Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Dev Cell ; 59(8): 1028-1042.e5, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38452758

ABSTRACT

The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.


Subject(s)
Interferon-gamma , Phosphotransferases (Alcohol Group Acceptor) , Signal Transduction , Animals , Humans , Mice , HEK293 Cells , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Binding , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
2.
Fish Shellfish Immunol ; 148: 109510, 2024 May.
Article in English | MEDLINE | ID: mdl-38521143

ABSTRACT

The signal transducer and activator of transcription 2 (STAT2), a downstream factor of type I interferons (IFNs), is a key component of the cellular antiviral immunity response. However, the role of STAT2 in the upstream of IFN signaling, such as the regulation of pattern recognition receptors (PRRs), remains unknown. In this study, STAT2 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The open reading frame (ORF) of bcSTAT2 comprises 2523 nucleotides and encodes 841 amino acids, which presents the conserved structure to that of mammalian STAT2. The dual-luciferase reporter assay and the plaque assay showed that bcSTAT2 possessed certain IFN-inducing ability and antiviral ability against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Interestingly, we detected the association between bcSTAT2 and bcRIG-I through co-immunoprecipitation (co-IP) assay. Moreover, when bcSTAT2 was co-expressed with bcRIG-I, bcSTAT2 obviously suppressed bcRIG-I-induced IFN expression and antiviral activity. The subsequent co-IP assay and immunoblotting (IB) assay further demonstrated that bcSTAT2 inhibited K63-linked polyubiquitination but not K48-linked polyubiquitination of bcRIG-I, however, did not affect the oligomerization of bcRIG-I. Thus, our data conclude that black carp STAT2 negatively regulates RIG-I through attenuates its K63-linked ubiquitination, which sheds a new light on the regulation of the antiviral innate immunity cascade in vertebrates.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Rhabdoviridae Infections , Animals , Carps/genetics , Carps/metabolism , Rhabdoviridae Infections/veterinary , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Reoviridae/physiology , Immunity, Innate/genetics , Fish Proteins , Mammals/metabolism
3.
Front Immunol ; 15: 1331731, 2024.
Article in English | MEDLINE | ID: mdl-38384473

ABSTRACT

The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.


Subject(s)
Dengue , Interferon Type I , Zika Virus Infection , Zika Virus , Humans , Interferon Type I/metabolism , Zika Virus Infection/genetics , Virus Replication , Dengue/genetics , Ubiquitins/metabolism , Cytokines/metabolism , Ubiquitin Thiolesterase/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
4.
Commun Biol ; 7(1): 76, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38195857

ABSTRACT

Flaviviruses, including Zika virus (ZIKV) and Dengue virus (DENV), rely on their non-structural protein 5 (NS5) for both replication of viral genome and suppression of host IFN signaling. DENV and ZIKV NS5s were shown to facilitate proteosome-mediated protein degradation of human STAT2 (hSTAT2). However, how flavivirus NS5s have evolved for species-specific IFN-suppression remains unclear. Here we report structure-function characterization of the DENV serotype 2 (DENV2) NS5-hSTAT2 complex. The MTase and RdRP domains of DENV2 NS5 form an extended conformation to interact with the coiled-coil and N-terminal domains of hSTAT2, thereby promoting hSTAT2 degradation in cells. Disruption of the extended conformation of DENV2/ZIKV NS5, but not the alternative compact state, impaired their hSTAT2 binding. Our comparative structural analysis of flavivirus NS5s further reveals a conserved protein-interaction platform with subtle amino-acid variations likely underpinning diverse IFN-suppression mechanisms. Together, this study uncovers a conformational selection mechanism underlying species-specific hSTAT2 inhibition by flavivirus NS5.


