Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.381
Filter
1.
Microb Cell Fact ; 23(1): 230, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152436

ABSTRACT

BACKGROUND: Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS: In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION: Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.


Subject(s)
Escherichia coli , Genetic Vectors , Kluyveromyces , Promoter Regions, Genetic , Yarrowia , Genetic Vectors/genetics , Yarrowia/genetics , Yarrowia/metabolism , Kluyveromyces/genetics , Kluyveromyces/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Red Fluorescent Protein , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Metabolic Engineering/methods , alpha-Amylases/genetics , alpha-Amylases/metabolism , Saccharomycetales
2.
Front Immunol ; 15: 1380028, 2024.
Article in English | MEDLINE | ID: mdl-39114650

ABSTRACT

Introduction: Prior to the introduction of novel food ingredients into the food supply, safety risk assessments are required, and numerous prediction models have been developed and validated to evaluate safety. Methods: The allergenic risk potential of Helaina recombinant human lactoferrin (rhLF, Effera™), produced in Komagataella phaffii (K. phaffii) was assessed by literature search, bioinformatics sequence comparisons to known allergens, glycan allergenicity assessment, and a simulated pepsin digestion model. Results: The literature search identified no allergenic risk for Helaina rhLF, K. phaffii, or its glycans. Bioinformatics search strategies showed no significant risk for cross-reactivity or allergenicity between rhLF or the 36 residual host proteins and known human allergens. Helaina rhLF was also rapidly digested in simulated gastric fluid and its digestibility profile was comparable to human milk lactoferrin (hmLF), further demonstrating a low allergenic risk and similarity to the hmLF protein. Conclusion: Collectively, these results demonstrate a low allergenic risk potential of Helaina rhLF and do not indicate the need for further clinical testing or serum IgE binding to evaluate Helaina rhLF for risk of food allergy prior to introduction into the food supply.


Subject(s)
Allergens , Food Hypersensitivity , Lactoferrin , Lactoferrin/immunology , Humans , Food Hypersensitivity/immunology , Allergens/immunology , Recombinant Proteins/immunology , Saccharomycetales/immunology , Saccharomycetales/metabolism , Risk Assessment , Computational Biology/methods
3.
Biotechnol J ; 19(8): e2400245, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118577

ABSTRACT

Enzymes that degrade ß-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-ß-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus Cladosporium sphaerospermum, was cloned and expressed in Pichia pastoris. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%-25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal ß-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus C. sphaerospermum and the first report of a halotolerant and engineered endo-ß-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-ß-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.


Subject(s)
Enzyme Stability , beta-Glucans , beta-Glucans/metabolism , Cladosporium/enzymology , Cladosporium/genetics , Protein Domains , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Endo-1,3(4)-beta-Glucanase/metabolism , Endo-1,3(4)-beta-Glucanase/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cloning, Molecular , Temperature , Saccharomycetales
4.
Sci Rep ; 14(1): 18540, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122907

ABSTRACT

Cellobiose has received increasing attention in various industrial sectors, ranging from food and feed to cosmetics. The development of large-scale cellobiose applications requires a cost-effective production technology as currently used methods based on cellulose hydrolysis are costly. Here, a one-pot synthesis of cellobiose from sucrose was conducted using a recombinant Pichia pastoris strain as a reusable whole-cell biocatalyst. Thermophilic sucrose phosphorylase from Bifidobacterium longum (BlSP) and cellobiose phosphorylase from Clostridium stercorarium (CsCBP) were co-displayed on the cell surface of P. pastoris via a glycosylphosphatidylinositol-anchoring system. Cells of the BlSP and CsCBP co-displaying P. pastoris strain were used as whole-cell biocatalysts to convert sucrose to cellobiose with commercial thermophilic xylose isomerase. Cellobiose productivity significantly improved with yeast cells grown on glycerol compared to glucose-grown cells. In one-pot bioconversion using glycerol-grown yeast cells, approximately 81.2 g/L of cellobiose was produced from 100 g/L of sucrose, corresponding to 81.2% of the theoretical maximum yield, within 24 h at 60 °C. Moreover, recombinant yeast cells maintained a cellobiose titer > 80 g/L, even after three consecutive cell-recycling one-pot bioconversion cycles. These results indicated that one-pot bioconversion using yeast cells displaying two phosphorylases as whole-cell catalysts is a promising approach for cost-effective cellobiose production.


Subject(s)
Biocatalysis , Cellobiose , Glucosyltransferases , Sucrose , Cellobiose/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Sucrose/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Clostridium/enzymology , Clostridium/genetics
5.
Microb Cell Fact ; 23(1): 224, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118053

ABSTRACT

BACKGROUND: Selection markers are useful in genetic modification of yeast Pichia pastoris. However, the leakage of the promoter caused undesired expression of selection markers especially those toxic proteins like MazF, halting the cell growth and hampering the genetic manipulation in procaryotic system. In this study, a new counter-selectable marker-based strategy has been established for seamless modification with high efficiency and low toxicity. RESULTS: At first, the leaky expression of the enhanced green fluorescent protein (EGFP) as a reporter gene under the control of six inducible promoters of P. pastoris was investigated in two hosts Escherichia coli and P. pastoris, respectively. The results demonstrated that the DAS1 and FDH1 promoters (PDAS1 and PFDH1) had the highest leakage expression activities in procaryotes and eukaryotes, and the DAS2 promoter (PDAS2) was inducible with medium strength but low leakage expression activity, all of which were selected for further investigation. Next, Mirabilis antiviral proteins (MAPs) c21873-1, c21873-1T (truncated form of c21873-1) and c23467 were mined as the new counter-selectable markers, and hygromycin B (Hyg B) resistance gene was used as the positive-selectable marker, respectively. Then, modular plasmids with MAP-target gene-Hyg B cassettes were constructed and used to transform into P. pastoris cells after linearization, and the target genes were integrated into its genome at the BmT1 locus through single-crossover homologous recombination (HR). After counter-selection induced by methanol medium, the markers c21873-1 and c21873-1T were recycled efficiently. But c23467 failed to be recycled due to its toxic effect on the P. pastoris cells. At last, the counter-selectable marker c21873-1 under the tightly regulated PDAS2 enabled the encoding genes of reporter EGFP and tested proteins to be integrated into the target locus and expressed successfully. CONCLUSIONS: We have developed MAP c21873-1 as a novel counter-selectable marker which could perform efficient gene knock-in by site-directed HR. Upon counter-selection, the marker could be recycled for repeated use, and no undesirable sequences were introduced except for the target gene. This unmarked genetic modification strategy may be extended to other genetic modification including but not limited to gene knock-out and site-directed mutagenesis in future.


Subject(s)
Promoter Regions, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Genetic Markers , Saccharomycetales/genetics , Saccharomycetales/metabolism
6.
Biotechnol J ; 19(8): e2400261, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115346

ABSTRACT

Natural sesquiterpene are valuable compounds with diverse applications in industries, such as cosmetics and energy. Microbial synthesis offers a promising way for sesquiterpene production. Methanol, can be synthesized from CO2 and solar energy, serves as a sustainable carbon source. However, it is still a challenge to utilize methanol for the synthesis of value-added compounds. Pichia pastoris (syn. Komagataella phaffii), known for its efficient utilization of glucose and methanol, has been widely used in protein synthesis. With advancements in technology, P. pastoris is gradually engineered for chemicals production. Here, we successfully achieved the synthesis of α-bisabolene in P. pastoris with dual carbon sources by expressing the α-bisabolene synthase gene under constitutive promoters. We systematically analyzed the effects of different steps in the mevalonate (MVA) pathway when methanol or glucose was used as the carbon source. Our finding revealed that the sesquiterpene synthase module significantly increased the production when methanol was used. While the metabolic modules MK and PMK greatly improved carbon source utilization, cell growth, and titer when glucose was used. Additionally, we demonstrated the synthesis of ß-farnesene from dual carbon source by replacing the α-bisabolene synthase with a ß-farnesene synthase. This study establishes a platform strain that is capable to synthesize sesquiterpene from different carbon sources in P. pastoris. Moreover, it paves the way for the development of P. pastoris as a high-efficiency microbial cell factory for producing various chemicals, and lays foundation for large-scale synthesis of high value-added chemicals efficiently from methanol in P. pastoris.


Subject(s)
Glucose , Metabolic Engineering , Methanol , Sesquiterpenes , Methanol/metabolism , Glucose/metabolism , Metabolic Engineering/methods , Sesquiterpenes/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Mevalonic Acid/metabolism
7.
Methods Mol Biol ; 2845: 1-14, 2024.
Article in English | MEDLINE | ID: mdl-39115653

ABSTRACT

Selective removal of excess or damaged mitochondria is an evolutionarily conserved process that contributes to mitochondrial quality and quantity control. This catabolic event relies on autophagy, a membrane trafficking system that sequesters cytoplasmic constituents into double membrane-bound autophagosomes and delivers them to lysosomes (vacuoles in yeast) for hydrolytic degradation and is thus termed mitophagy. Dysregulation of mitophagy is associated with various diseases, highlighting its physiological relevance. In budding yeast, the pro-mitophagic single-pass membrane protein Atg32 is upregulated under prolonged respiration or nutrient starvation, anchored on the surface of mitochondria, and activated to recruit the autophagy machinery for the formation of autophagosomes surrounding mitochondria. In this chapter, we provide protocols to assess Atg32-mediated mitophagy using fluorescence microscopy and immunoblotting.


Subject(s)
Microscopy, Fluorescence , Mitochondria , Mitophagy , Saccharomycetales , Microscopy, Fluorescence/methods , Saccharomycetales/metabolism , Mitochondria/metabolism , Immunoblotting/methods , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Autophagy/physiology , Autophagosomes/metabolism , Receptors, Cytoplasmic and Nuclear
8.
Methods Mol Biol ; 2818: 161-169, 2024.
Article in English | MEDLINE | ID: mdl-39126473

ABSTRACT

For over a century, major advances in understanding meiosis have come from the use of microscopy-based methods. Studies using the budding yeast, Saccharomyces cerevisiae, have made important contributions to our understanding of meiosis because of the facility with which budding yeast can be manipulated as a genetic model organism. In contrast, imaging-based approaches with budding yeast have been constrained by the small size of its chromosomes. The advent of advances in fluorescent chromosome tagging techniques has made it possible to use yeast more effectively for imaging-based approaches as well. This protocol describes live cell imaging methods that can be used to monitor chromosome movements throughout meiosis in living yeast cells.


Subject(s)
Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/cytology , Chromosomes, Fungal/genetics , Microscopy, Fluorescence/methods , Saccharomycetales/genetics , Saccharomycetales/cytology
9.
Appl Microbiol Biotechnol ; 108(1): 443, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153091

ABSTRACT

The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.


Subject(s)
alpha-Glucosidases , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Glycosylation , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Saccharomycetales/genetics , Glucose/metabolism , Oligosaccharides/metabolism , Maltose/metabolism , Isomaltose/metabolism , Isomaltose/analogs & derivatives , Xylose/metabolism , Glucans
10.
PLoS Comput Biol ; 20(8): e1012048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093881

ABSTRACT

Budding yeast, Saccharomyces cerevisiae, is widely used as a model organism to study the genetics underlying eukaryotic cellular processes and growth critical to cancer development, such as cell division and cell cycle progression. The budding yeast cell cycle is also one of the best-studied dynamical systems owing to its thoroughly resolved genetics. However, the dynamics underlying the crucial cell cycle decision point called the START transition, at which the cell commits to a new round of DNA replication and cell division, are under-studied. The START machinery involves a central cyclin-dependent kinase; cyclins responsible for starting the transition, bud formation, and initiating DNA synthesis; and their transcriptional regulators. However, evidence has shown that the mechanism is more complicated than a simple irreversible transition switch. Activating a key transcription regulator SBF requires the phosphorylation of its inhibitor, Whi5, or an SBF/MBF monomeric component, Swi6, but not necessarily both. Also, the timing and mechanism of the inhibitor Whi5's nuclear export, while important, are not critical for the timing and execution of START. Therefore, there is a need for a consolidated model for the budding yeast START transition, reconciling regulatory and spatial dynamics. We built a detailed mathematical model (START-BYCC) for the START transition in the budding yeast cell cycle based on established molecular interactions and experimental phenotypes. START-BYCC recapitulates the underlying dynamics and correctly emulates key phenotypic traits of ~150 known START mutants, including regulation of size control, localization of inhibitor/transcription factor complexes, and the nutritional effects on size control. Such a detailed mechanistic understanding of the underlying dynamics gets us closer towards deconvoluting the aberrant cellular development in cancer.


Subject(s)
Cell Cycle , Models, Biological , Saccharomyces cerevisiae , Cell Cycle/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Replication , Computational Biology , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/physiology , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Phosphorylation , Repressor Proteins
11.
ACS Synth Biol ; 13(8): 2567-2576, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39092670

ABSTRACT

Collagen II (COL2) is the major component of cartilage tissue and is widely applied in pharmaceuticals, food, and cosmetics. In this study, COL fragments were extracted from human COL2 for secretory expression in Pichia pastoris. Three variants were successfully secreted by shake flask cultivation with a yield of 73.3-100.7 mg/L. The three COL2 variants were shown to self-assemble into triple-helix at 4 °C and capable of forming higher order assembly of nanofiber and hydrogel. The bioactivities of the COL2 variants were validated, showing that sample 205 exhibited the best performance for inducing fibroblast differentiation and cell migration. Meanwhile, sample 205 and 209 exhibited higher capacity for inducing in vitro blood clotting than commercial mouse COL1. To overexpress sample 205, the expression cassettes were constructed with different promoters and signal peptides, and the fermentation condition was optimized, obtaining a yield of 172 mg/L for sample 205. Fed-batch fermentation was carried out using a 5 L bioreactor, and the secretory protease Pep4 was knocked out to avoid sample degradation, finally obtaining a yield of 3.04 g/L. Here, a bioactive COL2 fragment was successfully identified and can be overexpressed in P. pastoris; the variant may become a potential biomaterial for skin care.


Subject(s)
Collagen Type II , Humans , Collagen Type II/genetics , Collagen Type II/metabolism , Mice , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Fermentation , Pichia/genetics , Pichia/metabolism , Cell Movement/genetics , Fibroblasts/metabolism , Cell Differentiation , Bioreactors , Saccharomycetales/genetics , Saccharomycetales/metabolism , Nanofibers/chemistry
12.
ACS Appl Mater Interfaces ; 16(31): 40836-40847, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052986

ABSTRACT

The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.


Subject(s)
Acrylic Resins , Biocatalysis , Biosensing Techniques , Enzymes, Immobilized , Lipase , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Lipase/chemistry , Lipase/metabolism , Enzymes, Immobilized/chemistry , Acrylic Resins/chemistry , Temperature , Nitrophenols/chemistry , Zeolites/chemistry , Fungal Proteins/chemistry , Saccharomycetales
13.
J Biosci Bioeng ; 138(3): 212-217, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969547

ABSTRACT

We constructed a new Aspergillus expression vector (pSENSU2512nid) under the control of the enolase promoter with 12 tandem repeats of cis-acting elements (region III) and the heat shock protein 12 (Hsp12) 5' untranslated region (UTR). Bilirubin oxidase (EC: 1.3.3.5) from Myrothecium verrucaria, which catalyzes the oxidation of bilirubin to biliverdin, was overexpressed in Aspergillus oryzae and A. niger. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in Pichia pastoris (Komagataella phaffii). BOD was purified using hydrophobic interaction chromatography, followed by ion exchange chromatography. The specific activity of the purified BOD against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for A. oryzae and A. niger, respectively. l-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3-7 d increased the specific activity of these Aspergillus-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30-50 °C). Further characterization of the enzyme catalytic efficiency revealed that the Km value remained unchanged, whereas the kcat value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.


Subject(s)
Hypocreales , Oxidoreductases Acting on CH-CH Group Donors , Recombinant Proteins , Hypocreales/enzymology , Hypocreales/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Aspergillus/enzymology , Aspergillus/genetics , Aspergillus oryzae/enzymology , Aspergillus oryzae/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Aspergillus niger/enzymology , Aspergillus niger/genetics , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Genetic Vectors/metabolism , Promoter Regions, Genetic
14.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39025789

ABSTRACT

Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.


Subject(s)
Flow Cytometry , Peroxisomes , Saccharomycetales , Peroxisomes/metabolism , Peroxisomes/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , High-Throughput Screening Assays , Autophagy , Vacuoles/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Macroautophagy/genetics
15.
Microbiol Spectr ; 12(8): e0057223, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39012115

ABSTRACT

Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions. However, the molecular nature of the mechanisms regulating these phenotypes remains unknown. Here, we present a transcriptomic analysis of physical versus metabolic contact between two wine relevant yeast species, Saccharomyces cerevisiae and Lachancea thermotolerans. The data show that these species respond to the physical presence of the other species. In S. cerevisiae, physical contact results in the upregulation of genes involved in maintaining cell wall integrity, cell wall structural components, and genes involved in the production of H2S. In L. thermotolerans, HSP stress response genes were the most significantly upregulated gene family. Both yeasts downregulated genes belonging to the FLO family, some of which play prominent roles in cellular adhesion. qPCR analysis indicates that the expression of some of these genes is regulated in a species-specific manner, suggesting that yeasts adjust gene expression to specific biotic challenges or interspecies interactions. These findings provide fundamental insights into yeast interactions and evolutionary adaptations of these species to the wine ecosystem.IMPORTANCEWithin the wine ecosystem, yeasts are the most relevant contributors to alcoholic fermentation and wine organoleptic characteristics. While some studies have described yeast-yeast interactions during alcoholic fermentation, such interactions remain ill-defined, and little is understood regarding the molecular mechanisms behind many of the phenotypes observed when two or more species are co-cultured. In particular, no study has investigated transcriptional regulation in response to physical interspecies cell-cell contact, as opposed to the generally better understood/characterized metabolic interactions. These data are of direct relevance to our understanding of microbial ecological interactions in general while also creating opportunities to improve ecosystem-based biotechnological applications such as wine fermentation. Furthermore, the presence of competitor species has rarely been considered an evolutionary biotic selection pressure. In this context, the data reveal novel gene functions. This, and further such analysis, is likely to significantly enlarge the genome annotation space.


Subject(s)
Fermentation , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae , Transcriptome , Wine , Wine/microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Gene Expression Profiling , Vitis/microbiology , Vitis/genetics , Cell Wall/metabolism , Cell Wall/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Microbial Interactions
16.
Microb Cell Fact ; 23(1): 198, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014373

ABSTRACT

BACKGROUND: Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS: Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS: The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.


Subject(s)
Metabolic Engineering , Methanol , Saccharomycetales , Methanol/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Metabolic Engineering/methods , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Formaldehyde/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , NAD/metabolism
17.
Microb Pathog ; 193: 106773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960213

ABSTRACT

Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.


Subject(s)
Aspartic Acid Proteases , Biofilms , Candidiasis , Serum Albumin, Bovine , Virulence Factors , Virulence Factors/metabolism , Virulence Factors/genetics , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/genetics , Candidiasis/microbiology , Serum Albumin, Bovine/metabolism , Biofilms/growth & development , Animals , Fungal Proteins/metabolism , Fungal Proteins/genetics , Culture Media/chemistry , Candida/pathogenicity , Candida/metabolism , Candida/genetics , Saccharomycetales/metabolism , Saccharomycetales/pathogenicity , Saccharomycetales/genetics , Virulence
18.
J Agric Food Chem ; 72(29): 16403-16411, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39004912

ABSTRACT

As a highly toxic mycotoxin, ochratoxin A (OTA) is widely contaminating agricultural products and has various toxicological effects. Bioenzymes for OTA degradation have shown promising potential for detoxification. Other than the efficient amidohydrolase ADH3 previously, two novel amidohydrolases ADH1 and AMD3 were obtained in this study. During Escherichia coli expression, the expressed protein solubility was very low and will limit future industrial application. Here, high copy number integrations were screened, and the amidohydrolases were efficiently secretory expressed by Pichia pastoris GS115. The protein yields from 1.0 L of fermentation supernatant were 53.5 mg for ADH1, 89.15 mg for ADH3, and 79.5 mg for AMD3. The catalytic efficiency (Kcat/Km) of secretory proteins was 124.95 s-1 mM-1 for ADH3, 123.21 s-1 mM-1 for ADH1, and 371.99 s-1 mM-1 for AMD3. In comparison to E. coli expression, the active protein yields substantially increased 15.78-51.53 times. Meanwhile, two novel amidohydrolases (ADH1 and AMD3) showed much higher activity than ADH3 that produced by secretory expression.


Subject(s)
Amidohydrolases , Gene Expression , Ochratoxins , Ochratoxins/metabolism , Ochratoxins/chemistry , Hydrolysis , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Kinetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fermentation , Pichia/genetics , Pichia/metabolism
19.
Methods Mol Biol ; 2844: 159-178, 2024.
Article in English | MEDLINE | ID: mdl-39068339

ABSTRACT

This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.


Subject(s)
Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Recombinant Proteins , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Genetic Engineering/methods , Saccharomycetales/genetics , Saccharomycetales/metabolism , Pichia/genetics , Pichia/metabolism
20.
J Agric Food Chem ; 72(30): 16835-16847, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39028993

ABSTRACT

Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.


Subject(s)
Biofuels , Eicosapentaenoic Acid , Fungal Proteins , Lipase , Rhizomucor , Stramenopiles , Rhizomucor/enzymology , Rhizomucor/genetics , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/analogs & derivatives , Lipase/metabolism , Lipase/genetics , Lipase/chemistry , Biofuels/analysis , Stramenopiles/genetics , Stramenopiles/enzymology , Stramenopiles/metabolism , Stramenopiles/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Gene Expression , Enzyme Stability , Kinetics , Temperature , Hydrogen-Ion Concentration , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL