Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.772
Filter
1.
Nature ; 628(8009): 887-893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538796

ABSTRACT

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Subject(s)
Cryoelectron Microscopy , Exoribonucleases , RNA Polymerase II , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Termination, Genetic , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exoribonucleases/ultrastructure , Models, Molecular , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Protein Domains , RNA, Fungal/biosynthesis , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/ultrastructure
2.
Nature ; 627(8005): 890-897, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448592

ABSTRACT

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Subject(s)
Chromatin , DNA Replication , Epistasis, Genetic , Histones , Saccharomyces cerevisiae , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cryoelectron Microscopy , DNA Replication/genetics , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA, Fungal/ultrastructure , Epistasis, Genetic/genetics , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Multienzyme Complexes/ultrastructure , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Binding , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
3.
Science ; 382(6675): 1184-1190, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060647

ABSTRACT

Kinetochores couple chromosomes to the mitotic spindle to segregate the genome during cell division. An error correction mechanism drives the turnover of kinetochore-microtubule attachments until biorientation is achieved. The structural basis for how kinetochore-mediated chromosome segregation is accomplished and regulated remains an outstanding question. In this work, we describe the cryo-electron microscopy structure of the budding yeast outer kinetochore Ndc80 and Dam1 ring complexes assembled onto microtubules. Complex assembly occurs through multiple interfaces, and a staple within Dam1 aids ring assembly. Perturbation of key interfaces suppresses yeast viability. Force-rupture assays indicated that this is a consequence of impaired kinetochore-microtubule attachment. The presence of error correction phosphorylation sites at Ndc80-Dam1 ring complex interfaces and the Dam1 staple explains how kinetochore-microtubule attachments are destabilized and reset.


Subject(s)
Cell Cycle Proteins , Kinetochores , Microtubule-Associated Proteins , Microtubules , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/chemistry , Chromosome Segregation , Cryoelectron Microscopy , Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Protein Conformation
4.
Science ; 381(6655): 319-324, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37384669

ABSTRACT

Unlike other chromatin remodelers, INO80 preferentially mobilizes hexasomes, which can form during transcription. Why INO80 prefers hexasomes over nucleosomes remains unclear. Here, we report structures of Saccharomyces cerevisiae INO80 bound to a hexasome or a nucleosome. INO80 binds the two substrates in substantially different orientations. On a hexasome, INO80 places its ATPase subunit, Ino80, at superhelical location -2 (SHL -2), in contrast to SHL -6 and SHL -7, as previously seen on nucleosomes. Our results suggest that INO80 action on hexasomes resembles action by other remodelers on nucleosomes such that Ino80 is maximally active near SHL -2. The SHL -2 position also plays a critical role for nucleosome remodeling by INO80. Overall, the mechanistic adaptations used by INO80 for preferential hexasome sliding imply that subnucleosomal particles play considerable regulatory roles.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromatin/metabolism , Histones/metabolism , Nucleosomes/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry
5.
Nature ; 621(7979): 620-626, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344598

ABSTRACT

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Subject(s)
Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cryoelectron Microscopy , Mitochondrial Precursor Protein Import Complex Proteins/chemistry , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/ultrastructure , Protein Transport , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/ultrastructure
6.
Nature ; 618(7964): 411-418, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258668

ABSTRACT

The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Pore , Saccharomyces cerevisiae , Cryoelectron Microscopy , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Phenylalanine , Glycine , Computer Simulation , Solvents
7.
Methods Mol Biol ; 2643: 321-331, 2023.
Article in English | MEDLINE | ID: mdl-36952195

ABSTRACT

Subcellular fractionation approaches have allowed for the identification of various functionally distinct organelles including peroxisomes. The methods enable enrichment of organelles and combined with downstream assays allow for the identification of biochemical functions, composition, and structural characteristics of these compartments. In this chapter, we describe the methods for differential centrifugation and Nycodenz gradients in the yeast Saccharomyces cerevisiae and describe assays for fatty acid ß-oxidation in intact cells and in peroxisomal fractions.


