Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.473
Filter
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691424

ABSTRACT

Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Salmonella enterica , Symbiosis , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Coculture Techniques , Microbial Interactions , Ampicillin/pharmacology , Drug Resistance, Bacterial
2.
Int J Food Microbiol ; 417: 110708, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38653121

ABSTRACT

Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 µg/mL) and ciprofloxacin (MIC ranging from 2 to 8 µg/mL). The AmpC ß-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.


Subject(s)
Anti-Bacterial Agents , Diarrhea , Plasmids , Salmonella enterica , Seafood , Humans , Plasmids/genetics , China , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Seafood/microbiology , Diarrhea/microbiology , Microbial Sensitivity Tests , beta-Lactamases/genetics , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Ciprofloxacin/pharmacology , Ceftriaxone/pharmacology , Bacterial Proteins/genetics , Serogroup , Food Microbiology
3.
Microbiol Spectr ; 12(5): e0421623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563788

ABSTRACT

Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Thailand/epidemiology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Water Microbiology , Plasmids/genetics , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/pathogenicity , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Genomics , Humans , Phylogeny , Salmonella Infections/microbiology , Serogroup
4.
Avian Dis ; 68(1): 2-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687101

ABSTRACT

Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is a pathogenic bacterium that causes Pullorum disease (PD). PD is an acute systemic disease that affects young chickens, causing white diarrhea and high mortality. Although many sanitary programs have been carried out to eradicate S. Pullorum, PD outbreaks have been reported in different types of birds (layers, broilers, breeders) worldwide. This study aimed to evaluate the evolution and genetic characteristics of S. Pullorum isolated from PD in Brazil. Phylogenetic analysis of S. Pullorum genomes sequenced in this study and available genomic databases demonstrated that all isolates from Brazil are from sequence type 92 (ST92) and cluster into two lineages (III and IV). ColpVC, IncFIC(FII), and IncFII(S) were plasmid replicons frequently found in the Brazilian lineages. Two resistance genes (aac(6')-Iaa, conferring resistance to aminoglycoside, disinfecting agents, and antiseptics (mdf(A)) and tetracycline (mdf(A)) were detected frequently. Altogether, these results are important to understand the circulation of S. Pullorum and, consequently, to develop strategies to reduce losses due to PD.


Evolución y perfil genómico de aislados de Salmonella enterica serovar Gallinarum biovar Pullorum de Brasil. Salmonella enterica subespecie enterica serovar Gallinarum biovar Pullorum (S. Pullorum) es una bacteria patógena que causa la enfermedad de Pullorum (EP). La EP es una enfermedad sistémica aguda que afecta a los pollos jóvenes causando diarrea blanca y alta mortalidad. Aunque se han llevado a cabo muchos programas sanitarios para erradicar S. Pullorum, se han informado brotes de EP en diferentes tipos de aves (ponedoras, pollos de engorde, reproductoras) en todo el mundo. Este estudio tuvo como objetivo evaluar la evolución y las características genéticas de S. Pullorum aislado de EP en Brasil. El análisis filogenético de los genomas de S. Pullorum secuenciados en este estudio y las bases de datos genómicas disponibles demostraron que todos los aislamientos de Brasil son del tipo de secuencia 92 (ST92) y se agrupan en dos linajes (III y IV). ColpVC, IncFIC (FII) e IncFII(S) fueron replicones de plásmidos frecuentemente encontrados en los linajes brasileños. Dos genes de resistencia (aac(6')-Iaa, que confiere resistencia a aminoglucósidos, desinfectantes y antisépticos (mdf(A)), y tetraciclina (mdf(A)) fueron detectados con frecuencia. En conjunto, estos resultados son importantes para comprender la circulación de S. Pullorum y, en consecuencia, desarrollar estrategias para reducir las pérdidas por EP.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Brazil/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Animals , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella enterica/drug effects , Phylogeny , Genome, Bacterial , Serogroup , Evolution, Molecular
5.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546218