Subject(s)
Flavivirus , STAT2 Transcription Factor , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Humans , Proteolysis , Species Specificity , STAT2 Transcription Factor/metabolism , Viral Nonstructural Proteins/metabolism
5.
Gut ; 73(2): 282-297, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37884352

ABSTRACT

OBJECTIVE: We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN: Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS: In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION: IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Intestinal Mucosa/metabolism , Colitis/metabolism , Interleukins/metabolism , Inflammation/metabolism , Epithelial Cells/metabolism , Inflammatory Bowel Diseases/genetics , Dextran Sulfate/pharmacology , Mice, Inbred C57BL , STAT2 Transcription Factor/metabolism
6.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139463

ABSTRACT

In addition to the canonical ISGF3 and non-canonical STAT2/IRF9 complexes, evidence is emerging of the role of their unphosphorylated counterparts in IFN-dependent and -independent ISG transcription. To better understand the relation between ISGF3 and U-ISGF3 and STAT2/IRF9 and U-STAT2/IRF9 in IFN-I-stimulated transcriptional responses, we performed RNA-Seq and ChIP-Seq, in combination with phosphorylation inhibition and antiviral experiments. First, we identified a group of ISRE-containing ISGs that were commonly regulated in IFNα-treated WT and STAT1-KO cells. Thus, in 2fTGH and Huh7.5 WT cells, early and long-term IFNα-inducible transcription and antiviral activity relied on the DNA recruitment of the ISGF3 components STAT1, STAT2 and IRF9 in a phosphorylation- and time-dependent manner. Likewise, in ST2-U3C and Huh-STAT1KO cells lacking STAT1, delayed IFN responses correlated with DNA binding of phosphorylated STAT2/IRF9 but not U-STAT2/IRF9. In addition, comparative experiments in U3C (STAT1-KO) cells overexpressing all the ISGF3 components (ST1-ST2-IRF9-U3C) revealed U-ISGF3 (and possibly U-STAT2/IRF9) chromatin interactions to correlate with phosphorylation-independent ISG transcription and antiviral activity. Together, our data point to the dominant role of the canonical ISGF3 and non-canonical STAT2/IRF9, without a shift to U-ISGF3 or U-STAT2/IRF9, in the regulation of early and prolonged ISG expression and viral protection. At the same time, they suggest the threshold-dependent role of U-ISFG3, and potentially U-STAT2/IRF9, in the regulation of constitutive and possibly long-term IFNα-dependent responses.


Subject(s)
Interferon Type I , Interferon-Stimulated Gene Factor 3 , Interleukin-1 Receptor-Like 1 Protein , STAT2 Transcription Factor , Antiviral Agents/pharmacology , DNA/pharmacology , Immunoglobulins/metabolism , Interferon Type I/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Signal Transduction , STAT1 Transcription Factor/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , STAT2 Transcription Factor/metabolism , Humans
7.
PLoS One ; 18(11): e0289863, 2023.
Article in English | MEDLINE | ID: mdl-37939052

ABSTRACT

Because pigs are intermediate or amplifying hosts for several zoonotic viruses, the pig-derived PK-15 cell line is an indispensable tool for studying viral pathogenicity and developing treatments, vaccines, and preventive measures to mitigate the risk of disease outbreaks. However, we must consider the possibility of contamination by type I interferons (IFNs), such as IFNα and IFNß, or IFN-inducing substances, such as virus-derived double-stranded RNA or bacterial lipopolysaccharides, in clinical samples, leading to lower rates of viral isolation. In this study, we aimed to generate a PK-15 cell line that can be used to isolate viruses from clinical samples carrying a risk of contamination by IFN-inducing substances. To this end, we depleted the IFN alpha and beta receptor subunit 1 (Ifnar1) gene or signal transducer and activator of transcription 2 (Stat2) gene in PK-15 cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 method. Treatment of PK-15 cells lacking Ifnar1 or Stat2 with IFNß or poly (I:C) resulted in no inhibitory effects on viral infection by a lentiviral vector, influenza virus, and Akabane virus. These results demonstrate that PK-15 cells lacking Ifnar1 or Stat2 could represent a valuable and promising tool for viral isolation, vaccine production, and virological investigations.


Subject(s)
Interferon Type I , Viruses , Animals , Swine , STAT2 Transcription Factor/metabolism , Cell Line , Interferon-alpha/metabolism , Interferon Type I/metabolism
8.
J Virol ; 97(10): e0072723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819133

ABSTRACT

IMPORTANCE: Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.