Subject(s)
Peroxisomes , Saccharomyces cerevisiae Proteins , Peroxisomes/metabolism , Saccharomyces cerevisiae/ultrastructure , Cell Fractionation/methods , Centrifugation , Saccharomyces cerevisiae Proteins/metabolism , Subcellular Fractions , Oxidation-Reduction
8.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051353

ABSTRACT

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Subject(s)
RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Initiation, Genetic , Cryoelectron Microscopy , Gene Expression Regulation, Fungal , Models, Molecular , Promoter Regions, Genetic , Protein Conformation , RNA Polymerase II/genetics , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Structure-Activity Relationship , Time Factors , Transcription Elongation, Genetic , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism
9.
STAR Protoc ; 2(4): 100990, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34934959

ABSTRACT

Phosphatidylcholine (PtdCho) is a major membrane phospholipid synthesized in the endoplasmic reticulum. Here, we provide a protocol using electron microscopy to localize PtdCho that is newly synthesized by the Kennedy pathway in yeast cells. The protocol consists of the administration of a clickable alkyne-containing choline analog to cells, quick-freezing, freeze-fracture replica preparation, conjugation of biotin-azide by click chemical reaction, and immunogold labeling. This protocol can be used to determine quantitatively to which membrane leaflets newly synthesized PtdCho is incorporated. For complete details on the use and execution of this protocol, please refer to Orii et al. (2021).


Subject(s)
Freeze Fracturing/methods , Microscopy, Electron/methods , Phosphatidylcholines , Saccharomyces cerevisiae/ultrastructure , Alkynes/chemistry , Alkynes/metabolism , Choline/analogs & derivatives , Choline/chemistry , Choline/metabolism , Phosphatidylcholines/analysis , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
10.
J Cell Biol ; 220(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34714326

ABSTRACT

Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Nuclear Envelope/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagosomes/ultrastructure , Autophagy , Autophagy-Related Proteins/chemistry , Cytoplasmic Vesicles/ultrastructure , Green Fluorescent Proteins/metabolism , Nuclear Envelope/ultrastructure , Protein Domains , Receptors, Cytoplasmic and Nuclear/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Structure-Activity Relationship , Time Factors , Vacuoles/metabolism , Vacuoles/ultrastructure , Vesicular Transport Proteins/metabolism
11.
Commun Biol ; 4(1): 1009, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433891

ABSTRACT

Actin polymerises to form filaments/cables for motility, transport, and the structural framework in a cell. Recent studies show that actin polymers are present not only in the cytoplasm but also in the nuclei of vertebrate cells. Here, we show, by electron microscopic observation with rapid freezing and high-pressure freezing, a unique bundled structure containing actin in the nuclei of budding yeast cells undergoing meiosis. The nuclear bundle during meiosis consists of multiple filaments with a rectangular lattice arrangement, often showing a feather-like appearance. The bundle was immunolabelled with an anti-actin antibody and was sensitive to an actin-depolymerising drug. Similar to cytoplasmic bundles, nuclear bundles are rarely seen in premeiotic cells and spores and are induced during meiotic prophase-I. The formation of the nuclear bundle is independent of DNA double-stranded breaks. We speculate that nuclear bundles containing actin play a role in nuclear events during meiotic prophase I.


Subject(s)
Actins/ultrastructure , Cell Nucleus/ultrastructure , Meiosis , Saccharomyces cerevisiae/ultrastructure , Microscopy, Electron, Transmission
12.
Nature ; 596(7871): 296-300, 2021 08.
Article in English | MEDLINE | ID: mdl-34349264

ABSTRACT

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Splicing , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Spliceosomes/enzymology , Actins/genetics , Adenosine/metabolism , Binding Sites , Cryoelectron Microscopy , DEAD-box RNA Helicases/ultrastructure , Models, Molecular , Mutation , Protein Domains , RNA Precursors/metabolism , RNA Precursors/ultrastructure , RNA Splicing/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/chemistry , Spliceosomes/metabolism
13.
J Mol Biol ; 433(21): 167219, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34464654

ABSTRACT

Protein modification by ubiquitin or SUMO can alter the function, stability or activity of target proteins. Previous studies have identified thousands of substrates that were modified by ubiquitin or SUMO on the same lysine residue. However, it remains unclear whether such overlap could result from a mere higher solvent accessibility, whether proteins containing those sites are associated with specific functional traits, and whether selectively perturbing their modification by ubiquitin or SUMO could result in different phenotypic outcomes. Here, we mapped reported lysine modification sites across the human proteome and found an enrichment of sites reported to be modified by both ubiquitin and SUMO. Our analysis uncovered thousands of proteins containing such sites, which we term Sites of Alternative Modification (SAMs). Among more than 36,000 sites reported to be modified by SUMO, 51.8% have also been reported to be modified by ubiquitin. SAM-containing proteins are associated with diverse biological functions including cell cycle, DNA damage, and transcriptional regulation. As such, our analysis highlights numerous proteins and pathways as putative targets for further elucidating the crosstalk between ubiquitin and SUMO. Comparing the biological and biochemical properties of SAMs versus other non-overlapping modification sites revealed that these sites were associated with altered cellular localization or abundance of their host proteins. Lastly, using S. cerevisiae as model, we show that mutating the SAM motif in a protein can influence its ubiquitination as well as its localization and abundance.


Subject(s)
Cell Cycle/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/metabolism , Amino Acid Motifs , Computational Biology/methods , DNA Damage , Humans , Lysine/metabolism , Mutagenesis, Site-Directed , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Small Ubiquitin-Related Modifier Proteins/genetics , Sumoylation , Transcription, Genetic , Ubiquitin/genetics
14.
Cell Rep ; 36(1): 109317, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233195

ABSTRACT

The R2TP (RUVBL1-RUVBL2-RPAP3-PIH1D1) complex, in collaboration with heat shock protein 90 (HSP90), functions as a chaperone for the assembly and stability of protein complexes, including RNA polymerases, small nuclear ribonucleoprotein particles (snRNPs), and phosphatidylinositol 3-kinase (PI3K)-like kinases (PIKKs) such as TOR and SMG1. PIKK stabilization depends on an additional complex of TELO2, TTI1, and TTI2 (TTT), whose structure and function are poorly understood. The cryoelectron microscopy (cryo-EM) structure of the human R2TP-TTT complex, together with biochemical experiments, reveals the mechanism of TOR recruitment to the R2TP-TTT chaperone. The HEAT-repeat TTT complex binds the kinase domain of TOR, without blocking its activity, and delivers TOR to the R2TP chaperone. In addition, TTT regulates the R2TP chaperone by inhibiting RUVBL1-RUVBL2 ATPase activity and by modulating the conformation and interactions of the PIH1D1 and RPAP3 components of R2TP. Taken together, our results show how TTT couples the recruitment of TOR to R2TP with the regulation of this chaperone system.


Subject(s)
Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/metabolism , Cryoelectron Microscopy , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Domains , Protein Interaction Mapping , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Structure-Activity Relationship
15.
Nat Commun ; 12(1): 3883, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162887

ABSTRACT

The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC-Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins.


Subject(s)
Cell Cycle Proteins/genetics , DNA Replication/genetics , DNA, Fungal/genetics , Origin Recognition Complex/genetics , Replication Origin/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Base Sequence , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Models, Molecular , Nucleic Acid Conformation , Origin Recognition Complex/chemistry , Origin Recognition Complex/metabolism , Protein Binding , Protein Domains , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
16.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34081091

ABSTRACT

The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle-regulated processes.


Subject(s)
Chromosome Segregation , Chromosomes, Fungal , Endopeptidases/metabolism , Kinetochores/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Cryoelectron Microscopy , Endopeptidases/chemistry , Endopeptidases/genetics , Microscopy, Fluorescence , Models, Molecular , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sumoylation
17.
Methods Mol Biol ; 2305: 301-322, 2021.
Article in English | MEDLINE | ID: mdl-33950396

ABSTRACT

The advances in electron cryo-microscopy have enabled high-resolution structural studies of vitrified macromolecular complexes in situ by cryo-electron tomography (cryo-ET). Since utilization of cryo-ET is generally limited to the specimens with thickness < 500 nm, a complex sample preparation protocol to study larger samples such as single eukaryotic cells by cryo-ET was developed and optimized over the last decade. The workflow is based on the preparation of a thin cellular lamella by cryo-focused ion beam milling (cryo-FIBM) from the vitrified cells. The sample preparation protocol is a multi-step process which includes utilization of several high-end instruments and comprises sample manipulation prone to sample deterioration. Here, we present a workflow for preparation of three different model specimens that was optimized to provide high-quality lamellae for cryo-ET or electron diffraction tomography with high reproducibility. Preparation of lamellae from large adherent mammalian cells, small suspension eukaryotic cell line, and protein crystals of intermediate size is described which represents examples of the most frequently studied samples used for cryo-FIBM in life sciences.


Subject(s)
Cryoelectron Microscopy/methods , Macromolecular Substances/ultrastructure , Specimen Handling/methods , Animals , Cells/ultrastructure , Electron Microscope Tomography/methods , Ions , Molecular Biology/methods , Proteins/ultrastructure , Reproducibility of Results , Saccharomyces cerevisiae/ultrastructure , Workflow
18.
Nat Struct Mol Biol ; 28(4): 382-387, 2021 04.
Article in English | MEDLINE | ID: mdl-33846633

ABSTRACT

Efficient transcription of RNA polymerase II (Pol II) through nucleosomes requires the help of various factors. Here we show biochemically that Pol II transcription through a nucleosome is facilitated by the chromatin remodeler Chd1 and the histone chaperone FACT when the elongation factors Spt4/5 and TFIIS are present. We report cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II-Spt4/5-nucleosome complexes with bound Chd1 or FACT. In the first structure, Pol II transcription exposes the proximal histone H2A-H2B dimer that is bound by Spt5. Pol II has also released the inhibitory DNA-binding region of Chd1 that is poised to pump DNA toward Pol II. In the second structure, Pol II has generated a partially unraveled nucleosome that binds FACT, which excludes Chd1 and Spt5. These results suggest that Pol II progression through a nucleosome activates Chd1, enables FACT binding and eventually triggers transfer of FACT together with histones to upstream DNA.


Subject(s)
Chromosomal Proteins, Non-Histone/ultrastructure , DNA-Binding Proteins/ultrastructure , High Mobility Group Proteins/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Transcription, Genetic , Transcriptional Elongation Factors/ultrastructure , Chromatin/genetics , Chromatin/ultrastructure , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Histones/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Nucleosomes/genetics , Nucleosomes/ultrastructure , RNA Polymerase II/genetics , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Transcriptional Elongation Factors/genetics
19.
Elife ; 102021 03 31.
Article in English | MEDLINE | ID: mdl-33787496

ABSTRACT

The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Šcryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine-arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.


Subject(s)
Multigene Family , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Cryoelectron Microscopy , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
20.
FEBS Lett ; 595(9): 1328-1349, 2021 05.
Article in English | MEDLINE | ID: mdl-33544878

ABSTRACT

An assembly of multiprotein complexes achieves chromosomal DNA replication at the replication fork. In eukaryotes, proliferating cell nuclear antigen (PCNA) plays a vital role in the assembly of multiprotein complexes at the replication fork and is essential for cell viability. PCNA from several organisms, including Saccharomyces cerevisiae, has been structurally characterised. However, the structural analyses of PCNA from fungal pathogens are limited. Recently, we have reported that PCNA from the opportunistic fungal pathogen Candida albicans complements the essential functions of ScPCNA in S. cerevisiae. Still, it only partially rescues the loss of ScPCNA when the yeast cells are under genotoxic stress. To understand this further, herein, we have determined the crystal structure of CaPCNA and compared that with the existing structures of other fungal and human PCNA. Our comparative structural and in-solution small-angle X-ray scattering (SAXS) analyses reveal that CaPCNA forms a stable homotrimer, both in crystal and in solution. It displays noticeable structural alterations in the oligomerisation interface, P-loop and hydrophobic pocket regions, suggesting its differential function in a heterologous system and avenues for developing specific therapeutics. DATABASES: The PDB and SASBDB accession codes for CaPCNA are 7BUP and SASDHQ9, respectively.


Subject(s)
Candida albicans/genetics , Proliferating Cell Nuclear Antigen/ultrastructure , Protein Conformation , Candida albicans/ultrastructure , DNA Damage/genetics , DNA Replication , Proliferating Cell Nuclear Antigen/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Scattering, Small Angle , Species Specificity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...