Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.659
Filter
1.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717818

ABSTRACT

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Subject(s)
Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
2.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
3.
Science ; 384(6691): 100-105, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38574144

ABSTRACT

Phage viruses shape the evolution and virulence of their bacterial hosts. The Salmonella enterica genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNALeu. The ensuing RNA fragmentation compromises bacterial translation, intracellular survival, and recovery from oxidative stress in the vertebrate host. S. enterica adapts to this transfer RNA (tRNA) fragmentation by transcribing the RNA repair Rtc system. The counterintuitive translational arrest provided by tRNA cleavage may subvert prophage mobilization and give the host an opportunity for repair as a way of maintaining bacterial genome integrity and ultimately survival in animals.


Subject(s)
Endodeoxyribonucleases , Prophages , Salmonella Phages , Salmonella enterica , Viral Proteins , Animals , Endodeoxyribonucleases/metabolism , Oxidative Stress , Prophages/enzymology , Prophages/genetics , RNA , RNA, Transfer , Salmonella enterica/genetics , Salmonella enterica/virology , Salmonella Phages/enzymology , Salmonella Phages/genetics , Viral Proteins/metabolism
4.
J Microbiol Methods ; 220: 106920, 2024 May.
Article in English | MEDLINE | ID: mdl-38485092

ABSTRACT

Phage-based biocontrol of foodborne Salmonella is limited by the requisite use of Salmonella to propagate the phages. This limitation can be circumvented by producing Salmonella phages using a cell-free gene expression system (CFE) with a non-pathogenic chassis. Here, we produce the Salmonella phage felixO1 using an E. coli-based CFE system.


Subject(s)
Bacteriophages , Salmonella Phages , Salmonella Phages/genetics , Escherichia coli/genetics , Genome, Viral , Salmonella/genetics , Bacteriophages/genetics , Host Specificity
5.
Arch Microbiol ; 206(4): 151, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467842

ABSTRACT

Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.


Subject(s)
Bacteriophages , Salmonella Phages , Salmonella Phages/genetics , Amino Acids , Endopeptidases/genetics , Endopeptidases/pharmacology , Endopeptidases/chemistry , Bacteriophages/genetics , Bacteriophages/metabolism , Anti-Bacterial Agents/pharmacology
6.
Viruses ; 16(2)2024 02 13.
Article in English | MEDLINE | ID: mdl-38400064

ABSTRACT

Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.


Subject(s)
Bacteriophages , Salmonella Phages , Bacteriophages/genetics , Proteomics , Spike Glycoprotein, Coronavirus/genetics , Wastewater , Genomics , Enterobacteriaceae , Genome, Viral , Host Specificity , Salmonella Phages/genetics
7.
PLoS Negl Trop Dis ; 18(2): e0011912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329937

ABSTRACT

BACKGROUND: Environmental surveillance, using detection of Salmonella Typhi DNA, has emerged as a potentially useful tool to identify typhoid-endemic settings; however, it is relatively costly and requires molecular diagnostic capacity. We sought to determine whether S. Typhi bacteriophages are abundant in water sources in a typhoid-endemic setting, using low-cost assays. METHODOLOGY: We collected drinking and surface water samples from urban, peri-urban and rural areas in 4 regions of Nepal. We performed a double agar overlay with S. Typhi to assess the presence of bacteriophages. We isolated and tested phages against multiple strains to assess their host range. We performed whole genome sequencing of isolated phages, and generated phylogenies using conserved genes. FINDINGS: S. Typhi-specific bacteriophages were detected in 54.9% (198/361) of river and 6.3% (1/16) drinking water samples from the Kathmandu Valley and Kavrepalanchok. Water samples collected within or downstream of population-dense areas were more likely to be positive (72.6%, 193/266) than those collected upstream from population centers (5.3%, 5/95) (p=0.005). In urban Biratnagar and rural Dolakha, where typhoid incidence is low, only 6.7% (1/15, Biratnagar) and 0% (0/16, Dolakha) river water samples contained phages. All S. Typhi phages were unable to infect other Salmonella and non-Salmonella strains, nor a Vi-knockout S. Typhi strain. Representative strains from S. Typhi lineages were variably susceptible to the isolated phages. Phylogenetic analysis showed that S. Typhi phages belonged to the class Caudoviricetes and clustered in three distinct groups. CONCLUSIONS: S. Typhi bacteriophages were highly abundant in surface waters of typhoid-endemic communities but rarely detected in low typhoid burden communities. Bacteriophages recovered were specific for S. Typhi and required Vi polysaccharide for infection. Screening small volumes of water with simple, low-cost (~$2) plaque assays enables detection of S. Typhi phages and should be further evaluated as a scalable tool for typhoid environmental surveillance.


Subject(s)
Bacteriophages , Salmonella Phages , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Salmonella typhi/genetics , Phylogeny , Bacteriophages/genetics , Water
8.
Sci Total Environ ; 922: 171208, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408652

ABSTRACT

Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain.


Subject(s)
Bacteriophages , Salmonella Infections, Animal , Salmonella Phages , Swine , Animals , Humans , Salmonella typhimurium , Bacteriophages/physiology , Caenorhabditis elegans , Phylogeny , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Phages/physiology
9.
Carbohydr Polym ; 328: 121710, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220322

ABSTRACT

The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.


Subject(s)
Chitosan , Salmonella Phages , Chitosan/pharmacology , Layer-by-Layer Nanoparticles , Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Salmonella enteritidis
10.
Microbiol Spectr ; 12(1): e0272923, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38078723

ABSTRACT

IMPORTANCE: Non-typhoidal Salmonella enterica infections are one of the leading causes of diarrhoeal diseases that spread to humans from animal sources such as poultry. Hence, keeping poultry farms free of Salmonella is essential for consumer safety and for a better yield of animal products. However, the emergence of antibiotic resistance due to over usage has sped up the search for alternative biocontrol methods such as the use of bacteriophages. Isolation and characterization of novel bacteriophages are key to adapt phage-based biocontrol applications. Here, we isolated and characterized Salmonella phages from samples collected at chicken farms and slaughterhouses in Kenya. The genomic characterization of these phage isolates revealed that they belong to four ICTV (International Committee on Taxonomy of Viruses) phage genera. All these phages are lytic and possibly suitable for biocontrol applications because no lysogenic genes or virulence factors were found in their genomes. Hence, we recommend further studies on these phages for their applications in Salmonella biocontrol.


Subject(s)
Bacteriophages , Salmonella Phages , Salmonella enterica , Animals , Chickens , Farms , Kenya , Salmonella , Salmonella Phages/genetics
11.
Methods Mol Biol ; 2734: 117-130, 2024.
Article in English | MEDLINE | ID: mdl-38066365

ABSTRACT

Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO3. To perform bacteriophage encapsulation is necessary to dispose of a purified and highly concentrated lysate (around 1010 to 1011 pfu/mL) and a specific equipment. Both methodologies have been successfully applied for encapsulating Salmonella bacteriophages with different morphologies. Also, the material employed does not modify the antibacterial action of bacteriophages. Moreover, both technologies can be adapted to any bacteriophage and possibly to any delivery route for bacteriophage therapy.


Subject(s)
Bacteriophages , Salmonella Phages , Anti-Bacterial Agents/therapeutic use
12.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38059866

