Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.527
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 330, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730049

ABSTRACT

A more optimized culture medium used in vitro to mimic the bacterial composition of original oral flora as similar as possible remains difficult at present, and the goal of this study is to develop a novel oral biofilm medium to restore the original oral microbiome. Firstly, we conducted a systematic literature review by searching PubMed and summarized the current reported culture media in vitro. Seven culture media were found. We used mixed saliva as the origin of oral species to compare the effects of the above media in culturing oral multispecies biofilms. Results indicated that among the seven media brain heart infusion containing 1% sucrose (BHIs) medium, PG medium, artificial saliva (AS) medium, and SHI medium could obviously gain large oral biofilm in vitro. The nutrients contained in different culture media may be suitable for the growth of different oral bacteria; therefore, we optimized several novel media accordingly. Notably, results of crystal violet staining showed that the biofilm cultured in our modified artificial saliva (MAS) medium had the highest amount of biofilm biomass. 16S rRNA gene sequencing showed that the operational taxonomic units (OTUs) and Shannon index of biofilm cultured in MAS medium were also the highest among all the tested media. More importantly, the 16S rRNA gene sequencing analysis indicated that the biofilm cultured in MAS medium was closer to the original saliva species. Besides, biofilm cultured by MAS was denser and produced more exopolysaccharides. MAS supported stable biofilm formation on different substrata. In conclusion, this study demonstrated a novel MAS medium that could culture oral biofilm in vitro closer to the original oral microbiome, showing a good application prospect. KEY POINTS: • We compare the effects of different media in culturing oral biofilms • A novel modified artificial saliva (MAS) medium was obtained in our study • The MAS medium could culture biofilm that was closer to oral microbiome.


Subject(s)
Bacteria , Biofilms , Culture Media , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Biofilms/growth & development , Culture Media/chemistry , Mouth/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Saliva, Artificial
2.
Sci Rep ; 14(1): 10394, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710815

ABSTRACT

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Subject(s)
Dysbiosis , Microbiota , Mouth , RNA, Ribosomal, 16S , Tobacco, Smokeless , Humans , Tobacco, Smokeless/adverse effects , Male , Female , Dysbiosis/microbiology , Adult , RNA, Ribosomal, 16S/genetics , Mouth/microbiology , Saliva/microbiology , Middle Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Smokers , Young Adult , Cigarette Smoking/adverse effects , Mouth Mucosa/microbiology
3.
Sci Rep ; 14(1): 10882, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740792

ABSTRACT

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Subject(s)
Biofilms , Plasma Gases , Saliva , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Humans , Plasma Gases/pharmacology , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Saliva/microbiology , Fibroblasts/microbiology , Fibroblasts/drug effects , Periodontitis/microbiology , Periodontitis/therapy , Cell Line , Mouth/microbiology
5.
PLoS One ; 19(5): e0302569, 2024.
Article in English | MEDLINE | ID: mdl-38709734

ABSTRACT

Osteomyelitis of the jaw is a severe inflammatory disorder that affects bones, and it is categorized into two main types: chronic bacterial and nonbacterial osteomyelitis. Although previous studies have investigated the association between these diseases and the oral microbiome, the specific taxa associated with each disease remain unknown. In this study, we conducted shotgun metagenome sequencing (≥10 Gb from ≥66,395,670 reads per sample) of bulk DNA extracted from saliva obtained from patients with chronic bacterial osteomyelitis (N = 5) and chronic nonbacterial osteomyelitis (N = 10). We then compared the taxonomic composition of the metagenome in terms of both taxonomic and sequence abundances with that of healthy controls (N = 5). Taxonomic profiling revealed a statistically significant increase in both the taxonomic and sequence abundance of Mogibacterium in cases of chronic bacterial osteomyelitis; however, such enrichment was not observed in chronic nonbacterial osteomyelitis. We also compared a previously reported core saliva microbiome (59 genera) with our data and found that out of the 74 genera detected in this study, 47 (including Mogibacterium) were not included in the previous meta-analysis. Additionally, we analyzed a core-genome tree of Mogibacterium from chronic bacterial osteomyelitis and healthy control samples along with a reference complete genome and found that Mogibacterium from both groups was indistinguishable at the core-genome and pan-genome levels. Although limited by the small sample size, our study provides novel evidence of a significant increase in Mogibacterium abundance in the chronic bacterial osteomyelitis group. Moreover, our study presents a comparative analysis of the taxonomic and sequence abundances of all genera detected using deep salivary shotgun metagenome data. The distinct enrichment of Mogibacterium suggests its potential as a marker to distinguish between patients with chronic nonbacterial osteomyelitis and chronic bacterial osteomyelitis, particularly at the early stages when differences are unclear.


Subject(s)
Metagenomics , Microbiota , Osteomyelitis , Saliva , Humans , Saliva/microbiology , Osteomyelitis/microbiology , Female , Microbiota/genetics , Male , Middle Aged , Metagenomics/methods , Chronic Disease , Adult , Metagenome , Aged
6.
Support Care Cancer ; 32(5): 316, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684520

ABSTRACT

PURPOSE: To evaluate the antineoplastic therapy (AT) as a risk factor for dental caries lesions independent of other risk factors such as income, family education, stimulated salivary flow rate, hygiene habits, frequency of sugar intake, and microbiota in childhood cancer (CC) patients. METHODS: 72 individuals were divided into CC patients (n=36) and healthy individuals (control group - CT n=36). Demographic data, hygiene habits, frequency of sugar intake, CC type, and AT were collected. Stimulated salivary flow rate was measured and the presence and concentration of Streptococcus mutans were assessed using a real-time polymerase chain reaction (qPCR) technique. Clinical evaluations included plaque index (PI) and decayed-missing-filled-teeth index (dmft/DMFT). Descriptive statistics, T-test, Mann-Whitney test, chi-square test, Fisher's exact test, and two-way analysis of variance were used for data analysis (p<0.05). RESULTS: At the time of oral evaluation, both groups exhibited similar ages with means of 12.0±3.9 years old for CC and 12.0±4.0 years old for CT patients. All CC patients underwent chemotherapy with nine also undergoing radiotherapy. Significant differences were observed between the groups in terms of color/race, income, family education, and hygiene habits. However, no statistically significant differences were found between groups regarding the frequency of sugar intake, stimulated salivary flow rate, or the concentration of Streptococcus mutans (qPCR technique). For clinical parameters, the DMF (CC:1.80, CT: 0.75), decayed (CC: 0.88, CT: 0.19), missing (CC: 0.25, CT:0), and PI (CC: 30.5%, CT: 22.6%) were higher in the CC group (p<0.05). CONCLUSION: Childhood cancer (CC) patients undergoing antineoplastic therapy (AT) exhibit a higher prevalence of dental caries, regardless of income/education, frequency of sugar intake, stimulated salivary flow rate, and microbiota.


Subject(s)
Antineoplastic Agents , Dental Caries , Neoplasms , Streptococcus mutans , Humans , Dental Caries/epidemiology , Male , Female , Risk Factors , Retrospective Studies , Child , Neoplasms/drug therapy , Adolescent , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Streptococcus mutans/isolation & purification , Cohort Studies , Saliva/microbiology , Case-Control Studies , DMF Index , Oral Hygiene/methods
7.
Sci Rep ; 14(1): 8463, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605085

ABSTRACT

The oral cavity harbors complex communities comprising bacteria, archaea, fungi, protozoa, and viruses. The oral microbiota is establish at birth and develops further during childhood, with early life factors such as birth mode, feeding practices, and oral hygiene, reported to influence this development and the susceptibility to caries. We here analyzed the oral bacterial composition in saliva of 260 Swedish children at two, three and five years of age using 16S rRNA gene profiling to examine its relation to environmental factors and caries development at five years of age. We were able to assign the salivary bacterial community in each child at each time point to one of seven distinct clusters. We observed an individual dynamic in the development of the oral microbiota related to early life factors, such as being first born, born by C-section, maternal perinatal antibiotics use, with a distinct transition between three and five years of age. Different bacterial signatures depending on age were related to increased caries risk, while Peptococcus consistently linked to reduced risk of caries development.


Subject(s)
Dental Caries Susceptibility , Dental Caries , Infant, Newborn , Humans , Child, Preschool , RNA, Ribosomal, 16S/genetics , Sweden/epidemiology , Mouth/microbiology , Saliva/microbiology , Bacteria/genetics , Dental Caries/epidemiology
8.
Dent Med Probl ; 61(2): 217-224, 2024.
Article in English | MEDLINE | ID: mdl-38668709

ABSTRACT

BACKGROUND: Sleep quality has a significant impact on a child's health and is linked to oral and systemic diseases. It affects the circadian rhythm, which plays a crucial role in regulating the balance of the endocrine and hormonal systems. Current research has focused on exploring its role in the development of caries, which is influenced by inherent oral factors such as the composition of the oral microbiome and pH levels. OBJECTIVES: This study aimed to investigate the relationship between bacterial population, pH, and buffering properties of saliva and sleep patterns in 8- to 12-year-old children. MATERIAL AND METHODS: This cross-sectional study was conducted on 85 elementary school children aged 8-12 years. After obtaining written consent, non-stimulating saliva samples were collected using the spitting method. The participants' sleep pattern information was obtained with the use of the Persian version of the Children's Sleep Habits Questionnaire (CSHQ). Based on the results of the CSHQ, the participants were divided into 2 groups: those with appropriate sleep patterns; and those with inappropriate sleep patterns. The study compared the bacterial population of Streptococcus mutans, Lactobacillus spp. and Candida albicans, as well as the buffering capacity and pH of the saliva between the 2 groups. The statistical analysis employed the χ2 test, the independent samples t-test and Spearman's correlation. RESULTS: The group with inappropriate sleep patterns had significantly lower pH and buffering capacity (p < 0.001) and significantly higher colony counts of Lactobacillus and S. mutans (p < 0.001 and p = 0.012, respectively). There was no association between C. albicans and sleep patterns (p = 0.121). CONCLUSIONS: Inappropriate sleep patterns increase the population of caries-causing bacteria and reduce salivary pH and buffering capacity. This can be a significant factor in the development of dental caries in children aged 8-12 years.


Subject(s)
Dental Caries , Saliva , Humans , Child , Saliva/microbiology , Saliva/chemistry , Hydrogen-Ion Concentration , Cross-Sectional Studies , Female , Male , Dental Caries/microbiology , Streptococcus mutans/isolation & purification , Candida albicans/isolation & purification , Buffers , Lactobacillus/isolation & purification , Sleep/physiology
9.
BMC Microbiol ; 24(1): 132, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643115

ABSTRACT

BACKGROUND: Oral microbiota imbalance is associated with the progression of various lung diseases, including lung cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, the relationship between oral microbiota and PNs remains unknown. METHODS: We conducted a 'Microbiome with pulmonary nodule series study 1' (MCEPN-1) where we compared PN patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups (COG) analyses. RESULTS: The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant differences were noted in community composition and abundance of oral microorganisms between the two groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily transporters and AraC family transcription regulators. CONCLUSIONS: Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the potential of salivary microbiota as a new non-invasive biomarker for PNs. TRIAL REGISTRATION: Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.


Subject(s)
Lung Neoplasms , Microbiota , Humans , Saliva/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Biomarkers , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Oxidoreductases
10.
Article in Russian | MEDLINE | ID: mdl-38676678

ABSTRACT

OBJECTIVE: To identify changes in the microbiome of saliva and to compare it with the microbiome of the oropharynx of patients with migraine. MATERIAL AND METHODS: Sixty patients with migraine (21-56 years old), were examined using a headache diary, MIDAS and VAS. A microbiological examination of saliva and smear from the mucosa of the posterior wall of the oropharynx with evaluation by the method of mass spectrometry of microbial markers (MSMM) with the determination of 57 microorganisms was performed. All patients had comorbid chronic diseases of the gastrointestinal tract and upper respiratory tract (URT), according to anamnestic data and examination by specialists. RESULTS: A significant increase in the content of markers of resident (conditionally pathogenic) microorganisms characteristic of chronic diseases of URT (strepto- and staphylococci); markers of transient microorganisms characteristic of intestinal microflora (clostridia, gram-negative rods, anaerobes) that are normally absent; viral markers of cytomegaloviruses and herpes groups; a decrease in the content of fungi were identified in saliva. A comparative analysis of the microbiome of saliva and oropharynx showed: 1) a significant decrease in the concentration of coccal flora Enterococcus spp., Streptococcus mutans, Staphylococcus aureus, anaerobic bacteria Clostridium difficile and Clostridium perfringens in saliva; enterobacteria Helicobacter pylori; gram-negative rods Kingella spp., fungi and Epstein-Barr virus; 2) an increase in salivary concentrations of Staphylococcus epidermidis, anaerobic Clostridium ramosum and Fusobacterium spp./Haemophilus spp. and gram-negative bacilli Porphyromonas spp. CONCLUSION: A comparative assessment of the microbiota of a smear from the posterior wall of the oropharynx and saliva using MMSM showed the presence of dysbiosis both in the oropharynx and in the saliva of patients with migraine. However, there were fewer deviations from the norm in saliva, therefore, for diagnostic purposes, a smear from the posterior wall of the oropharynx is more significant as a biomarker for patients with migraine.


Subject(s)
Microbiota , Migraine Disorders , Oropharynx , Saliva , Humans , Saliva/microbiology , Adult , Female , Male , Middle Aged , Migraine Disorders/microbiology , Migraine Disorders/diagnosis , Oropharynx/microbiology , Young Adult
11.
Article in English | MEDLINE | ID: mdl-38673304

ABSTRACT

Selenomonas noxia, a gram-negative anaerobe usually present in periodontitis, may be linked to overweight and obese adults. Recent advancements include a valid qPCR screening, enabling an effective prevalence study among pediatric patients aged 7 to 17 years. The aim of this study was to complete a retrospective screening of saliva samples from an existing biorepository using a validated qPCR screening protocol. The pediatric study sample (n = 87) comprised nearly equal numbers of males and females, mostly minority patients (67%), with an average age of 13.2 years. Screening for Selenomonas noxia revealed 34.4% (n = 30/87) positive samples, evenly distributed between males and females (p = 0.5478). However, an age-dependent association was observed with higher percentages of positive samples observed with higher ages (13.3% among 7 to 10 years; 34.6% among 11 to 13 years; 54.8% among 14-17 years), which was statistically significant (p = 0.0001). Although these findings revealed no noteworthy distinctions between males or females and minorities and non-minorities, the notable contrast between younger (7 to 10 years) and older (11 to 17 years) participants, possibly influenced by factors such as hormones and behavioral traits, will require further investigation of this patient population.


Subject(s)
Saliva , Selenomonas , Humans , Adolescent , Child , Female , Male , Prevalence , Retrospective Studies , Saliva/microbiology , Saliva/chemistry , Selenomonas/genetics , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Age Factors
12.
Sci Rep ; 14(1): 9685, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678061

ABSTRACT

This study aimed to assess the association between the oral microbiome, age, and frailty. Data and saliva samples were obtained from male and female participants aged 35-70 years (n = 1357). Saliva samples were analysed by 16S rRNA gene sequencing and differences in microbial diversity and community compositions were examined in relation to chronological age and the frailty index (FI). Most alpha diversity measures (Richness, Shannon Diversity, Faith's Phylogenetic Diversity) showed an inverse association with frailty, whereas a positive association was observed with age and Shannon Diversity and Evenness. A further sex-stratified analysis revealed differences in measures of microbial diversity and composition. Multiple genera were detected as significantly differentially abundant with increasing frailty and age by at least two methods. With age, the relative abundance of Veillonella was reduced in both males and females, whereas increases in Corynebacterium appeared specific to males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to females. Beta diversity was significantly associated with multiple mental health components of the FI. This study shows age and frailty are differentially associated with measures of microbial diversity and composition, suggesting the oral microbiome may be a useful indicator of increased risk of frailty or a potential target for improving health in ageing adults.


Subject(s)
Frailty , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Humans , Middle Aged , Female , Male , Aged , Adult , Frailty/microbiology , Canada , RNA, Ribosomal, 16S/genetics , Mouth/microbiology , Saliva/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Aging , Age Factors
13.
Sci Rep ; 14(1): 9184, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649387

ABSTRACT

Salivary stones, known as sialoliths, form within the salivary ducts due to abnormal salivary composition and cause painful symptoms, for which surgical removal is the primary treatment. This study explored the role of the salivary microbial communities in the formation of sialoliths. We conducted a comparative analysis of microbial communities present in the saliva and salivary stones, and sequenced the 16S rRNA gene in samples obtained from patients with sialoliths and from healthy individuals. Although the diversity in the saliva was high, the essential features of the microbial environment in sialoliths were low diversity and evenness. The association of microbial abundance between stones and saliva revealed a positive correlation between Peptostreptococcus and Porphyromonas, and a negative correlation for Pseudomonas in saliva. The functional potential differences between saliva and stones Bacterial chemotaxis and the citrate cycle were negatively correlated with most genera found in salivary stone samples. However, the functions required for organic compound degradation did not differ between the saliva samples. Although some microbes were shared between the sialoliths and saliva, their compositions differed significantly. Our study presents a novel comparison between salivary stones and salivary microbiomes, suggesting potential preventive strategies against sialolithiasis.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Saliva , Salivary Gland Calculi , Humans , Saliva/microbiology , Female , Male , RNA, Ribosomal, 16S/genetics , Middle Aged , Adult , Salivary Gland Calculi/microbiology , Aged , Salivary Calculi/microbiology , Peptostreptococcus/isolation & purification , Porphyromonas/isolation & purification , Porphyromonas/genetics
14.
Shanghai Kou Qiang Yi Xue ; 33(1): 59-63, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583026

ABSTRACT

PURPOSE: To study the structural characteristics of oral microorganisms in children with caries by 16S rRNA high-throughput sequencing technology. METHODS: Thirty healthy children aged 3-5 years were enrolled as subjects. According to the index of dmfs, they were divided into caries-free (CF) group (15) and early childhood caries (ECC) group(15). To compare the differences in bacterial community structure, samples of saliva and dental plaque were collected, and high-throughput sequencing was conducted using the Illumina Miseq sequencing platform. Bioinformatics analysis was used to analyze the difference of microbial community structure and diversity with SPSS 23.0 software package. RESULTS: Microbial diversity in ECC group was significantly lower than CF group. At phylum level, Actinobateria was more abundant in saliva samples of ECC group, while Firmicutes was more abundant in plaque samples of CF group. At genus level, the abundance of Lautropia of CF group was higher in saliva samples while Cardiobacterium, Gemella and Granulicatella were abundant in plaque samples. The abundance of Rothia of ECC group was higher in saliva samples and Corynebacterium was abundant of ECC group in plaque samples. CONCLUSIONS: There are significant differences in the species and composition of microbial community in saliva and plaque of children with or without caries. Specific microorganisms are related to the occurrence of ECC, and screening specific microorganisms is helpful for early prediction and prevention of ECC.


Subject(s)
Dental Caries , Dental Plaque , Child , Humans , Child, Preschool , RNA, Ribosomal, 16S/genetics , Dental Caries Susceptibility , Dental Caries/epidemiology , Saliva/microbiology
15.
BMC Oral Health ; 24(1): 411, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575895

ABSTRACT

BACKGROUND: The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS: In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS: The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to  that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS: Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.


Subject(s)
Dental Plaque , Mouth Neoplasms , Humans , Saliva/microbiology , Dental Plaque/microbiology , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
16.
Food Funct ; 15(8): 4409-4420, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563257

ABSTRACT

The oral cavity connects the external environment and the respiratory and digestive systems, and the oral microbial ecosystem is complex and plays a crucial role in overall health and immune defense against external threats. Recently, the potential use of probiotics for disease prevention and treatment has gained attention. This study aimed to assess the effect of Weissella cibaria CMS1 (W. cibaria CMS1) consumption on the oral microbiome and immune function in healthy individuals through a 12-week clinical trial. This randomized, double-blind, placebo-controlled, parallel trial enrolled 90 healthy subjects. The consumption of W. cibaria CMS1 significantly increased salivary immunoglobulin A (p = 0.046) and decreased tumor necrosis factor-α (TNF-α) levels (p = 0.008). Analysis of the oral microbiota revealed changes in beta diversity, increased abundance of Firmicutes and Actinobacteria, and decreased abundance of Bacteroidetes and Fusobacteria after 12 weeks of consuming W. cibaria CMS1. Significant increases in various strains, including Lactobacillales, Bacilli, Streptococcaceae, Streptococcus, and Firmicutes, were observed in the W. cibaria CMS1 group after 12 weeks of intake. Additionally, Fusobacteriia Fusobacteriales Fusobacteriaceae and Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium exhibited a positive correlation with TNF-α. These findings demonstrate the positive effect of W. cibaria CMS1 on the oral environment and immune function.


Subject(s)
Mouth , Probiotics , Weissella , Humans , Probiotics/pharmacology , Probiotics/administration & dosage , Double-Blind Method , Male , Female , Adult , Mouth/microbiology , Young Adult , Tumor Necrosis Factor-alpha/metabolism , Microbiota , Saliva/microbiology , Saliva/immunology , Immunoglobulin A , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Middle Aged
17.
J Dent Res ; 103(5): 461-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38584298

ABSTRACT

A subset of bacterial species that holds genes encoding for ß-glucuronidase and ß-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: ß-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.


Subject(s)
Estrogens , Gastrointestinal Microbiome , Mouth Neoplasms , Humans , Estrogens/metabolism , Mouth/microbiology , Glucuronidase/metabolism , Saliva/microbiology , Saliva/metabolism , beta-Galactosidase/metabolism
18.
BMC Oral Health ; 24(1): 361, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515087

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the composition of the oral microbial flora of adults with rampant caries in China to provide guidance for treatment. PATIENTS AND METHODS: Sixty human salivary and supragingival plaque samples were collected. They were characterized into four groups: patients with rampant caries with Sjogren's syndrome (RC-SS) or high-sugar diet (RC-HD), common dental caries (DC), and healthy individuals (HP). The 16S rRNA V3-V4 region of the bacterial DNA was detected by Illumina sequencing. PCoA based on OTU with Bray-Curtis algorithm, the abundance of each level, LEfSe analysis, network analysis, and PICRUSt analysis were carried out between the four groups and two sample types. Clinical and demographic data were compared using analysis of variance (ANOVA) or the nonparametric Kruskal-Wallis rank-sum test, depending on the normality of the data, using GraphPad Prism 8 (P < 0.05). RESULTS: OTU principal component analysis revealed a significant difference between healthy individuals and those with RC-SS. In the saliva of patients with rampant caries, the relative abundance of Firmicutes increased significantly at the phylum level. Further, Streptocpccus, Veillonella, Prevotella, and Dialister increased, while Neisseria and Haemophilus decreased at the genus level. Veillonella increased in the plaque samples of patients with rampant caries. CONCLUSION: Both salivary and dental plaque composition were significantly different between healthy individuals and patients with rampant caries. This study provides a microbiological basis for exploring the etiology of rampant caries. CLINICAL RELEVANCE: This study provides basic information on the flora of the oral cavity in adults with rampant caries in China. These findings could serve as a reference for the treatment of this disease.


Subject(s)
Dental Caries , Microbiota , Sjogren's Syndrome , Adult , Humans , Dental Caries/microbiology , Sjogren's Syndrome/complications , RNA, Ribosomal, 16S/genetics , Dental Caries Susceptibility , Saliva/microbiology , Bacteria , Microbiota/genetics , Sugars , Diet
19.
Environ Microbiol Rep ; 16(2): e13243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425145

ABSTRACT

We developed a simulation model of human oral microbiota using Bio Palette oral medium (BPOM) containing 0.02% glucose and lower bacterial nitrogen sources, derived from saliva and dental plaque. By decreasing the concentration of Gifu anaerobic medium (GAM) from 30 to 10 g L-1 , we observed increased ratios of target pathogenic genera, Porphyromonas and Fusobacterium from 0.5% and 1.7% to 1.2% and 3.5%, respectively, in the biofilm on hydroxyapatite (HA) discs. BPOM exhibited the higher ratios of Porphyromonas and Fusobacterium, and amplicon sequence variant number on HA, compared with GAM, modified GAM and basal medium mucin. Mixing glycerol stocks of BPOM culture solutions from four human subjects resulted in comparable ratios of these bacteria to the original saliva. In this simulation model, sitafloxacin showed higher inhibitory effects on P. gingivalis than minocycline hydrochloride at a low dosage of 0.1 µg mL-1 . Probiotics such as Streptococcus salivarius and Limosilactobacillus fermentum also showed significant decreases in Porphyromonas and Fusobacterium ratios on HA, respectively. Overall, the study suggests that BPOM with low carbon and nutrients could be a versatile platform for assessing the efficacy of antibiotics and live biotherapeutics in treating oral diseases caused by Porphyromonas and Fusobacterium.


Subject(s)
Fusobacterium nucleatum , Microbiota , Humans , Porphyromonas gingivalis/genetics , Saliva/microbiology , Biofilms
20.
PLoS One ; 19(3): e0301016, 2024.
Article in English | MEDLINE | ID: mdl-38547181

ABSTRACT

Saliva is a readily accessible and inexpensive biological specimen that enables investigation of the oral microbiome, which can serve as a biomarker of oral and systemic health. There are two routine approaches to collect saliva, stimulated and unstimulated; however, there is no consensus on how sampling method influences oral microbiome metrics. In this study, we analyzed paired saliva samples (unstimulated and stimulated) from 88 individuals, aged 7-18 years. Using 16S rRNA gene sequencing, we investigated the differences in bacterial microbiome composition between sample types and determined how sampling method affects the distribution of taxa associated with untreated dental caries and gingivitis. Our analyses indicated significant differences in microbiome composition between the sample types. Both sampling methods were able to detect significant differences in microbiome composition between healthy subjects and subjects with untreated caries. However, only stimulated saliva revealed a significant association between microbiome diversity and composition in individuals with diagnosed gingivitis. Furthermore, taxa previously associated with dental caries and gingivitis were preferentially enriched in individuals with each respective disease only in stimulated saliva. Our study suggests that stimulated saliva provides a more nuanced readout of microbiome composition and taxa distribution associated with untreated dental caries and gingivitis compared to unstimulated saliva.


Subject(s)
Dental Caries , Gingivitis , Microbiota , Humans , Saliva/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...