Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 479
Filter
1.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662224

ABSTRACT

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Subject(s)
Cell Survival , Hydrogen Peroxide , Melanocytes , Vitiligo , Humans , Vitiligo/genetics , Vitiligo/pathology , Melanocytes/metabolism , Melanocytes/pathology , Cell Survival/drug effects , Hydrogen Peroxide/metabolism , Male , Adult , Female , Cell Proliferation/genetics , Skin/pathology , Skin/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Middle Aged , Young Adult , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Gene Expression Regulation/drug effects , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Biopsy , Adolescent , Cell Adhesion/genetics
2.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653237

ABSTRACT

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Subject(s)
Cysteine , Cysteine/metabolism , Cysteine/chemistry , Humans , Ligands , Cell Line, Tumor , Neoplasms/metabolism , SOXE Transcription Factors/metabolism , Signal Transduction , Melanoma/metabolism , Animals , NF-kappa B/metabolism , Mice , Oxidation-Reduction
3.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654332

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Subject(s)
Breast Neoplasms , Cell Proliferation , Eukaryotic Translation Initiation Factor 5A , Gene Expression Regulation, Neoplastic , Lysine/analogs & derivatives , Peptide Initiation Factors , RNA-Binding Proteins , Spermidine , Transcription Factor 4 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Mice , Animals , Spermidine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Adenosylmethionine Decarboxylase/metabolism , Adenosylmethionine Decarboxylase/genetics , Cell Movement/genetics , DNA Methylation , Prognosis , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics
4.
Oncogene ; 43(20): 1489-1505, 2024 May.
Article in English | MEDLINE | ID: mdl-38519642

ABSTRACT

Cell plasticity sustains intra-tumor heterogeneity and treatment resistance in melanoma. Deciphering the transcriptional mechanisms governing reversible phenotypic transitions between proliferative/differentiated and invasive/stem-like states is required. Expression of the ZEB1 transcription factor is frequently activated in melanoma, where it fosters adaptive resistance to targeted therapies. Here, we performed a genome-wide characterization of ZEB1 transcriptional targets, by combining ChIP-sequencing and RNA-sequencing, upon phenotype switching in melanoma models. We identified and validated ZEB1 binding peaks in the promoter of key lineage-specific genes crucial for melanoma cell identity. Mechanistically, ZEB1 negatively regulates SOX10-MITF dependent proliferative/melanocytic programs and positively regulates AP-1 driven invasive and stem-like programs. Comparative analyses with breast carcinoma cells revealed lineage-specific ZEB1 binding, leading to the design of a more reliable melanoma-specific ZEB1 regulon. We then developed single-cell spatial multiplexed analyses to characterize melanoma cell states intra-tumoral heterogeneity in human melanoma samples. Combined with scRNA-Seq analyses, our findings confirmed increased ZEB1 expression in Neural-Crest-like cells and mesenchymal cells, underscoring its significance in vivo in both populations. Overall, our results define ZEB1 as a major transcriptional regulator of cell states transitions and provide a better understanding of lineage-specific transcriptional programs sustaining intra-tumor heterogeneity in melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma , Zinc Finger E-box-Binding Homeobox 1 , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Cell Line, Tumor , Cell Lineage/genetics , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mice , Animals , Cell Proliferation/genetics , Transcription, Genetic/genetics
5.
Glia ; 72(6): 1165-1182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497409

ABSTRACT

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Lineage , Reproducibility of Results , Neurogenesis , Oligodendroglia/metabolism , Cell Differentiation/physiology , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
6.
Glia ; 72(7): 1304-1318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546197

ABSTRACT

Oligodendrocyte differentiation and myelination in the central nervous system are controlled and coordinated by a complex gene regulatory network that contains several transcription factors, including Zfp488 and Nkx2.2. Despite the proven role in oligodendrocyte differentiation little is known about the exact mode of Zfp488 and Nkx2.2 action, including their target genes. Here, we used overexpression of Zfp488 and Nkx2.2 in differentiating CG4 cells to identify aspects of the oligodendroglial expression profile that depend on these transcription factors. Although both transcription factors are primarily described as repressors, the detected changes argue for an additional function as activators. Among the genes activated by both Zfp488 and Nkx2.2 was the G protein-coupled receptor Gpr37 that is important during myelination. In agreement with a positive effect on Gpr37 expression, downregulation of the G protein-coupled receptor was observed in Zfp488- and in Nkx2.2-deficient oligodendrocytes in the mouse. We also identified several potential regulatory regions of the Gpr37 gene. Although Zfp488 and Nkx2.2 both bind to one of the regulatory regions downstream of the Gpr37 gene in vivo, none of the regulatory regions was activated by either transcription factor alone. Increased activation by Zfp488 or Nkx2.2 was only observed in the presence of Sox10, a transcription factor continuously present in oligodendroglial cells. Our results argue that both Zfp488 and Nkx2.2 also act as transcriptional activators during oligodendrocyte differentiation and cooperate with Sox10 to allow the expression of Gpr37 as a modulator of the myelination process.


Subject(s)
Cell Differentiation , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Oligodendroglia , Receptors, G-Protein-Coupled , SOXE Transcription Factors , Transcription Factors , Animals , Female , Male , Mice , Cell Differentiation/physiology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
7.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301982

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Subject(s)
Corticosterone , Depression , Oligodendrocyte Transcription Factor 2 , Male , Animals , Mice , Depression/drug therapy , Depression/metabolism , Flavonoids/pharmacology , Chromatography, Liquid , beta Catenin/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus , Glutamates/metabolism , Glutamates/pharmacology , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346197

ABSTRACT

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Subject(s)
Chondrocytes , Genome-Wide Association Study , Mice , Humans , Animals , Chondrocytes/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gene Expression Regulation , Cell Differentiation , Cell Proliferation , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
9.
Biomed Pharmacother ; 171: 116128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218078

ABSTRACT

Demyelination is a pathological feature commonly observed in various central nervous system diseases. It is characterized by the aggregation of oligodendrocyte progenitor cells (OPCs) in the lesion area, which face difficulties in differentiating into mature oligodendrocytes (OLGs). The differentiation of OPCs requires the presence of Sox10, but its expression decreases under pathological conditions. Therefore, we propose a therapeutic strategy to regulate OPCs differentiation and achieve myelin repair by endogenously loading Sox10 into exosomes. To accomplish this, we generated a lentivirus-armed Sox10 that could anchor to the inner surface of the exosome membrane. We then infected HEK293 cells to obtain exosomes with high expression of Sox10 (exosomes-Sox10, ExoSs). In vitro, experiments confirmed that both Exos and ExoSs can be uptaken by OPCs, but only ExoSs exhibit a pro-differentiation effect on OPCs. In vivo, we administered PBS, Exos, and ExoSs to cuprizone-induced demyelinating mice. The results demonstrated that ExoSs can regulate the differentiation of PDGFRα+ OPCs into APC+ OLGs and reduce myelin damage in the corpus callosum region of the mouse brain compared to other groups. Further testing suggests that Sox10 may have a reparative effect on the myelin sheath by enhancing the expression of MBP, possibly facilitated by the exosome delivery of the protein into the lesion. This endogenously loaded technology holds promise as a strategy for protein-based drugs in the treatment of demyelinating diseases.


Subject(s)
Demyelinating Diseases , Exosomes , Mice , Humans , Animals , Cuprizone , Demyelinating Diseases/chemically induced , Exosomes/metabolism , HEK293 Cells , Myelin Sheath/metabolism , Cell Differentiation , Mice, Inbred C57BL , Disease Models, Animal , SOXE Transcription Factors/metabolism
10.
Mol Cancer Res ; 22(2): 209-220, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37847239

ABSTRACT

The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS: These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.


Subject(s)
Melanoma , Humans , Melanoma/pathology , Cytokines , Tumor Necrosis Factor-alpha , Cell Death , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
11.
Dev Biol ; 506: 31-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052296

ABSTRACT

During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.