ABSTRACT

AIMS: To determine if the bacteriophage abortive infection system ToxIN is present in foodborne Salmonella and if it protects against infection by bacteriophages specific to enteric bacteria. METHODS AND RESULTS: A set of foodborne Salmonella enteritidis isolates from a 2010 eggshell outbreak was identified via BLASTN (basic local alignment search tool nucleotide) queries as harboring a close homolog of ToxIN, carried on a plasmid with putative mobilization proteins. This homolog was cloned into a plasmid vector and transformed into the laboratory strain Salmonella typhimurium LT2 and tested against a set of Salmonella-specific phages (FelixO1, S16, Sp6, LPST153, and P22 HT105/1 int-201). ToxIN reduced infection by FelixO1, S16, and LPST153 by ∼1-4 log PFU ml-1 while reducing the plaque size of Sp6. When present in LT2 and Escherichia coli MG1655, ToxIN conferred cross-genus protection against phage isolates, which infect both bacteria. Finally, the putative ToxIN plasmid was found in whole-genome sequence contigs of several Salmonella serovars, pathogenic E. coli, and other pathogenic enterobacteria. CONCLUSIONS: Salmonella and E. coli can resist infection by several phages via ToxIN under laboratory conditions; ToxIN is present in foodborne pathogens including Salmonella and Shiga-toxigenic E. coli.


Subject(s)
Bacteriophages , Escherichia coli Infections , Salmonella Phages , Shiga-Toxigenic Escherichia coli , Humans , Salmonella enteritidis/genetics , Serogroup , Escherichia coli Infections/microbiology , Enterobacteriaceae , Salmonella Phages/genetics
13.
Cells ; 12(22)2023 11 16.
Article in English | MEDLINE | ID: mdl-37998371

ABSTRACT

Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.


Subject(s)
Anti-Infective Agents , Bacteriophages , Salmonella Phages , Salmonella Phages/genetics , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Salmonella , Bacteria
14.
BMC Microbiol ; 23(1): 324, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924001

ABSTRACT

BACKGROUND: Salmonella enterica serotype Typhi is one of the major pathogens causing typhoid fever and a public health burden worldwide. Recently, the increasing number of multidrug-resistant strains of Salmonella spp. has made this utmost necessary to consider bacteriophages as a potential alternative to antibiotics for S. Typhi infection treatment. Salmonella phage STWB21, isolated from environmental water, has earlier been reported to be effective as a safe biocontrol agent by our group. In this study, we evaluated the efficacy of phage STWB21 in reducing the burden of salmonellosis in a mammalian host by inhibiting Salmonella Typhi invasion into the liver and spleen tissue. RESULTS: Phage treatment significantly improved the survival percentage of infected mice. This study also demonstrated that oral administration of phage treatment could be beneficial in both preventive and therapeutic treatment of salmonellosis caused by S. Typhi. Altogether the result showed that the phage treatment could control tissue inflammation in mice before and after Salmonella infection. CONCLUSIONS: To the best of our knowledge, this is the first report of phage therapy in a mouse model against a clinically isolated Salmonella Typhi strain that includes direct visualization of histopathology and ultrathin section microscopy images from the liver and spleen sections.


Subject(s)
Bacteriophages , Phage Therapy , Salmonella Infections , Salmonella Phages , Typhoid Fever , Animals , Mice , Salmonella typhi , Bacterial Load , Typhoid Fever/therapy , Typhoid Fever/microbiology , Salmonella Infections/therapy , Mammals
15.
BMC Microbiol ; 23(1): 297, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858092

ABSTRACT

The current threat of multidrug resistant strains necessitates development of alternatives to antibiotics such as bacteriophages. This study describes the isolation and characterization of a novel Salmonella Typhimurium phage 'Arash' from hospital wastewater in Leuven, Belgium. Arash has a myovirus morphology with a 95 nm capsid and a 140 nm tail. The host range of Arash is restricted to its isolation host. Approximately 86% of the phage particles are adsorbed to a host cell within 10 min. Arash has latent period of 65 min and burst size of 425 PFU/cell. Arash has a dsDNA genome of 180,819 bp with GC content of 53.02% with no similarities to any characterized phages, suggesting Arash as a novel species in the novel 'Arashvirus' genus. Arash carries no apparent lysogeny-, antibiotic resistance- nor virulence-related genes. Proteome analysis revealed 116 proteins as part of the mature phage particles of which 27 could be assigned a function. Therefore, the present findings shed light on the morphological, microbiological and genomic characteristics of Arash and suggest its potential application as therapeutic and/or biocontrol agent.


Subject(s)
Bacteriophages , Salmonella Phages , Bacteriophages/genetics , Salmonella typhimurium/genetics , Genome, Viral , Genomics , Host Specificity , Salmonella Phages/genetics
16.
Int J Mol Sci ; 24(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894882

ABSTRACT

Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment's response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.


Subject(s)
Microbiota , Phage Therapy , Salmonella Phages , Animals , Chickens/genetics , RNA, Ribosomal, 16S/genetics , Bayes Theorem , Microbiota/genetics , Salmonella Phages/genetics , Cecum/microbiology , Metabolome , Salmonella/genetics
17.
Front Cell Infect Microbiol ; 13: 1266685, 2023.
Article in English | MEDLINE | ID: mdl-37842006

ABSTRACT

Introduction: The emergence of resistance and interference mechanisms to phage infection can hinder the success of bacteriophage-based applications, but the significance of these mechanisms in phage therapy has not been determined. This work studies the emergence of Salmonella isolates with reduced susceptibility to a cocktail of three phages under three scenarios: i) Salmonella cultures (LAB), ii) biocontrol of cooked ham slices as a model of food safety (FOOD), and iii) oral phage therapy in broilers (PT). Methods: S. Typhimurium ATCC 14028 RifR variants with reduced phage susceptibility were isolated from the three scenarios and conventional and molecular microbiology techniques were applied to study them. Results and discussion: In LAB, 92% of Salmonella isolates lost susceptibility to all three phages 24 h after phage infection. This percentage was lower in FOOD, with 4.3% of isolates not susceptible to at least two of the three phages after seven days at 4°C following phage treatment. In PT, 9.7% and 3.3 % of isolates from untreated and treated broilers, respectively, displayed some mechanism of interference with the life cycle of some of the phages. In LAB and FOOD scenarios, resistant variants carrying mutations in rfc and rfaJ genes involved in lipopolysaccharide synthesis (phage receptor) were identified. However, in PT, the significant decrease of EOP, ECOI, and burst size observed in isolates was prompted by lateral gene transfer of large IncI1 plasmids, which may encode phage defense mechanisms. These data indicate that the acquisition of specific conjugative plasmids has a stronger impact than mutagenesis on the emergence of reduced phage-susceptibility bacteria in certain environments. In spite of this, neither mechanism seems to significantly impair the success of Salmonella biocontrol and oral phage therapy.


Subject(s)
Bacteriophages , Phage Therapy , Salmonella Phages , Animals , Bacteriophages/genetics , Salmonella Phages/genetics , Chickens , Gene Transfer, Horizontal , Mutagenesis , Bacteria
18.
Poult Sci ; 102(11): 103073, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774519

ABSTRACT

The use of phages as biocontrol agents against antibiotic-resistant strains of Salmonella spp. is gaining attention. This study aimed to isolate lytic bacteriophages specific for multidrug-resistant Salmonella enterica serovars Typhimurium; it also evaluated the bactericidal effect of isolated phages (STP-1, STP-2, STP-3, and STP-4) from sewage sample against S. Typhimurium as host strains. Moreover, a current study evaluated the efficacy of a bacteriophage cocktail against S. Typhimurium cocktail in chicken breast meat. The 4 phages were classified under the Caudoviricetes class by morphology characterization. On host range testing, they exhibited lytic activities against S. Typhimurium, S. Enteritidis, and S. Thompson. In the stability test, the phages exhibited resistance to heat (above 70°C for 1 h) and pH (strongly alkaline for 24 h). Additionally, the phages had comparable adsorption rates (approximately 80% adsorption in under 5 min). Additionally, the latent periods ranged from 30 to 50 min, with respective burst sizes of 31, 218, 197, and 218 PFU/CFU. In vitro, bacterial challenge demonstrated that at a multiplicity of infection (MOI) of 10, each phage consistently inhibited S. Typhimurium growth at 37°C for 24 h. In the food test, the phage cocktail (MOI = 1,000) reduced S. Typhimurium in artificially contaminated chicken breast meat stored at 4°C by 0.9 and 1.2 log CFU/g after 1 and 7 d, respectively. The results point toward a promising avenue for addressing the challenge of multidrug-resistant S. Typhimurium in the food industry through the use of recently discovered phages. Notably, the exploration of phage cocktails holds significant potential for combating S. Typhimurium in chicken breast products in the times ahead.


Subject(s)
Bacteriophages , Salmonella Phages , Animals , Chickens , Salmonella typhimurium , Meat/microbiology , Anti-Bacterial Agents/pharmacology
19.
Microbiol Res ; 275: 127461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499310

ABSTRACT

Owing to the threats that Salmonella poses to public health and the abuse of antimicrobials, bacteriophage therapy against Salmonella is experiencing a resurgence. Although several phages have been reported as safe and efficient for controlling Salmonella, the genetic diversity and relatedness among Salmonella phages remain poorly understood. In this study, whole-genome sequences of 91 Salmonella bacteriophages were obtained from the National Center for Biological Information genome database. Phylogenetic analysis, mosaic structure comparisons, gene content analysis, and orthologue group clustering were performed. Phylogenetic analysis revealed four singletons and two major lineages (I-II), including five subdividing clades, of which Salmonella phages belonging to morphologically distinct families were clustered in the same clade. Chimeric structures (n = 31), holin genes (n = 18), lysin genes (n = 66), DNA packaging genes (n = 55), and DNA metabolism genes (n = 24) were present in these phages. Moreover, phages from different subdivided clusters harboured distinct genes associated with host cell lysis, DNA packaging, and DNA metabolism. Notably, phages belonging to morphologically distinct families shared common orthologue groups. Although several functional modules of phages SS1 and SE16 shared > 99% nucleotide sequence identity with phages SI2 and SI23, the major differences between these phages were the absence and replication of functional modules. The data obtained herein revealed the genetic diversity of Salmonella phages at genomic, structural, and gene content levels. The genetic diversity of Salmonella phages is likely owing to the acquisition, loss, and replication of functional modules.


Subject(s)
Bacteriophages , Salmonella Phages , Humans , Salmonella Phages/genetics , Phylogeny , Genome, Viral , Bacteriophages/genetics , Salmonella/genetics , DNA , Genetic Variation
20.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373290

ABSTRACT

Due to irrational antibiotic stewardship, an increase in the incidence of multidrug resistance of bacteria has been observed recently. Therefore, the search for new therapeutic methods for pathogen infection treatment seems to be necessary. One of the possibilities is the utilization of bacteriophages (phages)-the natural enemies of bacteria. Thus, this study is aimed at the genomic and functional characterization of two newly isolated phages targeting MDR Salmonella enterica strains and their efficacy in salmonellosis biocontrol in raw carrot-apple juice. The Salmonella phage vB_Sen-IAFB3829 (Salmonella phage strain KKP 3829) and Salmonella phage vB_Sen-IAFB3830 (Salmonella phage strain KKP 3830) were isolated against S. I (6,8:l,-:1,7) strain KKP 1762 and S. Typhimurium strain KKP 3080 host strains, respectively. Based on the transmission electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the viruses were identified as members of tailed bacteriophages from the Caudoviricetes class. Genome sequencing revealed that these phages have linear double-stranded DNA and sizes of 58,992 bp (vB_Sen-IAFB3829) and 50,514 bp (vB_Sen-IAFB3830). Phages retained their activity in a wide range of temperatures (from -20 °C to 60 °C) and active acidity values (pH from 3 to 11). The exposure of phages to UV radiation significantly decreased their activity in proportion to the exposure time. The application of phages to the food matrices significantly reduced the level of Salmonella contamination compared to the control. Genome analysis showed that both phages do not encode virulence or toxin genes and can be classified as virulent bacteriophages. Virulent characteristics and no possible pathogen factors make examined phages feasible to be potential candidates for food biocontrol.


Subject(s)
Bacteriophages , Salmonella Phages , Salmonella enterica , Salmonella/genetics , Bacteriophages/genetics , Salmonella Phages/genetics , Salmonella enterica/genetics , Genomics , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...