ABSTRACT
Protein kinase CK2 (CK2) is highly expressed in rat forebrain where its function is not well understood. Subcellular distribution studies showed that the catalytic subunit of CK2 (CK2alpha) was enriched in postsynaptic densities (PSDs) by 68%. We studied the putative role of CK2 activity on N-methyl-D-aspartate receptor (NMDAR) function using isolated, patch-clamped PSDs in the presence of 2 mM extracellular Mg(2+). The usual activation by phosphorylation of the NMDARs in the presence of ATP was inhibited by the selective CK2 inhibitor 5,6-dichloro-1-beta-ribofuranosyl benzimidazole (DRB). This inhibition was voltage-dependent, i.e., 100% at positive membrane potentials, while at negative potentials, inhibition was incomplete. Endogenous CK2 substrates were characterized by their ability to use GTP as a phosphoryl donor and susceptibility to inhibition by DRB. Immunoprecipitation assays and 2D gels indicated that PSD-95/SAP90, the NMDAR scaffolding protein, was a CK2 substrate, while the NR2A/B and NR1 NMDAR subunits were not. These results suggest that postsynaptic NMDAR regulation by CK2 is mediated by indirect mechanisms possibly involving PSD-95/SAP90.
Subject(s)
Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Casein Kinase II , Disks Large Homolog 4 Protein , Intracellular Signaling Peptides and Proteins , Magnesium/metabolism , Membrane Proteins , Patch-Clamp Techniques , Phosphorylation , Rats , SAP90-PSD95 Associated ProteinsABSTRACT
The postsynaptic density is a highly dynamic structure, which is reorganized in an activity-dependent manner. An animal model for temporal lobe epilepsy, i.e. kainate-induced limbic seizures in rats, was used to study changes in postsynaptic density composition after extensive synaptic activity. Six hours after kainate injection, the protein content of the postsynaptic density fractions from rats that developed strong seizures was increased three-fold compared to saline-treated controls. Immunoblot analysis revealed that the relative amounts of metabotropic glutamate receptor 1alpha, N-ethylmaleimide-sensitive fusion protein, protein kinases C, Fyn and TrkB, as well as the neuronal nitric oxide synthase, were significantly higher in seizure-developing than in control rats. In contrast, the relative contents of the kainate receptor KA2 subunit, beta-actin, alpha-adducin and the membrane-associated guanylate kinase homolog SAP90/PSD-95 were decreased. The relative amounts of additional postsynaptic density proteins, including alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and N-methyl-D-aspartate receptor subunits, calcium/calmodulin-dependent kinase type II, casein kinase 2, tubulin, microtubule-associated protein 2B, the membrane-associated guanylate kinase homolog SAP102, and proline-rich synapse-associated protein 1/cortactin binding protein 1/Shank2 remained essentially unchanged. To assess possible changes in postsynaptic performance, postsynaptic densities were isolated from control and epileptic rats, incorporated into giant liposomes and N-methyl-D-aspartate receptor currents were recorded. A significant reduction in the mean conductance was observed in patches containing postsynaptic densities from animals with high seizure activity. This was due to the presence of reduced conductance levels in each membrane patch compared to control postsynaptic density preparations. From these data, we suggest that intense synaptic activity associated with seizures modifies the composition of postsynaptic densities and has profound consequences on the function of the N-methyl-D-aspartate receptors present in them. This rearrangement may accompany impairment of synaptic plasticity.