBJECTIVES: Here, we investigated the rewarding and the hallucinatory effects of 2,5-dimetoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA) in comparison with the classical 3,4-methylenedioxymethamphetamine (MDMA). In addition, the role of serotonin 5-HT2-like receptor on the abovementioned effects was evaluated. METHODS: Zebrafish were intramuscularly (i.m.) treated with a wide range of doses of DOB (0.1-20 mg/kg), PMA (0.0005-2 mg/kg), or MDMA (0.5-160 mg/kg). Animals were submitted to a conditioned place preference (CPP) task, to investigation of the rewarding properties, and to the evaluation of hallucinatory behavior in terms of appearance of a trance-like behavior. The serotonin 5-HT2 subtype receptor antagonist ritanserin (0.025-2.5 mg/kg) in association with the maximal effective dose of MDMA, DOB, and PMA was given i.m., and the effect on CPP or hallucinatory behavior was evaluated. RESULTS: MDMA and its derivatives exhibited CPP in a biphasic fashion, being PMA the most potent. This effect was accompanied, for DOB (2 mg/kg) and PMA (0.1 mg/kg), by a trance-like hallucinatory behavior. MDMA at a high dose as 160 mg/kg did not induce any hallucinatory behavior. Ritanserin significantly blocked the rewarding and hallucinatory effects suggesting the involvement of serotonin 5HT2 subtype receptor. CONCLUSION: Collectively, these findings demonstrate for the first time that the rewarding properties of DOB and PMA are accompanied by hallucinatory behavior through a serotonergic system and reinforce zebrafish as an emerging experimental model for screening new hallucinogens.


Subject(s)
Amphetamines/pharmacology , Behavior, Animal/drug effects , DOM 2,5-Dimethoxy-4-Methylamphetamine/analogs & derivatives , Hallucinogens/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Receptors, Serotonin, 5-HT2/metabolism , Serotonin Receptor Agonists/pharmacology , DOM 2,5-Dimethoxy-4-Methylamphetamine/pharmacology , Animals , Conditioning, Psychological/drug effects , Female , Male , Reinforcement, Psychology , Reward , Ritanserin/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Zebrafish
17.
Brain Res Bull ; 121: 59-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26772625

ABSTRACT

Fast ripples (FR, 250-600 Hz) are field potentials that occur only in those areas capable of generating seizures, such as the hippocampus, and modulation of FR by serotonin has been reported. Therefore, we hypothesized that the receptor antagonists 5HT1A and 5HT2A, B, C will increase FR in rats treated with kainic acid (KA, 0.8 µg/0.5 µl). For this purpose, the intracranial EEG recordings of the hippocampus from animals treated with KA and the serotonin antagonists WAY100135 and ritanserin (dose 0.2mg/Kg, i.p) were analyzed. In addition, morphologic parameters were analyzed after staining samples with cresyl violet, Timm stain, NeuN and GFAP and observing immunofluorescence. The results showed an increase in the number of events of FR (p<0.0001) and duration of each FR event after the administration of WAY100135 (p<0.030). Additionally, there was an increase in the number of events of FR (p<0.0001) and amplitude of FR after ritanserin administration (p<0.014). In relation to changes in unspecified cells, there was a significant decrement in the width of the CA3 pyramidal layer of the hippocampus (p<0.001), and there were no significant changes in reactive glia and fiber sprouting. However, a slight gain of astrocytes marked with GFAP and larger astrocytes with more projections were observed. In conclusion, these results support the modulation of FR by serotonin with participation of the 5HT1A receptor as a possible mediator of the effect. However the exact mechanisms resulting in such effect is not known.


Subject(s)
Brain Waves/drug effects , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Seizures/chemically induced , Seizures/physiopathology , Serotonin Antagonists/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electroencephalography , Glial Fibrillary Acidic Protein/metabolism , Male , Phosphopyruvate Hydratase/metabolism , Piperazines/pharmacology , Rats , Rats, Wistar , Ritanserin/pharmacology
18.
Amino Acids ; 48(2): 349-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26371055

