Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(12): e0169153, 2016.
Article in English | MEDLINE | ID: mdl-28036408

ABSTRACT

A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken from most of the bat species present in the Iberian Peninsula from the Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit bats from the Pteropodidae family. By using two degenerate consensus PCR methods targeting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses were identified for the most of the tested species. All together a total of 42 potentially novel bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gammaherpesvirinae subfamily. Significant diversity was observed among the novel sequences when compared with type herpesvirus species of the ICTV-approved genera. The inferred phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a well-supported unique monophyletic clade and support the recognition of a new betaherpesvirus genus. This clade is subdivided into three major clades, corresponding to the families of bats studied. This supports the hypothesis of a species-specific parallel evolution process between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the betaherpesviruses' sequences detected in rhinolophid bats clustered together apart from the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a putative third roseolo lineage. On the contrary, no phylogenetic structure was detected among several potentially novel bat-hosted gammaherpesviruses found in the study. Remarkably, all of the possible novel bat herpesviruses described in this study are linked to a unique bat species.


Subject(s)
Betaherpesvirinae/growth & development , Betaherpesvirinae/genetics , Chiroptera/virology , DNA, Viral/genetics , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Animals , Base Sequence , Betaherpesvirinae/classification , Betaherpesvirinae/isolation & purification , Biological Evolution , Gammaherpesvirinae/isolation & purification , Genetic Variation/genetics , Phylogeny , Polymerase Chain Reaction , Portugal , Roseolovirus/classification , Roseolovirus/genetics , Sequence Alignment , Sequence Analysis, DNA , Spain
2.
J Virol ; 88(22): 13212-20, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25187544

ABSTRACT

UNLABELLED: Primates are naturally infected with herpesviruses. During the last 15 years, the search for homologues of human herpesviruses in nonhuman primates allowed the identification of numerous viruses belonging to the different herpesvirus subfamilies and genera. No simian homologue of human herpesvirus 7 (HHV7) has been reported to date. To investigate the putative existence of HHV7-like viruses in African great apes, we applied the consensus-degenerate hybrid oligonucleotide primers (CODEHOP) program-mediated PCR strategy to blood DNA samples from the four common chimpanzee subspecies (Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii), pygmy chimpanzees (Pan paniscus), as well as lowland gorillas (Gorilla gorilla gorilla). This study led to the discovery of a novel roseolovirus close to HHV7 in each of these nonhuman primate species and subspecies. Generation of the partial glycoprotein B (1,111-bp) and full-length DNA polymerase (3,036/3,042-bp) gene sequences allowed the deciphering of their evolutionary relationships. Phylogenetic analyses revealed that HHV7 and its African great ape homologues formed well-supported monophyletic lineages whose topological resemblance to the host phylogeny is suggestive of virus-host codivergence. Notably, the evolutionary branching points that separate HHV7 from African great ape herpesvirus 7 are remarkably congruent with the dates of divergence of their hosts. Our study shows that African great apes are hosts of human herpesvirus homologues, including HHV7 homologues, and that the latter, like other DNA viruses that establish persistent infections, have cospeciated with their hosts. IMPORTANCE: Human herpesviruses are known to possess simian homologues. However, surprisingly, none has been identified to date for human herpesvirus 7 (HHV7). This study is the first to describe simian homologues of HHV7. The extensive search performed on almost all African great ape species and subspecies, i.e., common chimpanzees of the four subspecies, bonobos, and lowland gorillas, has allowed characterization of a specific virus in each. Genetic characterization of the partial glycoprotein B and full-length DNA polymerase gene sequences, followed by their phylogenetic analysis and estimation of divergence times, has shed light on the evolutionary relationships of these viruses. In this respect, we conclusively demonstrate the cospeciation between these new viruses and their hosts and report cases of cross-species transmission between two common chimpanzee subspecies in both directions.


Subject(s)
Primate Diseases/virology , Roseolovirus Infections/veterinary , Roseolovirus/classification , Roseolovirus/isolation & purification , Africa , Animals , Blood/virology , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Genotype , Hominidae , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Roseolovirus/genetics , Roseolovirus Infections/virology , Sequence Analysis, DNA , Sequence Homology , Viral Proteins/genetics
3.
Virology ; 288(1): 145-53, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11543667

ABSTRACT

The Roseolovirus genus of the Betaherpesvirinae consists of the very closely related viruses, human herpesvirus 6 variants A and B (HHV-6A and HHV-6B) plus the somewhat more distantly related human herpesvirus 7 (HHV-7). The roseoloviruses each encode a homolog of the alphaherpesvirus origin binding protein (OBP) which is required for lytic DNA replication. In contrast, members of the other betaherpesvirus genera, the cytomegaloviruses, initiate DNA replication by a different mechanism. To better understand the basis of roseolovirus OBP sequence specificity, we investigated their ability to recognize each other's binding sites. HHV-6A OBP (OBP(H6A)) and HHV-6B OBP (OBP(H6B)) each bind to both of the HHV-7 OBP sites (OBP-1 and OBP-2) with similar strengths, which are also similar to their nearly equivalent interactions with their own sites. In contrast, HHV-7 OBP (OBP(H7)) had a gradient of binding preferences: HHV-7 OBP-2 > HHV-6 OBP-2 > HHV-7 OBP-1 > HHV-6 OBP-1. Thus, the roseolovirus OBPs are not equally reciprocal in their recognition of each other's OBP sites, suggesting that the sequence requirements for the interaction of OBPH7 at the OBP sites in its cognate oriLyt differ from those of OBPH6A and OBPH6B.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Roseolovirus/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Binding, Competitive , Herpesvirus 6, Human/genetics , Herpesvirus 7, Human/genetics , Humans , Kinetics , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Roseolovirus/classification , Roseolovirus/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...