Subject(s)
3C Viral Proteases , Interferon Type I , Picornaviridae , Animals , Host-Pathogen Interactions , Interferon Type I/metabolism , Karyopherins , Picornaviridae/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Swine , 3C Viral Proteases/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , alpha Karyopherins/metabolism , Signal Transduction
9.
Birth Defects Res ; 115(16): 1500-1512, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37526179

ABSTRACT

INTRODUCTION: Zika virus (ZIKV) is a human teratogen that causes congenital Zika syndrome (CZS). AXL, TLR3, and STAT2 are proteins involved in the ZIKV's entry into cells (AXL) and host's immune response (TLR3 and STAT2). In this study, we evaluated the role of genetic polymorphisms in these three genes as risk factors to CZS, and highlighted which proteins that interact with them could be important for ZIKV infection and teratogenesis. MATERIALS AND METHODS: We evaluate eighty-eight children exposed to ZIKV during the pregnancy, 40 with CZS and 48 without congenital anomalies. The evaluated polymorphisms in AXL (rs1051008), TLR3 (rs3775291), and STAT2 (rs2066811) were genotyped using TaqMan® Genotyping Assays. A protein-protein interaction network was created in STRING database and analyzed in Cytoscape software. RESULTS: We did not find any statistical significant association among the polymorphisms and the occurrence of CZS. Through the analyses of the network composed by AXL, TLR3, STAT2 and their interactions targets, we found that EGFR and SRC could be important proteins for the ZIKV infection and its teratogenesis. CONCLUSION: In summary, our results demonstrated that the evaluated polymorphisms do not seem to represent risk factors for CZS; however, EGFR and SRC appear to be important proteins that should be investigated in future studies.


Subject(s)
Teratogenesis , Zika Virus Infection , Zika Virus , Pregnancy , Child , Female , Humans , Zika Virus Infection/genetics , Zika Virus/physiology , Axl Receptor Tyrosine Kinase , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Protein Interaction Maps/genetics , ErbB Receptors/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
10.
Cell Mol Life Sci ; 80(7): 187, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347298

ABSTRACT

To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.


Subject(s)
Interferon Type I , Interferon-alpha , Interferon-alpha/pharmacology , Interferon-alpha/genetics , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Gene Expression Regulation , Antiviral Agents , Interferon Type I/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
11.
Proc Natl Acad Sci U S A ; 120(16): e2216953120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036972

ABSTRACT

In cancer cells, endogenous or therapy-induced DNA damage leads to the abnormal presence of DNA in the cytoplasm, which triggers the activation of cGAS (cyclic GMP-AMP synthase) and STING (stimulator of interferon genes). STAT2 suppresses the cGAMP-induced expression of IRF3-dependent genes by binding to STING, blocking its intracellular trafficking, which is essential for the full response to STING activation. STAT2 reshapes STING signaling by inhibiting the induction of IRF3-dependent, but not NF-κB-dependent genes. This noncanonical activity of STAT2 is regulated independently of its tyrosine phosphorylation but does depend on the phosphorylation of threonine 404, which promotes the formation of a STAT2:STING complex that keeps STING bound to the endoplasmic reticulum (ER) and increases resistance to DNA damage. We conclude that STAT2 is a key negative intracellular regulator of STING, a function that is quite distinct from its function as a transcription factor.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Protein Serine-Threonine Kinases , STAT2 Transcription Factor , DNA/metabolism , DNA Damage , Nucleotidyltransferases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , STAT2 Transcription Factor/metabolism , Membrane Proteins/metabolism
12.
Virology ; 583: 1-13, 2023 06.
Article in English | MEDLINE | ID: mdl-37060797

ABSTRACT

Type I interferon (IFN-I) evasion by Dengue virus (DENV) is key in DENV pathogenesis. The non-structural protein 5 (NS5) antagonizes IFN-I response through the degradation of the signal transducer and activator of transcription 2 (STAT2). We developed a K562 cell-based platform, for high throughput screening of compounds potentially counteracting the NS5-mediated antagonism of IFN-I signaling. Upon a screening with a library of 1220 approved drugs, 3 compounds previously linked to DENV inhibition (Apigenin, Chrysin, and Luteolin) were identified. Luteolin and Apigenin determined a significant inhibition of DENV2 replication in Huh7 cells and the restoration of STAT2 phosphorylation in both cell systems. Apigenin and Luteolin were able to stimulate STAT2 even in the absence of infection. Despite the "promiscuous" and "pan-assay-interfering" nature of Luteolin, Apigenin promotes STAT2 Tyr 689 phosphorylation and activation, highlighting the importance of screening for compounds able to interact with host factors, to counteract viral proteins capable of dampening innate immune responses.


Subject(s)
Dengue Virus , Apigenin/pharmacology , Dengue Virus/physiology , Luteolin/pharmacology , Signal Transduction , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans
13.
J Biol Chem ; 299(5): 104703, 2023 05.
Article in English | MEDLINE | ID: mdl-37059181

ABSTRACT

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Subject(s)
Gene Expression Regulation , STAT Transcription Factors , Trans-Activators , Cytokines/metabolism , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Trans-Activators/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Protein Multimerization
14.
J Virol ; 97(3): e0194222, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36856422

ABSTRACT

African swine fever virus (ASFV) is a large DNA virus that causes African swine fever (ASF), an acute and hemorrhagic disease in pigs with lethality rates of up to 100%. To date, how ASFV efficiently suppress the innate immune response remains enigmatic. In this study, we identified ASFV cysteine protease pS273R as an antagonist of type I interferon (IFN). Overexpression of pS273R inhibited JAK-STAT signaling triggered by type I IFNs. Mechanistically, pS273R interacted with STAT2 and recruited the E3 ubiquitin ligase DCST1, resulting in K48-linked polyubiquitination at K55 of STAT2 and subsequent proteasome-dependent degradation of STAT2. Furthermore, such a function of pS273R in JAK-STAT signaling is not dependent on its protease activity. These findings suggest that ASFV pS273R is important to evade host innate immunity. IMPORTANCE ASF is an acute disease in domestic pigs caused by infection with ASFV. ASF has become a global threat with devastating economic and ecological consequences. To date, there are no commercially available, safe, and efficacious vaccines to prevent ASFV infection. ASFV has evolved a series of strategies to evade host immune responses, facilitating its replication and transmission. Therefore, understanding the immune evasion mechanism of ASFV is helpful for the development of prevention and control measures for ASF. Here, we identified ASFV cysteine protease pS273R as an antagonist of type I IFNs. ASFV pS273R interacted with STAT2 and mediated degradation of STAT2, a transcription factor downstream of type I IFNs that is responsible for induction of various IFN-stimulated genes. pS273R recruited the E3 ubiquitin ligase DCST1 to enhance K48-linked polyubiquitination of STAT2 at K55 in a manner independent of its protease activity. These findings suggest that pS273R is important for ASFV to escape host innate immunity, which sheds new light on the mechanisms of ASFV immune evasion.


Subject(s)
African Swine Fever Virus , African Swine Fever , Cysteine Proteases , Interferon Type I , Animals , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Immunity, Innate/genetics , Interferon Type I/metabolism , Sus scrofa , Swine , Ubiquitin-Protein Ligases/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction
15.
J Gene Med ; 25(8): e3506, 2023 08.
Article in English | MEDLINE | ID: mdl-36994700

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play a critical role in regulating various human diseases including cancer. In colorectal cancer (CRC), there are still some undervalued lncRNAs with potential functions and mechanisms that need to be clarified. The present study aimed to investigate the role of linc02231 in the progression of CRC. METHODS: The proliferation of CRC cells was evaluated using Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell migration was examined through wound healing and Transwell analyses. The impact of linc02231 on angiogenesis was determined through a tube formation assay. Western blotting was used to detect the expression of specific proteins. A mouse xenograft model is established to observe the effect of linc02231 on the in vivo growth of CRC cells. Target genes of linc02231 are screened using high-throughput sequencing. The transcriptional activity of STAT2 on linc02231 and the binding activity between linc02231/miR-939-5p/hnRNPA1 were analyzed by a luciferase assay. RESULTS: Based on public databases and comprehensive bioinformatics analysis, we found that lncRNA linc02231 was upregulated in CRC tumor tissues, which is consistent with our clinical results. linc02231 promoted the proliferation and migration of CRC cells in vitro and their tumorigenicity in vivo. Furthermore, linc02231 promotes the angiogenic ability of human umbilical vein endothelial cells. Mechanistically, the transcription factor STAT2 binds to the promoter region of linc02231 and activates its transcription. linc02231 also competes with miR-939-5p for binding to the pro-oncogenic target gene hnRNPA1, preventing its degradation. hnRNPA1 prevents the maturation of angiopoietin-like protein 4 (ANGPTL4) messenger RNA, leading to impaired tumor angiogenesis and increased metastasis of CRC. CONCLUSIONS: The expression of linc02231, which is induced by STAT2, has been found to enhance the proliferation, metastasis, and angiogenesis of CRC by binding to miR-939-5p and increasing the expression of hnNRPA1 at the same time as suppressing ANGPTL4. These findings suggest that linc02231 could serve as a potential biomarker and therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/pathology , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
16.
EMBO J ; 42(5): e112351, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36762436

ABSTRACT

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Humans , Mice , Rats , Cryoelectron Microscopy , Cytomegalovirus Infections/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferons/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Receptors, Interleukin-17/metabolism
17.
Mol Biol Rep ; 50(4): 3909-3917, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36662450

ABSTRACT

BACKGROUND: IRF9 is a transcription factor that mediates the expression of interferon-stimulated genes (ISGs) through the Janus kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK-STAT pathway is regulated through phosphorylation reactions, in which all components of the pathway are known to be phosphorylated except IRF9. The enigma surrounding IRF9 regulation by a phosphorylation event is intriguing. As IRF9 plays a major role in establishing an antiviral state in host cells, the topic of IRF9 regulation warrants deeper investigation. METHODS: Initially, total lysates of 2fTGH and U2A cells (transfected with recombinant IRF9) were filter-selected and concentrated using phosphoprotein enrichment assay. The phosphoprotein state of IRF9 was further confirmed using Phos-tag™ assay. All protein expression was determined using Western blotting. Tandem mass spectrometry was conducted on immunoprecipitated IRF9 to identify the phosphorylated amino acids. Finally, site-directed mutagenesis was performed and the effects of mutated IRF9 on relevant ISGs (i.e., USP18 and Mx1) was evaluated using qPCR. RESULTS: IRF9 is phosphorylated at S252 and S253 under IFNß-induced condition and R242 under non-induced condition. Site-directed mutagenesis of S252 and S253 to either alanine or aspartic acid has a modest effect on the upregulation of USP18 gene-a negative regulator of type I interferon (IFN) response-but not Mx1 gene. CONCLUSION: Our preliminary study shows that IRF9 is phosphorylated and possibly regulates USP18 gene expression. However, further in vivo studies are needed to determine the significance of IRF9 phosphorylation.


Subject(s)
Interferon Type I , Janus Kinases , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Phosphorylation , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Interferon Type I/metabolism
18.
Eur J Clin Invest ; 53(6): e13959, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36708067

ABSTRACT

BACKGROUND: Psoriasis is a classic chronic recurrent inflammatory skin disease characterized by skin inflammation and abnormal biological behaviour of keratinocytes. Although Signal Transducer And Activator Of Transcription 2 (STAT2) was found to play an important role in the Janus kinase (JAK)-STAT signalling pathway and contribute to the pathogenesis of psoriasis, its exact role in psoriasis remains unclear. METHODS: Using bioinformatics analysis, we identified the key pathways that significantly impacted psoriatic lesions. After identifying the critical molecule gene differentially expressed in multiple public databases using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis, clinical samples were collected to validate the gene's significance. Its functions and underlying mechanism were also investigated in vitro. Lastly, we evaluated the diagnostic and therapeutic power of the target gene using the receiver operating characteristic curve (ROC), and gene association was assessed using Spearman correlation. RESULTS: A significant correlation was found between cysteine-aspartic acid protease3 (Caspase3) and STAT2, and functional enrichment analysis revealed that they were both significantly up-regulated in psoriatic skin lesions compared to non-lesional tissues. Functional analysis revealed that Caspase3 functioned downstream of STAT2 in psoriasis. Lastly, we found that Caspase3 and STAT2 could be potential biomarkers for diagnosing and treating psoriasis. CONCLUSIONS: In summary, STAT2 overexpression contributes to psoriasis progression by regulating Capase3 phosphorylation to induce excessive apoptosis of keratinocytes. Meanwhile, STAT2 and Capase3 were identified as promising biomarkers for the diagnosis and treatment of psoriasis and could be used for individualized treatments.


