Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
mSphere ; 6(5): e0065921, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34585962

ABSTRACT

Infection with mosquito-borne arthritogenic alphaviruses, such as Ross River virus (RRV) and Barmah Forest virus (BFV), can lead to long-lasting rheumatic disease. Existing mouse models that recapitulate the disease signs and immunopathogenesis of acute RRV and BFV infection have consistently shown relevance to human disease. However, these mouse models, which chiefly model hindlimb dysfunction, may be prone to subjective interpretation when scoring disease. Assessment is therefore time-consuming and requires experienced users. The DigiGait system provides video-based measurements of movement, behavior, and gait dynamics in mice and small animals. Previous studies have shown DigiGait to be a reliable system to objectively quantify changes in gait in other models of pain and inflammation. Here, for the first time, we determine measurable differences in the gait of mice with infectious arthritis using the DigiGait system. Statistically significant differences in paw area and paw angle were detected during peak disease in RRV-infected mice. Significant differences in temporal gait parameters were also identified during the period of peak disease in RRV-infected mice. These trends were less obvious or absent in BFV-infected mice, which typically present with milder disease signs than RRV-infected mice. The DigiGait system therefore provides an objective model of variations in gait dynamics in mice acutely infected with RRV. DigiGait is likely to have further utility for murine models that develop severe forms of infectious arthritis resulting in hindlimb dysfunction like RRV. IMPORTANCE Mouse models that accurately replicate the immunopathogenesis and clinical disease of alphavirus infection are vital to the preclinical development of therapeutic strategies that target alphavirus infection and disease. Current models rely on subjective scoring made through experienced observation of infected mice. Here, we demonstrate how the DigiGait system, and interventions on mice to use this system, can make an efficient objective assessment of acute disease progression and changes in gait in alphavirus-infected mice. Our study highlights the importance of measuring gait parameters in the assessment of models of infectious arthritis.


Subject(s)
Alphavirus Infections/virology , Arthritis, Infectious/physiopathology , Arthritis, Infectious/virology , Gait Analysis/veterinary , Ross River virus/physiology , Alphavirus Infections/pathology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Ross River virus/pathogenicity , Running , Walking
2.
Elife ; 102021 08 20.
Article in English | MEDLINE | ID: mdl-34414887

ABSTRACT

Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.


Subject(s)
Alphavirus Infections/virology , Birds/virology , Culicidae/virology , Disease Reservoirs/virology , Disease Vectors , Ross River virus/pathogenicity , Viral Zoonoses , Alphavirus Infections/transmission , Animals , Host-Pathogen Interactions , Humans , Models, Biological , Queensland , Virulence
3.
Sci Rep ; 11(1): 4419, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627779

ABSTRACT

Koala populations in many areas of Australia have declined sharply in response to habitat loss, disease and the effects of climate change. Koalas may face further morbidity from endemic mosquito-borne viruses, but the impact of such viruses is currently unknown. Few seroprevalence studies in the wild exist and little is known of the determinants of exposure. Here, we exploited a large, spatially and temporally explicit koala survey to define the intensity of Ross River Virus (RRV) exposure in koalas residing in urban coastal environments in southeast Queensland, Australia. We demonstrate that RRV exposure in koalas is much higher (> 80%) than reported in other sero-surveys and that exposure is uniform across the urban coastal landscape. Uniformity in exposure is related to the presence of the major RRV mosquito vector, Culex annulirostris, and similarities in animal movement, tree use, and age-dependent increases in exposure risk. Elevated exposure ultimately appears to result from the confinement of remaining coastal koala habitat to the edges of permanent wetlands unsuitable for urban development and which produce large numbers of competent mosquito vectors. The results further illustrate that koalas and other RRV-susceptible vertebrates may serve as useful sentinels of human urban exposure in endemic areas.


Subject(s)
Alphavirus Infections/transmission , Alphavirus Infections/virology , Phascolarctidae/virology , Ross River virus/pathogenicity , Animals , Culex/virology , Ecosystem , Humans , Mosquito Vectors/virology , Queensland , Seroepidemiologic Studies , Wetlands
4.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361425

ABSTRACT

Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1-/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1-/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs-/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs-/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs-/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs-/- mice infected with WT virus, and treatment of Mavs-/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs-/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs-/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Alphavirus Infections/immunology , Antiviral Agents/metabolism , Dendritic Cells/immunology , Interferon Type I/metabolism , Ross River virus/pathogenicity , Adaptor Proteins, Signal Transducing/metabolism , Alphavirus Infections/virology , Animals , Dendritic Cells/metabolism , Immunity, Innate , Mice , Mutation , Ross River virus/genetics , Signal Transduction , Viral Load , Viral Nonstructural Proteins/genetics , Virulence/genetics
5.
Article in English | MEDLINE | ID: mdl-30999712

ABSTRACT

In February 2019, a major flooding event occurred in Townsville, North Queensland, Australia. Here we present a prediction of the occurrence of mosquito-borne diseases (MBDs) after the flooding. We used a mathematical modelling approach based on mosquito population abundance, survival, and size as well as current infectiousness to predict the changes in the occurrences of MBDs due to flooding in the study area. Based on 2019 year-to-date number of notifiable MBDs, we predicted an increase in number of cases, with a peak at 104 by one-half month after the flood receded. The findings in this study indicate that Townsville may see an upsurge in the cases of MBDs in the coming days. However, the burden of diseases will go down again if the mosquito control program being implemented by the City Council continues. As our predictions focus on the near future, longer term effects of flooding on the occurrence of mosquito-borne diseases need to be studied further.


Subject(s)
Alphavirus Infections/epidemiology , Dengue/epidemiology , Floods , Mosquito Vectors , Alphavirus Infections/transmission , Alphavirus Infections/virology , Animals , Australia , Dengue/transmission , Humans , Mosquito Control , Queensland/epidemiology , Ross River virus/pathogenicity
7.
Am J Trop Med Hyg ; 99(4): 1066-1073, 2018 10.
Article in English | MEDLINE | ID: mdl-30182918

ABSTRACT

Mosquito and virus surveillance systems are widely used in Western Australia (WA) to support public health efforts to reduce mosquito-borne disease. However, these programs are costly to maintain on a long-term basis. Therefore, we aimed to assess the validity of mosquito numbers and Ross River virus (RRV) isolates from surveillance trap sites as predictors of human RRV cases in south-west WA between 2003 and 2014. Using negative binomial regression modeling, mosquito surveillance was found to be a useful tool for predicting human RRV cases. In eight of the nine traps, when adjusted for season, there was an increased risk of RRV cases associated with elevated mosquito numbers detected 1 month before the onset of human cases for at least one quartile compared with the reference group. The most predictive urban trap sites were located near saltmarsh mosquito habitat, bushland that could sustain macropods and densely populated residential suburbs. This convergence of environments could allow enzootic transmission of RRV to spillover and infect the human population. Close proximity of urban trap sites to each other suggested these sites could be reduced. Ross River virus isolates were infrequent at some trap sites, so ceasing RRV isolation from mosquitoes at these sites or where isolates were not predictive of human cases could be considered. In future, trap sites could be reduced for routine surveillance, allowing other environments to be monitored to broaden the understanding of RRV ecology in the region. A more cost-effective and efficient surveillance program may result from these modifications.


Subject(s)
Alphavirus Infections/prevention & control , Arbovirus Infections/prevention & control , Culicidae/virology , Epidemiological Monitoring , Mosquito Vectors/virology , Ross River virus/pathogenicity , Alphavirus Infections/epidemiology , Alphavirus Infections/transmission , Alphavirus Infections/virology , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arbovirus Infections/virology , Ecosystem , Humans , Models, Statistical , Retrospective Studies , Ross River virus/physiology , Seasons , Western Australia/epidemiology
8.
mBio ; 9(4)2018 08 21.
Article in English | MEDLINE | ID: mdl-30131356

ABSTRACT

Infection with Ross River virus (RRV) causes debilitating polyarthritis and arthralgia in individuals. Alphaviruses are highly sensitive to type I interferon (IFN). Mutations at the conserved P3 position of the cleavage site between nonstructural protein 1 (nsP1) and nsP2 (1/2 site) modulate type I IFN induction for both RRV and Sindbis virus (SINV). We constructed and characterized RRV-T48A534V, a mutant harboring an A534V substitution in the P1 position of the 1/2 site, and compared it to parental RRV-T48 and to RRV-T48A532V, SINVI538 and SINVT538 harboring different substitutions in the same region. A534V substitution resulted in impaired processing of RRV nonstructural polyprotein and in elevated production of replicase-generated pathogen-associated molecular pattern (PAMP) RNAs that induce expression of type I IFN. Both A532V and A534V substitutions affected synthesis of viral RNAs, though the effects of these closely located mutations were drastically different affecting mostly either the viral negative-strand RNA or genomic and subgenomic RNA levels, respectively. Synthesis of PAMP RNAs was also observed for SINV replicase, and it was increased by I538T substitution. In comparison to RRV-T48, RRV-T48A534V was attenuated in vitro and in vivo Interestingly, when type I IFN-deficient cells and type I IFN receptor-deficient mice were infected with RRV-T48 or RRV-T48A534V, differences between these viruses were no longer apparent. Compared to RRV-T48, RRV-T48A534V infection was associated with increased upregulation of type I IFN signaling proteins. We demonstrate novel mechanisms by which the A534V mutation affect viral nonstructural polyprotein processing that can impact PAMP RNA production, type I IFN induction/sensitivity, and disease.IMPORTANCE This study gives further insight into mechanisms of type I IFN modulation by the medically important alphaviruses Ross River virus (RRV) and Sindbis virus (SINV). By characterizing attenuated RRV mutants, the crucial role of amino acid residues in P1 and P3 positions (the first and third amino acid residues preceding the scissile bond) of the cleavage site between nsP1 and nsP2 regions was highlighted. The study uncovers a unique relationship between alphavirus nonstructural polyprotein processing, RNA replication, production of different types of pathogen-associated molecular pattern (PAMP) RNAs, type I IFN induction, and disease pathogenesis. This study also highlights the importance of the host innate immune response in RRV infections. The viral determinants of type I IFN modulation provide potential drug targets for clinical treatment of alphaviral disease and offer new approaches for rational attenuation of alphaviruses for construction of vaccine candidates.


Subject(s)
Interferons/metabolism , Mutant Proteins/immunology , Mutation, Missense , Polyproteins/metabolism , RNA, Viral/immunology , Ross River virus/pathogenicity , Viral Nonstructural Proteins/metabolism , Alphavirus Infections/pathology , Alphavirus Infections/virology , Animals , Antiviral Agents/metabolism , Disease Models, Animal , Mice , Mutant Proteins/genetics , Polyproteins/genetics , RNA, Viral/metabolism , Ross River virus/genetics , Ross River virus/immunology , Sindbis Virus/genetics , Sindbis Virus/immunology , Sindbis Virus/pathogenicity , Viral Nonstructural Proteins/genetics , Virulence
9.
Article in English | MEDLINE | ID: mdl-29437628

ABSTRACT

Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Ross River virus/drug effects , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Glucuronidase/genetics , Glucuronidase/metabolism , Mice , Ross River virus/enzymology , Ross River virus/pathogenicity , Saponins/therapeutic use , Viral Load/drug effects
10.
PLoS Pathog ; 13(12): e1006788, 2017 12.
Article in English | MEDLINE | ID: mdl-29281739

