Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.377
Filter
1.
Stem Cell Reports ; 19(5): 710-728, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701780

ABSTRACT

Heterogeneity among both primed and naive pluripotent stem cell lines remains a major unresolved problem. Here we show that expressing the maternal-specific linker histone H1FOO fused to a destabilizing domain (H1FOO-DD), together with OCT4, SOX2, KLF4, and LMYC, in human somatic cells improves the quality of reprogramming to both primed and naive pluripotency. H1FOO-DD expression was associated with altered chromatin accessibility around pluripotency genes and with suppression of the innate immune response. Notably, H1FOO-DD generates naive induced pluripotent stem cells with lower variation in transcriptome and methylome among clones and a more uniform and superior differentiation potency. Furthermore, we elucidated that upregulation of FKBP1A, driven by these five factors, plays a key role in H1FOO-DD-mediated reprogramming.


Subject(s)
Cellular Reprogramming , Histones , Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Histones/metabolism , Cell Differentiation/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Chromatin/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome
2.
Mol Genet Genomics ; 299(1): 53, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753163

ABSTRACT

SoxB subfamily is an important branch of Sox family and plays a key role in animal physiological process, but little is known about their function in planarian regeneration. This study aims to evaluate the function of DjSoxB family genes in intact and regenerating planarians Dugesia japonica. Here, we amplify the full-length cDNA of DjSoxB1 and DjSoxB2 in D. japonica by rapid amplification of the cDNA ends (RACE), detect the expression of DjSoxB family genes in planarian. The results show that DjSoxBs are expressed in parenchymal tissue and the hybridization signals partially disappear after irradiation indicates DjSoxB family genes are expressed in neoblasts. After the RNA interference (RNAi) of DjSoxB1, DjSoxB2 and DjSoxB3 separately, the numbers of proliferative cells are all reduced that causes planarians show slower growth of blastema in the early stage of regeneration, and nerves of planarians are affected that the movement speed of planarians decreases in varying degrees. Specially, planarians in the DjSoxB3 RNAi group show shrinkage and twisting. Overall, this study reveals that DjSoxB family genes play a role in cell proliferation during regeneration. They also play an important role in the maintenance of normal nerve function and nerve regeneration. These results provide directions for the functional study of SoxB family genes and provide an important foundation for planarian regeneration.


Subject(s)
Planarians , Regeneration , Animals , Planarians/genetics , Planarians/physiology , Regeneration/genetics , RNA Interference , Cell Proliferation/genetics , Helminth Proteins/genetics , Helminth Proteins/metabolism , SOXB1 Transcription Factors/genetics
3.
J Med Virol ; 96(5): e29521, 2024 May.
Article in English | MEDLINE | ID: mdl-38727013

ABSTRACT

Methylation panels, tools for investigating epigenetic changes associated with diseases like cancer, can identify DNA methylation patterns indicative of disease, providing diagnostic or prognostic insights. However, the application of methylation panels focusing on the sex-determining region Y-box 1 (SOX1) and paired box gene 1 (PAX1) genes for diagnosing cervical lesions is under-researched. This study aims to examine the diagnostic performance of PAX1/SOX1 gene methylation as a marker for cervical precancerous lesions and its potential application in triage diagnosis. From September 2022 to April 2023, 181 patients with abnormal HPV-DNA tests or cytological exam results requiring colposcopy were studied at Hubei Maternal and Child Health Hospital, China. Data were collected from colposcopy, cytology, HPV-DNA tests, and PAX1/SOX1 methylation detection. Patients were categorized as control, cervical intraepithelial neoplasia Grade 1 (CIN1), Grade 2 (CIN2), Grade 3 (CIN3), and cervical cancer (CC) groups based on histopathology. We performed HPV testing, liquid-based cytology, and PAX1/SOX1 gene methylation testing. We evaluated the diagnostic value of methylation detection in cervical cancer using DNA methylation positivity rate, sensitivity, specificity, and area under the curve (AUC), and explored its potential for triage diagnosis. PAX1/SOX1 methylation positivity rates were: control 17.1%, CIN1 22.5%, CIN2 100.0%, CIN3 90.0%, and CC 100.0%. The AUC values for PAX1 gene methylation detection in diagnosing CIN1+, CIN2+, and CIN3+ were 0.52 (95% confidence interval [CI]: 0.43-0.62), 0.88 (95% CI: 0.80-0.97), and 0.88 (95% CI: 0.75-1.00), respectively. Corresponding AUC values for SOX1 gene methylation detection were 0.47 (95% CI: 0.40-0.58), 0.80 (95% CI: 0.68-0.93), and 0.92 (95% CI: 0.811-1.00), respectively. In HPV16/18-negative patients, methylation detection showed sensitivity of 32.4% and specificity of 83.7% for CIN1+. For CIN2+ and CIN3+, sensitivity was all 100%, with specificities of 83.0% and 81.1%. Among the patients who underwent colposcopy examination, 166 cases had cytological examination results ≤ASCUS, of which 37 cases were positive for methylation, and the colposcopy referral rate was 22.29%. PAX1/SOX1 gene methylation detection exhibits strong diagnostic efficacy for cervical precancerous lesions and holds significant value in triage diagnosis.