Subject(s)
Avian Proteins , Neural Crest , SOXE Transcription Factors , Sphingomyelin Phosphodiesterase , Gene Expression Regulation, Developmental , Introns , Lipids , Neural Crest/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Chickens , Animals , Avian Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
12.
Oncogene ; 43(6): 434-446, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102338

ABSTRACT

Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a ß subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-ß signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-ß/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.


Subject(s)
Melanoma , Humans , Animals , Melanoma/pathology , Up-Regulation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Disease Models, Animal , Transforming Growth Factor beta/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
13.
Development ; 150(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37823232

ABSTRACT

Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.


Subject(s)
Oryzias , Zebrafish , Animals , Gene Regulatory Networks , Mammals/genetics , Melanocytes/metabolism , Mutation , Neural Crest/metabolism , Oryzias/genetics , Oryzias/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
J Cutan Pathol ; 50(11): 956-962, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37606377

ABSTRACT

The NONO::TFE3 fusion has been described in MiT family translocation renal cell carcinomas as well as extracutaneous perivascular epithelioid cell tumors (PEComas). PEComas are known to express myogenic and melanocytic markers but SOX10 and p63 positivity has never been reported. We report two primary cutaneous tumors that morphologically and molecularly fit PEComas, both harboring the NONO::TFE3 fusion, but with an unusual immunophenotype of SOX10 and p63 positivity. One case was on an 80-year-old male's finger, and the other one was on a 72-year-old female's thigh. Both were well-circumscribed multinodular dermal tumors composed of nests of monotonous epithelioid to spindled cells with pale to vacuolated cytoplasm, some of which were arranged around blood vessels. Both tumors were positive for SOX10, S100, and p63, focally positive for Melan-A, and negative for myogenic markers. There are very little data regarding the molecular findings of primary cutaneous PEComas. While the NONO::TFE3 fusion has been identified in extracutaneous PEComas, it has never been reported in primary cutaneous cases. We believe these cases represent a previously undescribed subtype of cutaneous tumor which shows some immunophenotypic expression of melanocytic markers and we named these cases NONO::TFE3 fusion cutaneous epithelioid and spindle cell tumor. Further, we raise the question of whether this tumor should fall under the rubric of PEComa because of its morphology, partial expression of melanocytic markers, and the presence of the NONO::TFE3 fusion, or whether these tumors represent a separate novel class of tumors since the immunophenotypic expression of SOX10 and p63 is unusual for PEComas.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Perivascular Epithelioid Cell Neoplasms , Skin Neoplasms , Male , Female , Humans , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , In Situ Hybridization, Fluorescence , Perivascular Epithelioid Cell Neoplasms/metabolism , SOXE Transcription Factors/metabolism , Kidney Neoplasms/pathology , Biomarkers, Tumor/metabolism , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics
15.
Pathol Res Pract ; 248: 154628, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37399589

ABSTRACT

BACKGROUND: Invasive breast carcinomas (IBC) that strongly express SOX10 are almost always negative for androgen receptor (AR). Furthermore, this SOX10+/AR- subset of IBC is nearly always estrogen receptor and progesterone receptor negative (ER-/PR-), being most commonly seen in triple negative breast carcinomas (TNBC), but also in a small subset of HER2+/ER-/PR- IBC. Following our previous work demonstrating the expression of SOX10 in a subset of IBC with "low positive" ER expression (i.e. 1-10 % ER+ staining based on CAP guidelines, here referred to as "ER-low"), we sought to investigate the expression of both SOX10 and AR in a larger cohort of ER-low tumors. As our previous work also revealed occasional SOX10 expression in IBC with >10 % ER+ staining, we also included tumors with any percentage of ER staining, as long as the staining intensity was weak (this subset is referred to as "ER-weak"). METHODS: We screened cases of HER2-/ER+ IBC diagnosed at our institution over a 10 year period, identified both ER-low and ER-weak tumors and stained both groups with SOX10 and AR. RESULTS: Strong SOX10 expression was seen in 12/25 (48 %) ER-low tumors and 13/24 (54 %) ER-weak tumors. ER staining in the SOX10+ subset of ER-weak tumors ranged from 15 %-80 % (median 25 %). As expected, AR was negative in all but 1 of the SOX10+ tumors in both groups. While case numbers in these groups were too small for a meaningful statistical analysis, we did note that all SOX10+/AR- tumors within both the ER-low and ER-weak groups were histologic grade 3. CONCLUSION: The presence of a SOX10+/AR- profile in a significant subset of ER-low tumors confirms the findings of our previous work and provides further support for the proposed functionally ER negative status of this group. Furthermore, the fact that the same SOX10+/AR- profile is seen in a roughly equal subset of ER-weak tumors suggests that a wider range of ER staining may be acceptable as "low positive" in SOX10+/AR- tumors, as long as the ER staining is of weak intensity. However, given the small number of cases in this single institution study, we emphasize the need for larger studies to establish the biological and clinical significance of this tumor subset.