ABSTRACT

Chikungunya virus (CHIKV) belongs to a group of mosquito-borne alphaviruses associated with acute and chronic arthropathy, with peripheral and limb joints most commonly affected. Using a mouse model of CHIKV infection and arthritic disease, we show that CHIKV replication and the ensuing foot arthropathy were dramatically reduced when mice were housed at 30°C, rather than the conventional 22°C. The effect was not associated with a detectable fever, but was dependent on type I interferon responses. Bioinformatics analyses of RNA-Seq data after injection of poly(I:C)/jetPEI suggested the unfolded protein response and certain type I interferon responses are promoted when feet are slightly warmer. The ambient temperature thus appears able profoundly to effect anti-viral activity in the periphery, with clear consequences for alphaviral replication and the ensuing arthropathy. These observations may provide an explanation for why alphaviral arthropathies are largely restricted to joints of the limbs and the extremities.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/virology , Arthritis, Experimental/immunology , Arthritis, Experimental/virology , Arthritis, Infectious/immunology , Arthritis, Infectious/virology , Interferon Type I/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Experimental/pathology , Arthritis, Infectious/pathology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Female , Foot , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Ross River virus/immunology , Ross River virus/pathogenicity , Ross River virus/physiology , Temperature , Viral Load , Virus Replication/immunology , Virus Replication/physiology
11.
PLoS Pathog ; 13(12): e1006748, 2017 12.
Article in English | MEDLINE | ID: mdl-29244871

ABSTRACT

Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/virology , Monocytes/immunology , Monocytes/virology , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Antigens, Ly/metabolism , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Diphtheria Toxin/pharmacology , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/immunology , Humans , Inflammation/virology , Interferon Regulatory Factor-3/deficiency , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon Type I/biosynthesis , Interferon Type I/genetics , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monocytes/drug effects , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Ross River virus/genetics , Ross River virus/immunology , Ross River virus/pathogenicity , Viral Load , Virulence/genetics , Virulence/immunology
12.
J Virol ; 90(8): 4150-4159, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865723

ABSTRACT

UNLABELLED: The alphaviral6kgene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the6kproteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel6kin-frame deletion mutant. Comprehensive microscopic analysis revealed that the6kproteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the6kproteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a higher temperature. While the6kdeletion did not reduce RRV particle production in BHK-21 cells, it affected virion release from the host cell. Subsequentin vivostudies demonstrated that RRV-(Δ6K) caused a milder disease than wild-type virus, with viral titers being reduced in infected mice. Immunization of mice with RRV-(Δ6K) resulted in a reduced viral load and accelerated viral elimination upon secondary infection with wild-type RRV or another alphavirus, chikungunya virus (CHIKV). Our results show that the6kproteins may contribute to alphaviral disease manifestations and suggest that manipulation of the6kgene may be a potential strategy to facilitate viral vaccine development. IMPORTANCE: Arthritogenic alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), cause epidemics of debilitating rheumatic disease in areas where they are endemic and can emerge in new regions worldwide. RRV is of considerable medical significance in Australia, where it is the leading cause of arboviral disease. The mechanisms by which alphaviruses persist and cause disease in the host are ill defined. This paper describes the phenotypic properties of an RRV6kdeletion mutant. The absence of the6kgene reduced virion release from infected cells and also reduced the severity of disease and viral titers in infected mice. Immunization with the mutant virus protected mice against viremia not only upon exposure to RRV but also upon challenge with CHIKV. These findings could lead to the development of safer and more immunogenic alphavirus vectors for vaccine delivery.


Subject(s)
Alphavirus Infections/virology , Ross River virus/genetics , Ross River virus/immunology , Viral Structural Proteins/genetics , Alphavirus Infections/immunology , Alphavirus Infections/physiopathology , Animals , Cell Line , Cell Line, Tumor , Chikungunya virus/immunology , Chlorocebus aethiops , Cricetinae , Humans , Hydrogen-Ion Concentration , Mice , Mutation , Reading Frames , Ross River virus/pathogenicity , Sequence Deletion , Vero Cells , Viral Load , Viral Structural Proteins/analysis , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication
13.
J Gen Virol ; 97(5): 1094-1106, 2016 05.
Article in English | MEDLINE | ID: mdl-26813162

ABSTRACT

With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous in vitro work with Ross River virus (RRV) demonstrated that alphaviral N-linked glycosylation contributes to type I IFN (IFN-αß) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral N-linked glycans in vivo, assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, Aedes vigilax. A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector A. vigilax, whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector.


Subject(s)
Alphavirus Infections/virology , Capsid Proteins/metabolism , Ross River virus/physiology , Ross River virus/pathogenicity , Viral Envelope Proteins/metabolism , Aedes/virology , Alphavirus Infections/transmission , Animals , Capsid Proteins/genetics , Cell Line , Gene Expression Regulation, Viral/physiology , Glycosylation , Insect Vectors/virology , Mice , Mutation , RNA, Viral , Ross River virus/genetics , Sheep/blood , Viral Envelope Proteins/genetics , Virulence , Virus Replication/genetics
14.
Cytokine ; 76(2): 572-576, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26159111

ABSTRACT

Melanocytes are melanin-producing cells and with emerging innate immune functions including the expression of antiviral interferon-type I cytokines. We herein ascertained the susceptibility of the human melanocytes to Ross River alphavirus (RRV) infection and analyzed the subsequent immune responses. We demonstrated for the first time that (1) SKMEL-28 melanocyte cell line was susceptible to RRV infection and displaying major cytopathic activities and (2) RRV interfered with the interferon-type I response by altering nuclear translocation of pSTAT1 and pSTAT2 in infected SKMEL-28. These results suggest that the human melanoma cell line SKMEL-28 is a valuable model to analyze the mechanisms involved in severe skin manifestations and melanocyte's immunity at the portal of entry of major infection by arboviruses.


Subject(s)
Interferon Type I/genetics , Melanocytes/metabolism , Ross River virus/pathogenicity , Cell Line , Cytopathogenic Effect, Viral , Humans , Melanocytes/virology
15.
J Virol ; 88(7): 3719-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24429363

ABSTRACT

UNLABELLED: Ross River virus (RRV) is one of a group of mosquito-transmitted alphaviruses that cause debilitating, and often chronic, musculoskeletal disease in humans. Previously, we reported that replacement of the nonstructural protein 1 (nsP1) gene of the mouse-virulent RRV strain T48 with that from the mouse-avirulent strain DC5692 generated a virus that was attenuated in a mouse model of disease. Here we find that the six nsP1 nonsynonymous nucleotide differences between strains T48 and DC5692 are determinants of RRV virulence, and we identify two nonsynonymous nucleotide changes as sufficient for the attenuated phenotype. RRV T48 carrying the six nonsynonymous DC5692 nucleotide differences (RRV-T48-nsP1(6M)) was attenuated in both wild-type and Rag1(-/-) mice. Despite the attenuated phenotype, RRV T48 and RRV-T48-nsP1(6M) loads in tissues of wild-type and Rag1(-/-) mice were indistinguishable from 1 to 3 days postinoculation. RRV-T48-nsP1(6M) loads in skeletal muscle tissue, but not in other tissues, decreased dramatically by 5 days postinoculation in both wild-type and Rag1(-/-) mice, suggesting that the RRV-T48-nsP1(6M) mutant is more sensitive to innate antiviral effectors than RRV T48 in a tissue-specific manner. In vitro, we found that the attenuating mutations in nsP1 conferred enhanced sensitivity to type I interferon. In agreement with these findings, RRV T48 and RRV-T48-nsP1(6M) loads were similar in mice deficient in the type I interferon receptor. Our findings suggest that the type I IFN response controls RRV infection in a tissue-specific manner and that specific amino acid changes in nsP1 are determinants of RRV virulence by regulating the sensitivity of RRV to interferon. IMPORTANCE: Arthritogenic alphaviruses, including Ross River virus (RRV), infect humans and cause debilitating pain and inflammation of the musculoskeletal system. In this study, we identified coding changes in the RRV nsP1 gene that control the virulence of RRV and its sensitivity to the antiviral type I interferon response, a major component of antiviral defense in mammals. Furthermore, our studies revealed that the effects of these attenuating mutations are tissue specific. These findings suggest that these mutations in nsP1 influence the sensitivity of RRV to type I interferon only in specific host tissues. The new knowledge gained from these studies contributes to our understanding of host responses that control alphavirus infection and viral determinants that counteract these responses.