Subject(s)
DNA Methylation , Paired Box Transcription Factors , Papillomavirus Infections , SOXB1 Transcription Factors , Triage , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , SOXB1 Transcription Factors/genetics , Adult , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology , Middle Aged , Triage/methods , Paired Box Transcription Factors/genetics , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Sensitivity and Specificity , Biomarkers, Tumor/genetics , China , Precancerous Conditions/diagnosis , Precancerous Conditions/genetics , Young Adult , Early Detection of Cancer/methods , Colposcopy
4.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759624

ABSTRACT

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methods
5.
Cancer Res Commun ; 4(5): 1268-1281, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38619287

ABSTRACT

The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE: This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.


Subject(s)
Disease Progression , Head and Neck Neoplasms , Mucin-1 , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Mucin-1/genetics , Mucin-1/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Mice , Animals , Gene Expression Regulation, Neoplastic , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
6.
Dev Biol ; 511: 53-62, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593904

ABSTRACT

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , TATA-Binding Protein Associated Factors , Animals , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Mice , Embryonic Development/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Female , Blastocyst/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Gastrulation/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Embryo, Mammalian/metabolism
7.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579708

ABSTRACT

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Subject(s)
Enhancer Elements, Genetic , Mesoderm , Neural Stem Cells , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Animals , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesoderm/cytology , Mesoderm/metabolism , Neurogenesis , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Cell Differentiation/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Lineage/genetics , Smad4 Protein/metabolism , Smad4 Protein/genetics , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Chromatin/metabolism , Protein Binding
8.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672482

ABSTRACT

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Subject(s)
Brain Neoplasms , Hyaluronan Receptors , Hyaluronic Acid , SOXB1 Transcription Factors , Spheroids, Cellular , Hyaluronic Acid/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Rats , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Cells, Cultured , Cell Fusion
9.
Acta Cytol ; 68(2): 137-144, 2024.
Article in English | MEDLINE | ID: mdl-38527422

