Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 487
Filter
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38774451

ABSTRACT

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
2.
Nat Commun ; 15(1): 3775, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710701

ABSTRACT

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Subject(s)
Catalytic Domain , Cryoelectron Microscopy , SAM Domain and HD Domain-Containing Protein 1 , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/chemistry , SAM Domain and HD Domain-Containing Protein 1/genetics , Allosteric Regulation , Humans , Protein Structure, Quaternary , Catalysis , Biocatalysis , HIV-1/metabolism , Models, Molecular
3.
Cell Rep ; 43(3): 113941, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478523

ABSTRACT

Resting CD4 T cells resist productive HIV-1 infection. The HIV-2/simian immunodeficiency virus protein viral accessory protein X (Vpx) renders these cells permissive to infection, presumably by alleviating blocks at cytoplasmic reverse transcription and subsequent nuclear import of reverse-transcription/pre-integration complexes (RTC/PICs). Here, spatial analyses using quantitative virus imaging techniques reveal that HIV-1 capsids containing RTC/PICs are readily imported into the nucleus, recruit the host dependency factor CPSF6, and translocate to nuclear speckles in resting CD4 T cells. Reverse transcription, however, remains incomplete, impeding proviral integration and viral gene expression. Vpx or pharmacological inhibition of the deoxynucleotide triphosphohydrolase (dNTPase) activity of the restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1) increases levels of nuclear reverse-transcribed cDNA and facilitates HIV-1 integration. Nuclear import and intranuclear transport of viral complexes therefore do not pose important blocks to HIV-1 in resting CD4 T cells, and the limitation to reverse transcription by SAMHD1's dNTPase activity constitutes the main pre-integration block to infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Monomeric GTP-Binding Proteins , Animals , Humans , HIV-1/genetics , CD4-Positive T-Lymphocytes/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HIV-2/genetics , Viral Regulatory and Accessory Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , HEK293 Cells
4.
J Mol Graph Model ; 129: 108748, 2024 06.
Article in English | MEDLINE | ID: mdl-38452417

ABSTRACT

The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.


Subject(s)
Molecular Dynamics Simulation , Monomeric GTP-Binding Proteins , Humans , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Nucleotides/metabolism , DNA , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Communication , RNA
5.
Mol Genet Metab ; 142(1): 108346, 2024 May.
Article in English | MEDLINE | ID: mdl-38368708

ABSTRACT

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS: Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS: Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS: In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.


Subject(s)
Autoimmune Diseases of the Nervous System , Exodeoxyribonucleases , Genetic Association Studies , Genotype , Nervous System Malformations , Phenotype , Siblings , Humans , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/genetics , Nervous System Malformations/complications , Female , Male , Child, Preschool , Child , Infant , Exodeoxyribonucleases/genetics , Phosphoproteins/genetics , Ribonuclease H/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics , Adolescent , Monomeric GTP-Binding Proteins/genetics , Interferon-Induced Helicase, IFIH1/genetics , Mutation , RNA-Binding Proteins/genetics , Age of Onset , Severity of Illness Index
6.
Mol Immunol ; 168: 1-9, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367301

ABSTRACT

Dysfunctional mutations in SAMHD1 cause Aicardi-Goutières Syndrome, an autoinflammatory encephalopathy with elevated interferon-α levels in the cerebrospinal fluid. Whether loss of function mutations in SAMHD1 trigger the expression of other cytokines apart from type I interferons in Aicardi-Goutières Syndrome is largely unclear. This study aimed to explore whether SAMHD1 dysfunction regulated the expression of IL-34, a key cytokine controlling the development and maintenance of microglia, in SH-SY5Y neural cells. We found that downregulation of SAMHD1 in SH-SY5Y cells resulted in the upregulation of IL-34 expression. The protein and mRNA levels of NF-κB p65, the transactivating subunit of a transcription factor NF-κB, were also upregulated in SAMHD1-knockdown SH-SY5Y cells. It was further found SAMHD1 knockdown in SH-SY5Y cells induced an upregulation of IL-34 expression through the canonical NF-κB-dependent pathway in which NF-κB p65, IKKα/ß and the NF-κB inhibitor IκBα were phosphorylated. Moreover, knockdown of SAMHD1 in SH-SY5Y cells led to the translocation of NF-κB p65 into the nucleus and promoted NF-κB transcriptional activity. In conclusion, we found SAMHD1 dysfunction induced IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. This finding could lay the foundation for exploring the role of IL-34-targeting microglia in the pathogenesis of Aicardi-Goutières Syndrome.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Neuroblastoma , Humans , NF-kappa B/metabolism , SAM Domain and HD Domain-Containing Protein 1 , Neuroblastoma/genetics , NF-KappaB Inhibitor alpha , Cytokines , Interleukins
7.
Virol J ; 21(1): 33, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287375

ABSTRACT

BACKGROUND: Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS: To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS: In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS: In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Animals , Humans , Influenza A virus/metabolism , Transcription Factors/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Virus Replication , Viral Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Interferon Regulatory Factor-3/metabolism
8.
Blood ; 143(19): 1953-1964, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38237141

ABSTRACT

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
9.
Cell Oncol (Dordr) ; 47(1): 189-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37667113

ABSTRACT

PURPOSE: The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro. METHODS: SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways. RESULTS: SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment. CONCLUSION: SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoadjuvant Therapy , SAM Domain and HD Domain-Containing Protein 1/genetics , Survival Analysis , Biomarkers, Tumor/metabolism , Tumor Microenvironment
10.
Am J Med Genet A ; 194(4): e63486, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041217

ABSTRACT

Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.


Subject(s)
Autoimmune Diseases of the Nervous System , Brain Diseases , Moyamoya Disease , Nervous System Malformations , Male , Humans , Child , Adult , SAM Domain and HD Domain-Containing Protein 1/genetics , Moyamoya Disease/complications , Mitral Valve/pathology , Mutation , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/pathology , Brain Diseases/complications
11.
mSphere ; 9(1): e0036323, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38126788

ABSTRACT

Nucleoside analogs have been used extensively as anti-infective agents, particularly against viral infections, and have long been considered promising anti-parasitic agents. These pro-drugs are metabolized by host-cell, viral, or parasite enzymes prior to incorporation into DNA, thereby inhibiting DNA replication. Here, we report genes that sensitize African trypanosomes to nucleoside analogs, including the guanosine analog, ganciclovir. We applied ganciclovir selective pressure to a trypanosome genome-wide knockdown library, which yielded nucleoside mono- and diphosphate kinases as hits, validating the approach. The two most dominant hits to emerge, however, were Tb927.6.2800 and Tb927.6.2900, which both encode nuclear proteins; the latter of which is HD82, a SAMHD1-related protein and a putative dNTP triphosphohydrolase. We independently confirmed that HD82, which is conserved among the trypanosomatids, can sensitize Trypanosoma brucei to ganciclovir. Since ganciclovir activity depends upon phosphorylation by ectopically expressed viral thymidine kinase, we also tested the adenosine analog, ara-A, that may be fully phosphorylated by native T. brucei kinase(s). Both Tb927.6.2800 and HD82 knockdowns were resistant to this analog. Tb927.6.2800 knockdown increased sensitivity to hydroxyurea, while dNTP analysis indicated that HD82 is indeed a triphosphohydrolase with dATP as the preferred substrate. Our results provide insights into nucleoside/nucleotide metabolism and nucleoside analog metabolism and resistance in trypanosomatids. We suggest that the product of 6.2800 sensitizes cells to purine analogs through DNA repair, while HD82 does so by reducing the native purine pool.IMPORTANCEThere is substantial interest in developing nucleoside analogs as anti-parasitic agents. We used genome-scale genetic screening and discovered two proteins linked to purine analog resistance in African trypanosomes. Our screens also identified two nucleoside kinases required for pro-drug activation, further validating the approach. The top novel hit, HD82, is related to SAMHD1, a mammalian nuclear viral restriction factor. We validated HD82 and localized the protein to the trypanosome nucleus. HD82 appears to sensitize trypanosomes to nucleoside analogs by reducing native pools of nucleotides, providing insights into both nucleoside/nucleotide metabolism and nucleoside analog resistance in trypanosomatids.


Subject(s)
Nucleosides , Trypanosoma , Animals , Nucleosides/metabolism , SAM Domain and HD Domain-Containing Protein 1 , Trypanosoma/metabolism , Purines/metabolism , Nucleotides/metabolism , Ganciclovir/metabolism , Mammals
12.
Nucleic Acids Res ; 51(22): 12443-12458, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37930833

ABSTRACT

The dNTPase activity of tetrameric SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) plays a critical role in cellular dNTP regulation. SAMHD1 also associates with stalled DNA replication forks, DNA repair foci, ssRNA and telomeres. The above functions require nucleic acid binding by SAMHD1, which may be modulated by its oligomeric state. Here we establish in cryo-EM and biochemical studies that the guanine-specific A1 activator site of each SAMHD1 monomer is used to target the enzyme to guanine nucleotides within single-stranded (ss) DNA and RNA. Remarkably, nucleic acid strands containing a single guanine base induce dimeric SAMHD1, while two or more guanines with ∼20 nucleotide spacing induce a tetrameric form. A cryo-EM structure of ssRNA-bound tetrameric SAMHD1 shows how ssRNA strands bridge two SAMHD1 dimers and stabilize the structure. This ssRNA-bound tetramer is inactive with respect to dNTPase and RNase activity.


Subject(s)
Monomeric GTP-Binding Proteins , RNA , Guanine , Monomeric GTP-Binding Proteins/genetics , Nucleotides/metabolism , Polymers/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism
13.
Int J Biol Sci ; 19(14): 4627-4643, 2023.
Article in English | MEDLINE | ID: mdl-37781035

ABSTRACT

Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we reported that sterile alpha motif and HD domain-containing protein 1 (SAMHD1) deficiency induced STING expression and inhibited tumor growth in DLBCL. High level of SAMHD1 was associated with poor prognosis in DLBCL patients. Down-regulation of SAMHD1 inhibited DLBCL cell proliferation both in vitro and in vivo. Moreover, we found that SAMHD1 deficiency induced DNA damage and promoted the expression of DNA damage adaptor STING. STING overexpression promoted the formation of Caspase 8/RIPK3/ASC, further leading to MLKL phosphorylation, Caspase 3 cleavage, and GSDME cleavage. Up-regulation of necroptotic, apoptotic, and pyroptotic effectors indicated STING-mediated PANoptosis. Finally, we demonstrated that the STING agonist, DMXAA, enhanced the efficacy of a PD-L1 inhibitor in DLBCL. Our findings highlight the important role of STING-mediated PANoptosis in restricting DLBCL progression and provide a potential strategy for enhancing the efficacy of immune checkpoint inhibitor agents in DLBCL.


Subject(s)
B7-H1 Antigen , Lymphoma, Large B-Cell, Diffuse , SAM Domain and HD Domain-Containing Protein 1 , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , DNA/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Phosphorylation , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism
14.
mBio ; 14(5): e0225223, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37800914

ABSTRACT

IMPORTANCE: We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.


Subject(s)
HIV-1 , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Gene Editing , Nucleotides/metabolism , Macrophages
15.
Front Cell Infect Microbiol ; 13: 1241305, 2023.
Article in English | MEDLINE | ID: mdl-37674581

ABSTRACT

Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.


Subject(s)
SAM Domain and HD Domain-Containing Protein 1 , Trypanosoma brucei brucei , Deoxyribonucleotides/metabolism , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Genomic Instability , Genome, Protozoan , DNA Damage , Cell Cycle
16.
Plant Sci ; 335: 111819, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562732

ABSTRACT

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Subject(s)
Arabidopsis , Ribonucleotide Reductases , Humans , SAM Domain and HD Domain-Containing Protein 1/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phenotype
17.
Antiviral Res ; 217: 105689, 2023 09.
Article in English | MEDLINE | ID: mdl-37516154

ABSTRACT

Human cytomegalovirus (HCMV) is a herpesvirus that causes life-threatening infections in newborns or immunosuppressed patients. For viral replication, HCMV establishes a network of cellular interactions, among others cyclin-dependent kinases (CDK). Furthermore, HCMV encodes pUL97, a viral kinase, which is a CDK-homologue. HCMV uses pUL97 in order to phosphorylate and thereby antagonize SAMHD1, an antiviral host cell factor. Since HCMV has several mechanisms to evade restriction by SAMHD1, we first analyzed the kinetics of SAMHD1-inactivation and found that phosphorylation of SAMHD1 by pUL97 occurs directly after infection of macrophages. We hence hypothesized that inhibition of this process qualifies as efficient antiviral target and FDA approved CDK-inhibitors (CDKIs) might be potent antivirals that prevent the inactivation of SAMHD1. Indeed, Abemaciclib, a 2nd generation CDKI exhibited superior IC50s against HCMV in infected macrophages and the antiviral activity largely relied on its ability to block pUL97-mediated SAMHD1-phosphorylation. Altogether, our study highlights the therapeutic potential of clinically-approved CDKIs as antivirals against HCMV, sheds light on their mode of action and establishes SAMHD1 as a valid and highly potent therapeutic target.


Subject(s)
Antiviral Agents , Cytomegalovirus , Infant, Newborn , Humans , Phosphorylation , SAM Domain and HD Domain-Containing Protein 1 , Antiviral Agents/pharmacology , Virus Replication
18.
J Biol Chem ; 299(7): 104925, 2023 07.
Article in English | MEDLINE | ID: mdl-37328105

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Subject(s)
HIV Infections , Interferon Type I , SAM Domain and HD Domain-Containing Protein 1 , Humans , HEK293 Cells , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HIV Infections/metabolism , Signal Transduction
19.
J Biol Chem ; 299(8): 104984, 2023 08.
Article in English | MEDLINE | ID: mdl-37390988

ABSTRACT

HIV-1 replication in primary monocyte-derived macrophages (MDMs) is kinetically restricted at the reverse transcription step due to the low deoxynucleoside triphosphates (dNTP) pools established by host dNTPase, SAM and HD domain containing protein 1 (SAMHD1). Lentiviruses such as HIV-2 and some Simian immunodeficiency virus counteract this restriction using viral protein X (Vpx), which proteosomally degrades SAMHD1 and elevates intracellular dNTP pools. However, how dNTP pools increase after Vpx degrades SAMHD1 in nondividing MDMs where no active dNTP biosynthesis is expected to exists remains unclear. In this study, we monitored known dNTP biosynthesis machinery during primary human monocyte differentiation to MDMs and unexpectedly found MDMs actively express dNTP biosynthesis enzymes such as ribonucleotide reductase, thymidine kinase 1, and nucleoside-diphosphate kinase. During differentiation from monocytes the expression levels of several biosynthesis enzymes are upregulated, while there is an increase in inactivating SAMHD1 phosphorylation. Correspondingly, we observed significantly lower levels of dNTPs in monocytes compared to MDMs. Without dNTP biosynthesis availability, Vpx failed to elevate dNTPs in monocytes, despite SAMHD1 degradation. These extremely low monocyte dNTP concentrations, which cannot be elevated by Vpx, impaired HIV-1 reverse transcription in a biochemical simulation. Furthermore, Vpx failed to rescue the transduction efficiency of a HIV-1 GFP vector in monocytes. Collectively, these data suggest that MDMs harbor active dNTP biosynthesis and Vpx requires this dNTP biosynthesis to elevate dNTP levels to effectively counteract SAMHD1 and relieve the kinetic block to HIV-1 reverse transcription in MDMs.


Subject(s)
HIV-1 , Monomeric GTP-Binding Proteins , Nucleotides , SAM Domain and HD Domain-Containing Protein 1 , Viral Regulatory and Accessory Proteins , Animals , Humans , HIV-1/metabolism , Lentivirus/metabolism , Macrophages/metabolism , Monocytes/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Viral Regulatory and Accessory Proteins/metabolism
20.
Retrovirology ; 20(1): 5, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127613

ABSTRACT

BACKGROUND: SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro. RESULTS: We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels. CONCLUSIONS: Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple "on/off" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.


Subject(s)
HIV-1 , Monomeric GTP-Binding Proteins , Humans , HIV-1/metabolism , RNA-Directed DNA Polymerase/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Phosphorylation , U937 Cells , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...