Subject(s)
Alphavirus Infections/virology , Host-Pathogen Interactions , Interferon Type I/immunology , Mutation, Missense , Ross River virus/pathogenicity , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism , Alphavirus Infections/pathology , Animal Structures/virology , Animals , DNA Mutational Analysis , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutant Proteins/genetics , Mutant Proteins/metabolism , Ross River virus/immunology , Viral Load , Viral Nonstructural Proteins/genetics , Virulence , Virulence Factors/genetics
16.
Pak J Biol Sci ; 17(6): 768-79, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26035950

ABSTRACT

A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.


Subject(s)
Alphavirus Infections/virology , Horse Diseases/virology , Ross River virus/pathogenicity , Alphavirus Infections/epidemiology , Alphavirus Infections/transmission , Animals , Enzyme-Linked Immunosorbent Assay , Horse Diseases/epidemiology , Horse Diseases/transmission , Horses , Humans , Reverse Transcriptase Polymerase Chain Reaction , Ross River virus/isolation & purification
17.
J Virol ; 87(10): 5970-84, 2013 May.
Article in English | MEDLINE | ID: mdl-23514884

ABSTRACT

Arthritogenic alphaviruses are human pathogens maintained in nature through alternating replication in vertebrates and mosquitoes. Using chimeric viruses, we previously reported that replacement of the PE2 coding region of the T48 strain of Ross River virus (RRV-T48) with that from the attenuated DC5692 strain, which differ by 7 amino acids, resulted in an attenuated disease phenotype in a mouse model of RRV-induced rheumatic disease. Here, we demonstrate that introduction of one of these amino acid differences, a tyrosine (Y)-to-histidine (H) change at position 18 of the E2 glycoprotein (E2 Y18H), into the RRV-T48 genetic background was sufficient to generate a virus that caused dramatically less severe musculoskeletal disease in mice. The attenuated phenotype of RRV-T48 E2 Y18H was associated with reduced viral loads in musculoskeletal tissues, reduced viremia, and less efficient virus spread. Consistent with these findings, RRV-T48 E2 Y18H replicated less well in mammalian cells in vitro due to significantly reduced PFU released per infected cell. In contrast, RRV-T48 E2 Y18H replicated more efficiently than RRV-T48 in C6/36 mosquito cells. Competition studies confirmed that RRV-T48 E2 Y18H had a fitness advantage in mosquito cells and a fitness disadvantage in mammalian cells. Interestingly, all sequenced Ross River viruses encode either a tyrosine or a histidine at E2 position 18, and this holds true for other alphaviruses in the Semliki Forest antigenic complex. Taken together, these findings suggest that a tyrosine-to-histidine switch at E2 position 18 functions as a regulator of RRV fitness in vertebrate and invertebrate cells.


Subject(s)
Amino Acid Substitution , Capsid Proteins/metabolism , Histidine/genetics , Ross River virus/pathogenicity , Tyrosine/genetics , Viral Envelope Proteins/metabolism , Virulence Factors/metabolism , Alphavirus Infections/pathology , Alphavirus Infections/virology , Animals , Capsid Proteins/genetics , Cell Line , Culicidae , Disease Models, Animal , Histidine/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscle, Skeletal/virology , Ross River virus/genetics , Ross River virus/physiology , Tyrosine/metabolism , Viral Envelope Proteins/genetics , Viral Load , Viremia , Virulence , Virulence Factors/genetics , Virus Replication
18.
PLoS Pathog ; 8(3): e1002586, 2012.
Article in English | MEDLINE | ID: mdl-22457620

ABSTRACT

Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3(-/-) mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.


Subject(s)
Alphavirus Infections/complications , Arthritis, Reactive/virology , Mannose-Binding Lectin/metabolism , Myositis/virology , Ross River virus/physiology , Alphavirus Infections/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Reactive/metabolism , Arthritis, Reactive/pathology , Complement Activation , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/virology , Myositis/metabolism , Myositis/pathology , Ross River virus/pathogenicity , Synovial Fluid/metabolism , Virus Replication
19.
Vox Sang ; 102(3): 185-92, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21923861

ABSTRACT

BACKGROUND AND OBJECTIVES: There is little data on the duration of viraemia following infection with Ross River virus (RRV), the most common cause of arbovirus disease in Australia. In particular, no accurate estimate exists for the duration of pre-symptomatic RRV infection, which is important in assessing the potential for transfusion transmission. MATERIALS AND METHODS: We used an established mouse model of RRV infection involving adult Swiss outbred mice to measure viraemia following infection. Applying our experimental data to a published probabilistic model for estimating the risk of dengue transmission by transfused blood, we derived comparable risk estimates for RRV. RESULTS: Ross River virus RNA was measured using highly sensitive real-time PCR in serum samples to determine the duration of asymptomatic viraemia, which typically lasted 5 days, but extended to 9 days in some mice. Assuming the potential for transfusion transmission is proven, the risk of RRV transmission by blood during a 2004 outbreak in Cairns, Australia was retrospectively estimated as 1 in 13,542 (range from 1 in 4765 to 47,563). CONCLUSION: This study provides updated epidemiological data useful to underpin modelling to assess the potential risk of transfusion-transmitted RRV. Using an established model for dengue, the risk estimate for RRV transmission is comparable in the same geographical region. Should transfusion be proven as a route of transmission, this supports consideration of appropriate mitigation strategies to safeguard blood recipients.


Subject(s)
Alphavirus Infections/transmission , Blood Transfusion , Blood-Borne Pathogens , Ross River virus/pathogenicity , Viremia/transmission , Adult , Animals , Australia , Dengue/transmission , Dengue Virus/pathogenicity , Disease Models, Animal , Humans , Mice , Risk Factors , Time Factors
20.
Vector Borne Zoonotic Dis ; 11(4): 375-82, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21466385

ABSTRACT

BACKGROUND: The two most reported mosquito-borne diseases in Queensland, a northern state of Australia, are Ross River virus (RRV) disease and Barmah Forest virus (BFV) disease. Both diseases are endemic in Queensland and have similar clinical symptoms and comparable transmission cycles involving a complex inter-relationship between human hosts, various mosquito vectors, and a range of nonhuman vertebrate hosts, including marsupial mammals that are unique to the Australasian region. Although these viruses are thought to share similar vectors and vertebrate hosts, RRV is four times more prevalent than BFV in Queensland. METHODS: We performed a retrospective analysis of BFV and RRV human disease notification data collected from 1995 to 2007 in Queensland to ascertain whether there were differences in the incidence patterns of RRV and BFV disease. In particular, we compared the temporal incidence and spatial distribution of both diseases and considered the relationship between their disease dynamics. We also investigated whether a peak in BFV incidence during spring was indicative of the following RRV and BFV transmission season incidence levels. RESULTS: Although there were large differences in the notification rates of the two diseases, they had similar annual temporal patterns, but there were regional variations between the length and magnitude of the transmission seasons. During periods of increased disease activity, however, there was no association between the dynamics of the two diseases. CONCLUSIONS: The results from this study suggest that while RRV and BFV share similar mosquito vectors, there are significant differences in the ecology of these viruses that result in different epidemic patterns of disease incidence. Further investigation is required into the ecology of each virus to determine which factors are important in promoting RRV and BFV disease outbreaks.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus/pathogenicity , Ecosystem , Adolescent , Adult , Age Distribution , Aged , Alphavirus Infections/transmission , Animals , Child , Child, Preschool , Culicidae/virology , Endemic Diseases , Female , Geographic Information Systems , Geography , Humans , Incidence , Infant , Infant, Newborn , Insect Vectors/virology , Logistic Models , Male , Middle Aged , Queensland/epidemiology , Retrospective Studies , Risk Factors , Ross River virus/pathogenicity , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...