Subject(s)
Breast Neoplasms , Carcinoma , Triple Negative Breast Neoplasms , Humans , Female , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/pathology , SOXE Transcription Factors/metabolism , Receptors, Progesterone/metabolism , Receptor, ErbB-2/analysis , Biomarkers, Tumor/analysis
16.
Cell Rep ; 42(8): 112869, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37481722

ABSTRACT

Vascular smooth muscle cells (VSMCs) can transdifferentiate into macrophage-like cells in the context of sustained inflammatory injury, which drives vascular hyperplasia and atherosclerotic complications. Using single-cell RNA sequencing, we identify that macrophage-like VSMCs are the key cell population in mouse neointimal hyperplasia. Sex-determining region Y (SRY)-related HMG-box gene 10 (Sox10) upregulation is associated with macrophage-like VSMC accumulation and pyroptosis in vitro and in the neointimal hyperplasia of mice. Tumor necrosis factor α (TNF-α)-induced Sox10 lactylation in a phosphorylation-dependent manner by PI3K/AKT signaling drives transcriptional programs of VSMC transdifferentiation, contributing to pyroptosis. The regulator of G protein signaling 5 (RGS5) interacts with AKT and blocks PI3K/AKT signaling and Sox10 phosphorylation at S24. Sox10 silencing mitigates vascular inflammation and forestalls neointimal hyperplasia in RGS5 knockout mice. Collectively, this study shows that Sox10 is a regulator of vascular inflammation and a potential control point in inflammation-related vascular disease.


Subject(s)
Muscle, Smooth, Vascular , Proto-Oncogene Proteins c-akt , Mice , Animals , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Cell Proliferation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis , Phosphatidylinositol 3-Kinases/metabolism , Cell Transdifferentiation , Neointima/metabolism , Neointima/pathology , Mice, Knockout , Inflammation/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Cell Movement , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
17.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37436963

ABSTRACT

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Subject(s)
Nerve Sheath Neoplasms , Neurilemmoma , Neuroma, Acoustic , Humans , INDEL Mutation , Transcriptional Activation , Neurilemmoma/genetics , Neurilemmoma/pathology , Neuroma, Acoustic/pathology , Mutation , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
18.
Diagn Cytopathol ; 51(11): 665-673, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37461248

ABSTRACT

BACKGROUND: Traditional immunohistochemistry (IHC) for breast carcinomas has shown low detection rates of metastatic breast carcinoma (MBC) in effusions. Although GATA3 has enhanced diagnostic accuracy in this realm, its limited utility in detecting triple-negative breast carcinoma (TNBC) has been highlighted. TRPS1 has been introduced as a potentially sensitive and specific marker in detecting MBC on histologic samples. We investigate the utility of TRPS1 as a marker for MBC in effusion specimens and compare its performance to SOX10, GATA3, mammaglobin (MG), and GCDFP-15. METHODS: A database search identified malignant effusions involved by MBC between 2013 and 2021. Cases from unique patients with sufficient cellularity were evaluated for TRPS1, GATA3, SOX10, MG, and GCDFP-15 IHC. The intensity and extent of tumor cells (TC) were scored by two pathologists. Any discrepancies were jointly reviewed for consensus. RESULTS: GATA3 showed the highest rate of positivity (98.2%), followed by TRPS1 (89.5%), MG (43.9%), GCDFP-15 (21.1%), and SOX10 (3.5%). All GATA3-positive cases showed intermediate to high expression. Comparatively, TRPS1 showed more variability in staining extent and intensity. In 13 (22.8%) cases, TRPS1 showed extensive background staining of inflammatory and mesothelial cells. Of six TNBCs, GATA3, and TRPS1 were positive in six (100%) and four (66.7%) cases, respectively. CONCLUSIONS: While TRPS1 shows a lower detection rate for MBC than GATA-3, using a combination of these markers can enhance effusion cytology's performance in detecting MBC. However, variability in TRPS1 staining intensity and high background TRPS1 staining of inflammatory and mesothelial cells can increase difficulty in its evaluation.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Carrier Proteins , GATA3 Transcription Factor/metabolism , Immunohistochemistry , Mammaglobin A/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SOXE Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology
19.
Cell Stem Cell ; 30(6): 832-850.e6, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267917

ABSTRACT

Remodeling of the tissue niche is often evident in diseases, yet, the stromal alterations and their contribution to pathogenesis are poorly characterized. Bone marrow fibrosis is a maladaptive feature of primary myelofibrosis (PMF). We performed lineage tracing and found that most collagen-expressing myofibroblasts were derived from leptin-receptor-positive (LepR+) mesenchymal cells, whereas a minority were from Gli1-lineage cells. Deletion of Gli1 did not impact PMF. Unbiased single-cell RNA sequencing (scRNA-seq) confirmed that virtually all myofibroblasts originated from LepR-lineage cells, with reduced expression of hematopoietic niche factors and increased expression of fibrogenic factors. Concurrently, endothelial cells upregulated arteriolar-signature genes. Pericytes and Sox10+ glial cells expanded drastically with heightened cell-cell signaling, suggesting important functional roles in PMF. Chemical or genetic ablation of bone marrow glial cells ameliorated fibrosis and improved other pathology in PMF. Thus, PMF involves complex remodeling of the bone marrow microenvironment, and glial cells represent a promising therapeutic target.


Subject(s)
Primary Myelofibrosis , Humans , Primary Myelofibrosis/drug therapy , Zinc Finger Protein GLI1/metabolism , Endothelial Cells/metabolism , Bone Marrow/metabolism , Neuroglia/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
20.
Hum Mol Genet ; 32(14): 2357-2372, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37162337

ABSTRACT

The pathogenesis of gallbladder cancer is complex, involving environmental and genetic risk factors. The matrix metallopeptidase 14 (MMP14) alters the tumor microenvironment and promotes tumorigenesis. In this study, we have characterized the role of the MMP14 promoter variants rs1004030 and rs1003049 in gallbladder cancer pathogenesis. Previously, we have shown the association of rs1004030 and rs1003049 with GBC and allele-specific differential expression of MMP14 in GBC patients. These variants reside within the cis-regulatory element (CRE) with high DNase and H3K4me3 signals, suggesting an active regulatory role in MMP14 expression. The luciferase-based reporter assay showed the role of promoter variants on expression levels in two GBC cell lines. Deleting the 119 bp promoter region surrounding the variants rs1004030 and rs1003049 by CRISPR-Cas9 genome editing resulted in reduced MMP14 expression in G415 cells. Electrophoretic mobility shift assay shows the presence of risk allele 'C'/'G' at rs1004030 and rs1003049 and create binding sites for transcription factors SOX10 and MYB, respectively. Further, stable knockdown of these transcription factors in G415 and TGBC1TKB cells showed reduced expression of MMP14. However, in both GBC cells, ectopic expression of these transcription factors increased the expression of MMP14. Rescue of MYB and SOX10 expression levels showed a significant increase in luciferase activity only in risk allele-carrying constructs. In conclusion, our study unveils a mechanistic role of the MMP14 promoter variants rs1004030 and rs1003049 in gallbladder cancer.


Subject(s)
Gallbladder Neoplasms , Humans , Binding Sites , Cell Line, Tumor , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Matrix Metalloproteinase 14/genetics , Regulatory Sequences, Nucleic Acid , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...