Subject(s)
Psoriasis , Humans , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Psoriasis/diagnosis , Psoriasis/genetics , Psoriasis/drug therapy , Skin/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Biomarkers/metabolism
19.
Cytokine ; 161: 156081, 2023 01.
Article in English | MEDLINE | ID: mdl-36327541

ABSTRACT

The tumor microenvironment consists of tumor cells, extracellular matrix, blood vessels, and non-tumor cells such as fibroblasts and immune cells. Crosstalk among components of this cellular ecosystem can transform non-malignant cells and promote tumor invasion and metastasis. Evidence is accumulating that the transcription factor STAT2, a downstream effector of type I interferon (IFN-I) signaling, can either inhibit or promote tumorigenesis depending on the unique environment presented by each type of cancer. STAT2 has long been associated with the canonical JAK/STAT pathway involved in various biological processes including reshaping of the tumor microenvironment and in antitumor immunity. This dichotomous tendency of STAT2 to both inhibit and worsen tumor formation makes the protein a curious, and yet relatively ill-defined player in many cancer pathways involving IFN-I. In this review, we discuss the role of STAT2 in contributing to either a tumorigenic or anti-tumorigenic microenvironment as well as chemoresistance.


Subject(s)
Interferon Type I , Janus Kinases , STAT2 Transcription Factor/metabolism , Janus Kinases/metabolism , Tumor Microenvironment , Ecosystem , Drug Resistance, Neoplasm , Signal Transduction , STAT Transcription Factors/metabolism , Interferon Type I/metabolism , STAT1 Transcription Factor/metabolism
20.
Cancer Commun (Lond) ; 43(1): 100-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36328987

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) generated by back-splicing of precursor mRNAs (pre-mRNAs) are often aberrantly expressed in cancer cells. Accumulating evidence has revealed that circRNAs play a critical role in the progression of several cancers, including colorectal cancer (CRC). However, the current understandings of the emerging functions of circRNAs in CRC lipid metabolism and the underlying molecular mechanisms are still limited. Here, we aimed to explore the role of circCAPRIN1 in regulating CRC lipid metabolism and tumorigenesis. METHODS: circRNA microarray was performed with three pairs of tumor and non-tumor tissues from CRC patients. The expression of circRNAs were determined by quantitative PCR (qPCR) and in situ hybridization (ISH). The endogenous levels of circRNAs in CRC cells were manipulated by transfection with lentiviruses overexpressing or silencing circRNAs. The regulatory roles of circRNAs in the occurrence of CRC were investigated both in vitro and in vivo using gene expression array, RNA pull-down/mass spectrometry, RNA immunoprecipitation assay, luciferase reporter assay, chromatin immunoprecipitation analysis, and fluorescence in situ hybridization (FISH). RESULTS: Among circRNAs, circCAPRIN1 was most significantly upregulated in CRC tissue specimens. circCAPRIN1 expression was positively correlated with the clinical stage and unfavorable prognosis of CRC patients. Downregulation of circCAPRIN1 suppressed proliferation, migration, and epithelial-mesenchymal transition of CRC cells, while circCAPRIN1 overexpression had opposite effects. RNA sequencing and gene ontology analysis indicated that circCAPRIN1 upregulated the expressions of genes involved in CRC lipid metabolism. Moreover, circCAPRIN1 promoted lipid synthesis by enhancing Acetyl-CoA carboxylase 1 (ACC1) expression. Further mechanistic assays demonstrated that circCAPRIN1 directly bound signal transducer and activator of transcription 2 (STAT2) to activate ACC1 transcription, thus regulating lipid metabolism and facilitating CRC tumorigenesis. CONCLUSIONS: These findings revealed the oncogenic role and mechanism of circCAPRIN1 in CRC. circCAPRIN1 interacted with STAT2 to promote CRC tumor progression and lipid synthesis by enhancing the expression of ACC1. circCAPRIN1 may be considered as a novel potential diagnostic and therapeutic target for CRC patients.


Subject(s)
Acetyl-CoA Carboxylase , Colorectal Neoplasms , RNA, Circular , STAT2 Transcription Factor , Humans , Acetyl-CoA Carboxylase/genetics , Carcinogenesis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , In Situ Hybridization, Fluorescence , Lipids/biosynthesis , Neoplastic Processes , RNA, Circular/genetics , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...