ABSTRACT

INTRODUCTION: Methylation assays have demonstrated potential as dependable and high-precision approaches for identifying or triaging individuals with cervical cancer (CA) or cervical intraepithelial neoplasia (CIN). Our investigation aimed to assess the efficacy of the diagnosis and triage of the PAX1/SOX1 methylation panel in detecting CIN or CA. METHODS: A total of 461 patients with abnormal high-risk human papillomavirus (hrHPV) or cytology test results were recruited for this study. Each patient underwent an assortment of assessments, comprising a cytology test, hrHPV test, colposcopy examination, and PAX1 and SOX1 methylation tests. RESULTS: The extent of methylation of both genes demonstrates a positive correlation with the severity of CIN lesions and CA. To determine the correlation for patients with CIN2 or worse (CIN2+), the area under curve was 0.821 (95% CI: 0.782-0.853) for PAX1 and 0.800 (95% CI: 0.766-0.838) for SOX1, while for CIN3 or worse (CIN3+), 0.881 (95% CI: 0.839-0.908) for PAX1 and 0.867 (95% CI: 0.830-0.901) for SOX1. The PAX1/SOX1 methylation marker panel performed sensitivity and specificity of 77.16% and 91.67% for CIN2+, 84.76% and 90.50% for CIN3+, respectively. Regarding triaging hrHPV+ patients, the PAX1/SOX1 methylation test only referred 11.83% of the patients who are unnecessary for colonoscopy examination, which is comparatively lower than cytology, thereby signifying a promising triage strategy for hrHPV-positive women. Furthermore, we observed that the positive PAX1/SOX1 methylation test result for untreated CIN1 or fewer patients would result in a higher likelihood of progression upon a 24-month follow-up visit. CONCLUSION: The present investigation demonstrates that the PAX1/SOX1 methylation marker panel exhibits favorable diagnostic performance in CIN detection and holds the potential to be employed for individual CIN tests or hrHPV-positive triage.


Subject(s)
Biomarkers, Tumor , DNA Methylation , Paired Box Transcription Factors , SOXB1 Transcription Factors , Triage , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/pathology , Adult , Paired Box Transcription Factors/genetics , Biomarkers, Tumor/genetics , Middle Aged , SOXB1 Transcription Factors/genetics , Triage/methods , Colposcopy , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Aged , Young Adult , Vaginal Smears/methods , Predictive Value of Tests
10.
Life Sci ; 344: 122576, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492918

ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.


Subject(s)
Neoplasms , RNA, Long Noncoding , SOXB1 Transcription Factors , Humans , Biomarkers, Tumor/genetics , Carcinogenesis , Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
11.
PLoS One ; 19(3): e0298818, 2024.
Article in English | MEDLINE | ID: mdl-38507426

ABSTRACT

Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.


Subject(s)
Neural Stem Cells , Neural Stem Cells/metabolism , Transcription, Genetic , Embryonic Stem Cells , Gene Expression Regulation, Developmental , Cell Proliferation , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Cell Differentiation/genetics
12.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473941

ABSTRACT

The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.


Subject(s)
Laryngeal Neoplasms , Precancerous Conditions , Humans , Gene Amplification , Laryngeal Neoplasms/genetics , Precancerous Conditions/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Carcinogenesis/genetics , SOXB1 Transcription Factors/genetics
13.
Mol Carcinog ; 63(5): 977-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38376344

ABSTRACT

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIß. Notably, artificially increasing RhoGDIß levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIß contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIß mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIß expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIß pathway.


Subject(s)
Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Down-Regulation , Epithelial Cells/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Nickel , rho Guanine Nucleotide Dissociation Inhibitor beta/antagonists & inhibitors , rho Guanine Nucleotide Dissociation Inhibitor beta/genetics , rho Guanine Nucleotide Dissociation Inhibitor beta/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger , SOXB1 Transcription Factors/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism
14.
J Egypt Natl Canc Inst ; 36(1): 5, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342816

ABSTRACT

OBJECTIVE: This study aimed to address the prognostic impact of SOX2 and OCT3/4 expression on adult acute leukemia patients' outcomes. METHODS: SOX2 and OCT3/4 expression by blast cells were evaluated by flow cytometry in 80 acute leukemia patients and 8 healthy controls. RESULTS: Baseline SOX2 and OCT3/4 expression were significantly higher in both ALL (P = < 0.001, P = 0.005 respectively) and AML patients (P < 0.001, P = 0.003 respectively) as compared to control, and decline at complete remission (CR) and elevated again at relapse. High SOX2 and OCT3/4 levels were significantly correlated with the presence of adverse risk stratification parameters. CONCLUSION: Our findings indicated that both SOX2 and OCT3/4 could serve as biomarkers that could improve risk stratification of acute leukemia patients. Also, both SOX2 and OCT3/4 might be a therapeutic target, especially in resistant acute leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , Leukemia, Myeloid, Acute/diagnosis , Prognosis , SOXB1 Transcription Factors/genetics
15.
Cells ; 13(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38334608

ABSTRACT

Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplastic Stem Cells , SOXB1 Transcription Factors , Humans , Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , RNA, Small Interfering/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
16.
Nat Commun ; 15(1): 1445, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365983

ABSTRACT

More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.


Subject(s)
Intrinsically Disordered Proteins , SOXB1 Transcription Factors , Humans , Intrinsically Disordered Proteins/metabolism , Magnetic Resonance Spectroscopy , Protein Conformation , Protein Domains , Transcription Factors/genetics , Transcription Factors/chemistry , SOXB1 Transcription Factors/chemistry , SOXB1 Transcription Factors/genetics
17.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38194964

ABSTRACT

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Subject(s)
Gene Expression Regulation , SOXB1 Transcription Factors , Super Enhancers , Transcription, Genetic , DNA/genetics , Enhancer Elements, Genetic , SOXB1 Transcription Factors/genetics , Animals , Mice , Embryonic Stem Cells/metabolism , Microscopy/methods
18.
Sci Rep ; 14(1): 2123, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267500

ABSTRACT

Quiescence, a reversible state of cell-cycle arrest, is an important state during both normal development and cancer progression. For example, in glioblastoma (GBM) quiescent glioblastoma stem cells (GSCs) play an important role in re-establishing the tumour, leading to relapse. While most studies have focused on identifying differentially expressed genes between proliferative and quiescent cells as potential drivers of this transition, recent studies have shown the importance of protein oscillations in controlling the exit from quiescence of neural stem cells. Here, we have undertaken a genome-wide bioinformatic inference approach to identify genes whose expression oscillates and which may be good candidates for controlling the transition to and from the quiescent cell state in GBM. Our analysis identified, among others, a list of important transcription regulators as potential oscillators, including the stemness gene SOX2, which we verified to oscillate in quiescent GSCs. These findings expand on the way we think about gene regulation and introduce new candidate genes as key regulators of quiescence.


Subject(s)
Glioblastoma , Neural Stem Cells , Humans , Glioblastoma/genetics , Cell Division , Computational Biology , Gene Expression , SOXB1 Transcription Factors/genetics
19.
J Gynecol Oncol ; 35(2): e21, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072399

ABSTRACT

OBJECTIVE: Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors. Our study showed that long non-coding RNA (lncRNA) linc01194 plays an important role in EC. We explored the mechanism of lncRNA linc01194 in EC. METHODS: The expression of lncRNA linc01194 was detected in The Cancer Genome Atlas database and starBase database. The potential targeted protein of linc01194 was predicted through the starBase database. To determine the role of linc01194 in EC, we downregulated or upregulated the level of linc01194 in EC cell lines and analyzed the cell behaviors and the changes of its potential target proteins. RESULTS: The expression of linc01194 in EC tissues is higher than that in normal endometrial tissues. The knockdown of linc01194 inhibited the cell proliferation, invasion and migration and promoted the apoptosis of EC cells, while overexpression of linc01194 promoted cell proliferation, invasion and migration and inhibited the apoptosis of EC cells. The starBase database revealed that linc01194 could bind to insulin-like growth factor 2 binding protein 1 (IGF2BP1). Previous results showed that in EC, IGF2BP1 could promote the expression of sex-determining region Y-box 2 (SOX2) by promoting the stability of SOX2 mRNA. Our results showed that linc01194 regulate the expression of IGF2BP1 and SOX2. CONCLUSION: Linc01194 can promote the expression of downstream protein SOX2 through binding to IGF2BP1, thus promoting the occurrence and development of EC.


Subject(s)
Endometrial Neoplasms , Gynecology , RNA, Long Noncoding , Female , Humans , RNA, Long Noncoding/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Endometrial Neoplasms/pathology , Gene Expression Regulation, Neoplastic , SOXB1 Transcription Factors/genetics
20.
Trends Cell Biol ; 34(3): 255-267, 2024 03.
Article in English | MEDLINE | ID: mdl-37648593

ABSTRACT

The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Cellular Reprogramming/genetics , Cell Plasticity , Rejuvenation , Transcription Factors/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...