ABSTRACT

Glycine receptors (GlyRs) permeable to chloride only mediate tonic inhibition in the cerebral cortex where glycinergic projection is completely absent. The functional modulation of GlyRs was largely studied in subcortical brain regions with glycinergic transmissions, but the function of cortical GlyRs was rarely addressed. Serotonin could broadly modulate many ion channels through activating 5-HT2 receptor, but whether cortical GlyRs are subjected to serotonergic modulation remains unexplored. The present study adopted patch clamp recordings to examine functional regulation of strychnine-sensitive GlyRs currents in cultured cortical neurons by DOI (2,5-Dimethoxy-4-iodoamphetamine), a 5-HT2A/C receptor agonist. DOI caused a concentration-dependent reduction of GlyR currents with unchanged reversal potential. This reduction was blocked by the selective receptor antagonists (ritanserin and risperidone) and G protein inhibitor (GDP-ß-s) demonstrated that the reducing effect of DOI on GlyR current required the activation of 5-HT2A/C receptors. Strychnine-sensitive tonic currents revealed the inhibitory tone mediated by nonsynaptic GlyRs, and DOI similarly reduced the tonic inhibition. The impaired microtube-dependent trafficking or clustering of GlyRs was thought to be involved in that nocodazole as a microtube depolymerizing drug largely blocked the inhibition mediated by 5-HT2A/C receptors. Our results suggested that activation of 5-HT2A/C receptors might suppress cortical tonic inhibition mediated by GlyRs, and the findings would provide important insight into serotonergic modulation of tonic inhibition mediated by GlyRs, and possibly facilitate to develop the therapeutic treatment of neurological diseases such as tinnitus through regulating cortical GlyRs.


Subject(s)
Auditory Cortex/metabolism , Neurons/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Glycine/metabolism , Amphetamines/pharmacology , Animals , Cells, Cultured , GTP-Binding Proteins/metabolism , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/pharmacology , Ion Channels/metabolism , Microtubules/metabolism , Nocodazole/pharmacology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Risperidone/pharmacology , Ritanserin/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Strychnine/pharmacology , Thionucleotides/pharmacology , Tubulin Modulators/pharmacology
19.
Behav Pharmacol ; 26(7 Spec No): 681-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25932719

ABSTRACT

We have recently found that isolation-reared mice show hyperactivity during an encounter with an intruder. However, it is not known whether encounter-induced hyperactivity may model some aspects of psychiatric disorders. The present study examined the pharmacological profile of encounter-induced hyperactivity in isolation-reared mice. Encounter-induced hyperactivity was reduced by acute administration of various antidepressants including the tricyclic antidepressant desipramine (10 mg/kg), the selective serotonin (5-HT) reuptake inhibitors fluvoxamine (10 mg/kg) and paroxetine (10 mg/kg), the 5-HT/noradrenaline reuptake inhibitors venlafaxine (10 mg/kg) and duloxetine (10 mg/kg), the antipsychotic drug risperidone (0.01 mg/kg), the 5-HT2 antagonist ritanserin (1 mg/kg), and the glucocorticoid receptor antagonist RU-43044 (30 mg/kg). The α2 adrenoceptor agonist clonidine (0.03 mg/kg) and the 5-HT4 receptor agonist BIMU8 (30 mg/kg) also reduced encounter-induced hyperactivity. The effect of desipramine was blocked by the α2 adrenoceptor antagonist idazoxan (0.3 mg/kg). The effect of fluvoxamine was blocked by the 5-HT4 receptor antagonist GR125487 (3 mg/kg), but not the 5-HT1A receptor antagonist WAY100635 (1 mg/kg), the 5-HT3 receptor antagonist azasetron (3 mg/kg), or the 5-HT6 receptor antagonist SB399885 (3 mg/kg). The effect of venlafaxine was blocked by the simultaneous administration of idazoxan (0.3 mg/kg) and GR125487 (3 mg/kg), but not by either compound alone. These findings suggest that encounter-induced hyperactivity in isolation-reared mice is a robust model for testing the pharmacological profile of antidepressants, although the range of antidepressants tested is limited and some non-antidepressants are also effective. The present study also shows a key role of α2 and 5-HT4 receptors in the antidepressant effect in this model.


Subject(s)
Motor Activity/drug effects , Social Behavior , Social Isolation/psychology , Animals , Animals, Outbred Strains , Benzimidazoles/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Desipramine/pharmacology , Duloxetine Hydrochloride/pharmacology , Fluvoxamine/pharmacology , Hydroxycorticosteroids/pharmacology , Idazoxan/pharmacology , Indoles/pharmacology , Male , Mice , Neuropsychological Tests , Oxazines/pharmacology , Paroxetine/pharmacology , Piperazines/pharmacology , Psychotropic Drugs/pharmacology , Pyridines/pharmacology , Risperidone/pharmacology , Ritanserin/pharmacology , Sulfonamides/pharmacology , Venlafaxine Hydrochloride/pharmacology
20.
Neuropharmacology ; 95: 243-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25842246

ABSTRACT

Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA.


Subject(s)
Dopamine Agents/pharmacology , Excitatory Amino Acid Agents/pharmacology , Light , Motor Activity/drug effects , Motor Activity/radiation effects , Serotonin Antagonists/pharmacology , Animals , Dose-Response Relationship, Drug , Haloperidol/pharmacology , Indoles/pharmacology , Ketamine/pharmacology , Male , Naphthyridines/pharmacology , Phencyclidine/pharmacology , Photic Stimulation , Piperazines/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Quinpirole/pharmacology , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Ritanserin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL