Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407
Filter
1.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
2.
Pediatr Rheumatol Online J ; 22(1): 47, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671467

ABSTRACT

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most prevalent rheumatic disease in children, and the inflammatory process is widely studied, primarily characterized by its impact on joint health. Emerging evidence suggests that JIA may also affect the central nervous system (CNS). This study investigates the potential CNS involvement in JIA by analyzing the presence of astrocyte-derived extracellular vesicles (EVs) and the S100B protein in plasma, both of which are indicative of astrocyte activity and blood-brain barrier (BBB) integrity. METHODS: EDTA plasma from 90 children diagnosed with JIA and 10 healthy controls, matched by age and gender, was analyzed for extracellular vesicles by flow cytometric measurement. Astrocyte-derived EVs were identified using flow cytometry with markers for aquaporin 4 (AQP-4) and glial fibrillary acidic protein (GFAP). Levels of the S100B protein were measured using a commercial ELISA. Disease activity was assessed using the Juvenile Arthritis Disease Activity Score (JADAS27, 0-57), and pain levels were measured using a visual analogue scale (VAS, 0-10 cm). RESULTS: Our analyses revealed a significantly higher concentration of astrocyte-derived EVs in the plasma of children with JIA compared with healthy controls. Furthermore, children with JADAS27 scores of 1 or higher exhibited notably higher levels of these EVs. The S100B protein was detectable exclusively in the JIA group. CONCLUSION: The elevated levels of astrocyte-derived EVs and the presence of S100B in children with JIA provide evidence of BBB disruption and CNS involvement, particularly in those with higher disease activity. These findings underscore the importance of considering CNS health in the comprehensive management of JIA. Further research is required to elucidate the mechanisms behind CNS engagement in JIA and to develop treatments that address both joint and CNS manifestations of the disease.


Subject(s)
Arthritis, Juvenile , Astrocytes , Blood-Brain Barrier , Extracellular Vesicles , S100 Calcium Binding Protein beta Subunit , Humans , Arthritis, Juvenile/metabolism , Arthritis, Juvenile/blood , Child , Male , Blood-Brain Barrier/metabolism , Female , Cross-Sectional Studies , Extracellular Vesicles/metabolism , Astrocytes/metabolism , S100 Calcium Binding Protein beta Subunit/blood , S100 Calcium Binding Protein beta Subunit/metabolism , Adolescent , Case-Control Studies , Child, Preschool , Permeability
3.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685023

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Subject(s)
Ferroptosis , Hippocampus , Lipid Peroxidation , Phosphatidylethanolamine Binding Protein , Phospholipid Hydroperoxide Glutathione Peroxidase , Sepsis-Associated Encephalopathy , Ferroptosis/drug effects , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Lipid Peroxidation/drug effects , Mice , Male , Female , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/antagonists & inhibitors , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , Disease Models, Animal , Child, Preschool , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Signal Transduction/drug effects , Child , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Malondialdehyde/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Infant
4.
J Chem Inf Model ; 64(8): 3477-3487, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38605537

ABSTRACT

Allostery is an essential biological phenomenon in which perturbation at one site in a biomolecule elicits a functional response at a distal location(s). It is integral to biological processes, such as cellular signaling, metabolism, and transcription regulation. Understanding allostery is also crucial for rational drug discovery. In this work, we focus on an allosteric S100B protein that belongs to the S100 class of EF-hand Ca2+-binding proteins. The Ca2+-binding affinity of S100B is modulated allosterically by TRTK-12 peptide binding 25 Å away from the Ca2+-binding site. We investigated S100B allostery by carrying out nuclear magnetic resonance (NMR) measurements along with microsecond-long molecular dynamics (MD) simulations on S100B/Ca2+ with/without TRTK-12 at different NaCl salt concentrations. NMR HSQC results show that TRTK-12 reorganizes how S100B/Ca2+ responds to different salt concentrations at both orthosteric and allosteric sites. The MD data suggest that TRTK-12 breaks the dynamic aromatic and hydrogen-bond interactions (not observed in X-ray crystallographic structures) between the hinge/helix and Ca2+-binding EF-hand loop of the two subunits in the homodimeric protein. This triggers rearrangement in the protein network architectures and leads to allosteric communication. Finally, computational studies of S100B at distinct ionic strengths suggest that ligand-bound species are more robust to the changing environment relative to the S100B/Ca2+ complex.


Subject(s)
CapZ Actin Capping Protein , Molecular Dynamics Simulation , S100 Calcium Binding Protein beta Subunit , Allosteric Regulation , S100 Calcium Binding Protein beta Subunit/chemistry , S100 Calcium Binding Protein beta Subunit/metabolism , Calcium/metabolism , Humans , Signal Transduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Binding , Protein Conformation
5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339064

ABSTRACT

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oxidative Stress , Protein Aggregates , Oxidation-Reduction , S100 Calcium Binding Protein beta Subunit/metabolism
6.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068900

ABSTRACT

S100B, a homodimeric Ca2+-binding protein, is produced and secreted by astrocytes, and its extracellular levels have been used as a glial marker in brain damage and neurodegenerative and psychiatric diseases; however, its mechanism of secretion is elusive. We used primary astrocyte cultures and calcium measurements from real-time fluorescence microscopy to investigate the role of intracellular calcium in S100B secretion. In addition, the dimethyl sulfoxide (DMSO) effect on S100B was investigated in vitro and in vivo using Wistar rats. We found that DMSO, a widely used vehicle in biological assays, is a powerful S100B secretagogue, which caused a biphasic response of Ca2+ mobilization. Our data show that astroglial S100B secretion is triggered by the increase in intracellular Ca2+ and indicate that this increase is due to Ca2+ mobilization from the endoplasmic reticulum. Also, blocking plasma membrane Ca2+ channels involved in the Ca2+ replenishment of internal stores decreased S100B secretion. The DMSO-induced S100B secretion was confirmed in vivo and in ex vivo hippocampal slices. Our data support a nonclassic vesicular export of S100B modulated by Ca2+, and the results might contribute to understanding the mechanism underlying the astroglial release of S100B.


Subject(s)
Astrocytes , Dimethyl Sulfoxide , Rats , Animals , Rats, Wistar , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , Astrocytes/metabolism , Colforsin/pharmacology , Secretagogues/pharmacology , Calcium/metabolism , Nerve Growth Factors/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Endoplasmic Reticulum/metabolism , Cells, Cultured
7.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058025

ABSTRACT

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Subject(s)
Brain Injuries , Humans , Brain Injuries/metabolism , Blood-Brain Barrier/metabolism , Astrocytes , S100 Calcium Binding Protein beta Subunit/metabolism
8.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 100-105, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37807328

ABSTRACT

Non-steroidal anti-inflammatory drugs decrease pain and fever while corticosteroids regulate inflammation and immune response, both are prescribed to reduce inflammation and control pain. The present study aimed to study the effects of their monotherapy and co-administration on the brain tissue structure of experimental rats. P-glycoprotein (PGP), a transporter membrane protein, plays an important role in various physiological and physio-pathological conditions, drug-drug and drug-food interactions, and multi-drug resistance. Male rats were divided into four groups and received normal saline, dexamethasone, diclofenac sodium and their dual therapy respectively, then after one-month rats were sacrificed and brain tissues proceeded for hematoxylin and eosin staining to study their histopathology and immunohistochemically staining of NSE, S100-B and GFAP biomarkers were performed. Additionally, in silico molecular docking studies were conducted to elucidate interactions between PGP and used compounds. Resultsshowed that dexamethasone or diclofenac sodium treatments showed abnormalities like edema, neuronal vacuoles, astrocytes hyperplasia and microglial cells with positive reaction to NSE, S100 and GFAP antibodies while the dual therapy displayed less edema and other signs of damage with negative and weak positive staining of NSE, S100 and GFAP antibodies respectively. The molecular docking showed that there were different affinities toward the involved PGP active site. These interaction results were great with Dexamethasone -9.6 kcal/mol forming hydrophobic interactions with the highest affinity when compared with Diclofenac sodium which gave -8.4 kcal/mol. In conclusion, the side effects of the two types of anti-inflammatory drugs may be minimized through their interactions. However, Molecular Dynamic Simulations studies are required to explain the exact dynamic behaviors and protein-ligand stability.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Diclofenac , Male , Rats , Animals , S100 Calcium Binding Protein beta Subunit/metabolism , Glial Fibrillary Acidic Protein/metabolism , Diclofenac/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Molecular Docking Simulation , Phosphopyruvate Hydratase/metabolism , Brain/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation , Dexamethasone/pharmacology , Pain , Edema
9.
Psychopharmacology (Berl) ; 240(12): 2499-2513, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37555927

ABSTRACT

BACKGROUND: Depression, one of the most significant mental disorders, is still poorly understood in terms of its pathogenetic mechanisms despite its well-recognized association with stress. OBJECTIVES: The current study's goal was to ascertain how the novel antidepressant drug vortioxetine (VOR) affected the BDNF (brain-derived neurotrophic factor), S100, amyloid ß (Aß), CREB (cAMP response element-binding protein), and NR2B, as well as its impact on depression-like behaviors, and tissue damage in an experimental rodent model of depression caused by chronic unpredictable stress. METHODS: We employed twenty-eight Wistar albino male rats, and we randomly divided them into four groups, each consisting of 7 rats: control, CUMS (chronic unpredictable mild stress), CUMS+vortioxetine (CUMS+VOR), and CUMS+fluoxetine (CUMS+FLU). Sucrose preference and forced swimming tests (SPT and FST, respectively), PCR, ELISA, and histopathological and immunohistochemical evaluation were made on brains. RESULTS: The behaviors of reduced immobility in the FST and increased sucrose preference were observed in the CUMS group and they improved in the groups treated with VOR and FLU. Compared with the control group, the group exposed to CUMS showed increased Aß and decreased BDNF, CREB, and S-100 expressions, as well as neuronal degeneration (p<0.001). VOR and FLU treatment ameliorate the findings. CONCLUSIONS: This study demonstrated significant ameliorative effects of VOR in an experimental model of chronic unpredictable depression to reduce brain tissue damage and depression-like behaviors in rats. Effects of CUMS on the brain and possible effects of VOR.


Subject(s)
Amyloid beta-Peptides , Depression , Humans , Rats , Animals , Vortioxetine/pharmacology , Depression/drug therapy , Depression/metabolism , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , Sucrose/pharmacology , Glutamates/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/pharmacology
10.
BMC Neurosci ; 24(1): 38, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474905

ABSTRACT

Prognosticating the clinical outcome of neurological diseases is essential to guide treatment and facilitate decision-making. It usually depends on clinical and radiological findings. Biomarkers have been suggested to support this process, as they are deemed objective measures and can express the extent of tissue damage or reflect the degree of inflammation. Some of them are specific, and some are not. Few of them, however, reached the stage of daily application in clinical practice. This mini review covers available applications of the S100B protein in prognosticating clinical outcome in patients with various neurological disorders, particularly in those with traumatic brain injury, spontaneous subarachnoid hemorrhage and ischemic stroke. The aim is to provide an understandable picture of the clinical use of the S100B protein and give a brief overview of the current limitations that require future solutions.


Subject(s)
Brain Injuries , Nervous System Diseases , Humans , Prognosis , Biomarkers , S100 Calcium Binding Protein beta Subunit/metabolism , Brain Injuries/diagnosis , Nervous System Diseases/diagnosis
11.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298126

ABSTRACT

Reactive gliosis is a hallmark of chronic degenerative diseases of the retina. As gliosis involves macroglia, we investigated their gliotic response to determine the role of S100ß and intermediate filaments (IFs) GFAP, vimentin, and nestin during tissue repair in a laser-induced model of retinal degeneration. We validated the results with human retinal donor samples. Experiments were performed in zebrafish and mice using an argon laser (532 nm) to induce focal lesions in the outer retina. At different time points following injury induction, the kinetics of retinal degeneration and regeneration were assessed using hematoxylin and eosin staining (H&E). Immunofluorescence was performed to evaluate Müller cell (GS) and astrocyte (GFAP) injury response and to distinguish between both cell types. Additionally, staining was performed in human retinal sections containing drusen. Focal laser treatment elevated the expression of gliotic markers in the area of the damage, which was associated with increased expression of S100ß, GFAP, vimentin, and nestin in mice and humans. In zebrafish, we detected S100ß at the first time point, but not GFAP or nestin. Double-positive cells with the selected glia markers were detected in all models. However, in zebrafish, no double-positive GFAP/GS cells were found on days 10 and 17, nor were S100ß/GS double-positive cells found on day 12. Macroglia cells showed a different pattern in the expression of IFs in degenerative and regenerative models. In particular, S100ß may prove to be a target for suppressing chronic gliosis in retinal degeneration.


Subject(s)
Retinal Degeneration , Animals , Mice , Humans , Retinal Degeneration/pathology , Astrocytes/metabolism , Vimentin/genetics , Vimentin/metabolism , Nestin/genetics , Nestin/metabolism , Gliosis/pathology , Zebrafish/metabolism , Glial Fibrillary Acidic Protein/metabolism , Retina/metabolism , Neuroglia/metabolism , Lasers , S100 Calcium Binding Protein beta Subunit/metabolism
12.
Transl Res ; 259: 46-61, 2023 09.
Article in English | MEDLINE | ID: mdl-37121539

ABSTRACT

Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Animals , Mice , Alarmins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Obstetric Labor, Premature/metabolism , Inflammation/chemically induced , Amniotic Fluid/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism
13.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36982288

ABSTRACT

S100B is an astrocytic cytokine that has been shown to be involved in several neurodegenerative diseases. We used an astrocytoma cell line (U373 MG) silenced for S100B, and stimulated it with amyloid beta-peptide (Aß) as a known paradigm factor for astrocyte activation, and showed that the ability of the cell (including the gene machinery) to express S100B is a prerequisite for inducing reactive astrocytic features, such as ROS generation, NOS activation and cytotoxicity. Our results showed that control astrocytoma cell line exhibited overexpression of S100B after Aß treatment, and subsequently cytotoxicity, increased ROS generation and NOS activation. In contrast, cells silenced with S100B were essentially protected, consistently reducing cell death, significantly decreasing oxygen radical generation and nitric oxide synthase activity. The conclusive aim of the present study was to show a causative linkage between the cell expression of S100B and induction of astrocyte activation processes, such as cytotoxicity, ROS and NOS activation.


Subject(s)
Amyloid beta-Peptides , Astrocytoma , Humans , Amyloid beta-Peptides/metabolism , Reactive Oxygen Species/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Nerve Growth Factors/metabolism , Cell Line , Nitric Oxide Synthase/metabolism , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytes/metabolism , Nitric Oxide/metabolism
14.
Cells ; 12(5)2023 02 24.
Article in English | MEDLINE | ID: mdl-36899866

ABSTRACT

Overexpression of S100B is routinely used for disease-staging and for determining prognostic outcomes in patients with malignant melanoma. Intracellular interactions between S100B and wild-type (WT)-p53 have been demonstrated to limit the availability of free WT-p53 in tumor cells, inhibiting the apoptotic signaling cascade. Herein, we demonstrate that, while oncogenic overexpression of S100B is poorly correlated (R < 0.3; p > 0.05) to alterations in S100B copy number or DNA methylation in primary patient samples, the transcriptional start site and upstream promoter of the gene are epigenetically primed in melanoma cells with predicted enrichment of activating transcription factors. Considering the regulatory role of activating transcription factors in S100B upregulation in melanoma, we stably suppressed S100b (murine ortholog) by using a catalytically inactive Cas9 (dCas9) fused to a transcriptional repressor, Krüppel-associated box (KRAB). Selective combination of S100b-specific single-guide RNAs and the dCas9-KRAB fusion significantly suppressed expression of S100b in murine B16 melanoma cells without noticeable off-target effects. S100b suppression resulted in recovery of intracellular WT-p53 and p21 levels and concomitant induction of apoptotic signaling. Expression levels of apoptogenic factors (i.e., apoptosis-inducing factor, caspase-3, and poly-ADP ribose polymerase) were altered in response to S100b suppression. S100b-suppressed cells also showed reduced cell viability and increased susceptibility to the chemotherapeutic agents, cisplatin and tunicamycin. Targeted suppression of S100b therefore offers a therapeutic vulnerability to overcome drug resistance in melanoma.


Subject(s)
Melanoma , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Apoptosis , Melanoma/pathology , Promoter Regions, Genetic , S100 Calcium Binding Protein beta Subunit/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism
15.
Cell Biol Toxicol ; 39(5): 1-25, 2023 10.
Article in English | MEDLINE | ID: mdl-34792689

ABSTRACT

Minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains not fully understood. In the present study, we investigated the effect and mechanism of S100B, a predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. We discovered that S100B expressions and autocrine were significantly increased in MHE rat brains and MHE rat brain-derived astrocytes. Furthermore, S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress in MHE astrocytes. MHE astrocytes supported impairment of neuronal survival and growth in a co-culture system. To sum up, a comprehensive understanding of the role of S100B-overexpressed MHE astrocyte in MHE pathogenesis may provide insights into the etiology of MHE.


Subject(s)
Astrocytes , Animals , Rats , Astrocytes/metabolism , Inflammation/metabolism , Neuroprotection , Oxidative Stress , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/pharmacology , Vascular Endothelial Growth Factors
16.
BMC Neurosci ; 23(1): 59, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243678

ABSTRACT

BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.


Subject(s)
Neuroprotective Agents , Seals, Earless , Animals , Brain/metabolism , Clusterin/genetics , Ferrets/genetics , Ferrets/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hypoxia , Mice , Neurons/metabolism , Oxidative Stress , Protein Isoforms/metabolism , Reactive Oxygen Species/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Seals, Earless/genetics , Seals, Earless/metabolism , Transcriptome
17.
Biomed Pharmacother ; 156: 113869, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257211

ABSTRACT

Glucose metabolism in neuronal tissue declines during neurodegenerative disorders in a progressive, region-specific, and disease-specific manner. Studies have shown that extracellular hyper-glycemia affects the functioning of adenosine triphosphate (ATP) sensitive potassium channels located in neurons and astrocytes. Also, hyper-insulinemia contributes to the formation and progression of Alzheimer's disease (AD) via competition with amyloid ß (Aß) for insulin-degrading enzyme. Aß disruption is phosphatidylinositol 3-kinase pathway dependent, and increased circulatory insulin concentrations lead to Aß accumulation. In 2008, based on assessment of brain glucose utilization disorders and insulin signaling disruptions, it was proposed that AD could be called "type III diabetes". Proteins from the S100 family are actively secreted during metabolic and oxidative stress, but their role in neuronal cells has yet to be clarified. However, it has been demonstrated that they act in a dose-dependent manner, which may be crucial in the modulation of glucose and insulin metabolism in the brain. The goal of this paper was to elucidate the association between high glucose and insulin concentrations with extra- and intracellular S100B and S100A8 proteins levels as well as the correlation with toxic (Aß42) and physiologic (Aß40) forms of Aß. Medium and high glucose concentrations mimicking pre-diabetic and diabetic state, caused statistically significant discharge of S100b and S100A8 protein to the extracellular compartment. Similar effect was observed after 50 nM insulin incubation. Furthermore, the correlation coefficient patterns between those proteins shows similar associations which highlights possible effective and modulating role of S100 family in the metabolic disturbances occurring in neuropathological disorders.


Subject(s)
Alzheimer Disease , Hyperglycemia , Humans , Amyloid beta-Peptides/metabolism , Dopaminergic Neurons/metabolism , Calgranulin A , Alzheimer Disease/metabolism , Insulin/metabolism , Glucose/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism
18.
Stem Cell Res ; 64: 102924, 2022 10.
Article in English | MEDLINE | ID: mdl-36182708

ABSTRACT

S100 calcium binding protein beta (S100B) is an S-100 low molecular weight binding protein that regulates intracellular processes. This protein is involved in myocardial contractility and calcium handling capacity. In this study, a human embryonic stem cell (hESC) line with homozygous S100B knockout (S100B-KO) was generated using the CRISPR/Cas9 editing system. This S100B-KO hESC line maintained normal cell morphology and karyotype, expressed pluripotency markers, and could differentiate into cells of all three germ layers.


Subject(s)
CRISPR-Cas Systems , Human Embryonic Stem Cells , Humans , CRISPR-Cas Systems/genetics , Human Embryonic Stem Cells/metabolism , Calcium/metabolism , Homozygote , Calcium-Binding Proteins , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism
19.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076994

ABSTRACT

(1) The neurotrophic protein S100B is a marker of brain injury and has been associated with neuroregeneration. In S100Btg mice rendering 12 copies of the murine S100B gene we evaluated whether S100B may serve as a treatment option. (2) In juvenile, adult, and one-year-old S100Btg mice (female and male; n = 8 per group), progenitor cell proliferation was quantified in the subgranular zone (SGZ) and the granular cell layer (GCL) of the dentate gyrus with the proliferative marker Ki67 and BrdU (50 mg/kg). Concomitant signaling was quantified utilizing glial fibrillary acidic protein (GFAP), apolipoprotein E (ApoE), brain-derived neurotrophic factor (BDNF), and the receptor for advanced glycation end products (RAGE) immunohistochemistry. (3) Progenitor cell proliferation in the SGZ and migration to the GCL was enhanced. Hippocampal GFAP was reduced in one-year-old S100Btg mice. ApoE in the hippocampus and frontal cortex of male and BDNF in the frontal cortex of female S100Btg mice was reduced. RAGE was not affected. (4) Enhanced hippocampal neurogenesis in S100Btg mice was not accompanied by reactive astrogliosis. Sex- and brain region-specific variations of ApoE and BDNF require further elucidations. Our data reinforce the importance of this S100Btg model in evaluating the role of S100B in neuroregenerative medicine.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Animals , Apolipoproteins E/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Neurogenesis , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism
20.
Glia ; 70(12): 2330-2347, 2022 12.
Article in English | MEDLINE | ID: mdl-35916350

ABSTRACT

Parkinson's disease (PD) is associated with an increase in secreted S100B within the midbrain and cerebrospinal fluid. In addition, S100B overexpression in mice accelerates the loss of substantia nigra pars compacta dopaminergic (DA) neurons, suggesting a role for this protein in PD pathogenesis. We found that in the mouse SNc, S100B labeled astrocytic processes completely envelop the somata of tyrosine hydroxylase (TH) expressing DA neurons only in male mice. These data suggest that an increase in S100B secretion by astrocytes within the midbrain could play a role in DA dysfunction during early PD. We therefore asked if acute exposure to extracellular S100B alters the activity of identified TH expressing DA neurons in primary mouse midbrain cultures. Acute exposure to 50 pM S100B specifically inhibited A-type voltage-gated potassium currents in TH+ , but not TH- neurons. This was accompanied by ~2-fold increases in the frequency of both intrinsic firing, as well as L-type voltage-gated calcium channel (VGCC)-mediated calcium fluxes only in TH+ neurons. Further, exposure to 100 µM 4-aminopyridine (4-AP), an A-type voltage-gated potassium channel inhibitor, mimicked the S100B mediated increase in intrinsic firing and L-type VGCC-mediated calcium fluxes in TH+ neurons. Taken together, our finding that extracellular S100B alters the activity of native DA neurons via an inhibition of A-type voltage-gated potassium channels has important implications for understanding the pathophysiology of early PD.


Subject(s)
Parkinson Disease , Potassium Channels, Voltage-Gated , 4-Aminopyridine , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Dopaminergic Neurons/metabolism , Male , Mice , Parkinson Disease/metabolism , Potassium/metabolism , Potassium/pharmacology , Potassium Channels, Voltage-Gated/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...