ABSTRACT

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Subject(s)
Drug Resistance, Multiple, Bacterial , Phylogeny , Salmonella enterica , Salmonella typhimurium , Serogroup , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/drug effects , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Mexico , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/drug effects , Salmonella typhimurium/classification , Integrons/genetics , Genome, Bacterial , Chile , Genomics , Anti-Bacterial Agents/pharmacology , Latin America , Water Microbiology , Polymorphism, Single Nucleotide , Plasmids/genetics , Microbial Sensitivity Tests
6.
Eur J Clin Microbiol Infect Dis ; 43(5): 829-840, 2024 May.
Article in English | MEDLINE | ID: mdl-38388738

ABSTRACT

PURPOSE: The detection rate of Salmonella enterica serovar 1,4,[5], 12: i: - (S. 1,4,[5], 12: i: -) has increased as the most common serotype globally. A S. 1,4,[5], 12: i: - strain named ST3606 (sequence type 34), isolated from a fecal specimen of a child with acute diarrhea hospitalized in a tertiary hospital in China, was firstly reported to be resistant to carbapenem and ceftazidime-avibactam. The aim of this study was to characterize the whole-genome sequence of S. 1,4,[5], 12: i: - isolate, ST3606, and explore its antibiotic resistance genes and their genetic environments. METHODS: The genomic DNA of S. 1,4,[5], 12: i: - ST3606 was extracted and performed with single-molecule real-time sequencing. Resistance genes, plasmid replicon type, mobile elements, and multilocus sequence types (STs) of ST3606 were identified by ResFinder 3.2, PlasmidFinder, OriTfinder database, ISfinder database, and MLST 2.0, respectively. The conjugation experiment was utilized to evaluate the conjugation frequency of pST3606-2. Protein expression and enzyme kinetics experiments of CTX-M were performed to analyze hydrolytic activity of a novel CTX-M-261 enzyme toward several antibiotics. RESULTS: Single-molecule real-time sequencing revealed the coexistence of a 109-kb IncI1-Iα plasmid pST3606-1 and a 70.5-kb IncFII plasmid pST3606-2. The isolate carried resistance genes, including blaNDM-5, sul1, qacE, aadA2, and dfrA12 in pST3606-1, blaTEM-1B, aac(3)-lld, and blaCTX-M-261, a novel blaCTX-M-1 family member, in pST3606-2, and aac(6')-Iaa in chromosome. The blaCTX-M-261 was derived from blaCTX-M-55 by a single-nucleotide mutation 751G>A leading to amino acid substitution of Val for Met at position 251 (Val251Met), which conferred CTX-M increasing resistance to ceftazidime verified by antibiotics susceptibility testing of transconjugants carrying pST3606-2 and steady-state kinetic parameters of CTX-M-261. pST3606-1 is an IncI1-α incompatibility type that shares homology with plasmids of pC-F-164_A-OXA140, pE-T654-NDM-5, p_dm760b_NDM-5, and p_dmcr749c_NDM-5. The conjugation experiment demonstrated that pST3606-2 was successfully transferred to the Escherichia coli recipient C600 with four modules of OriTfinder. CONCLUSION: Plasmid-mediated horizontal transfer plays an important role in blaNDM-5 and blaCTX-M-261 dissemination, which increases the threat to public health due to the resistance to most ß-lactam antibiotics. This is the first report of blaCTX-M-261 and blaNDM-5 in S. 1,4,[5], 12: i: -. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of CTX-M enzymes and confirms urgency to control resistance of S. 1,4,[5], 12: i: -.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Microbial Sensitivity Tests , Salmonella Infections , Salmonella enterica , beta-Lactamases , Ceftazidime/pharmacology , Humans , China , beta-Lactamases/genetics , beta-Lactamases/metabolism , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/enzymology , Salmonella Infections/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Serogroup , Plasmids/genetics , Feces/microbiology , Genome, Bacterial
7.
Zoonoses Public Health ; 71(4): 359-368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38158623

ABSTRACT

AIMS: Salmonella enterica is a leading cause of acute enteritis in people, and dairy cattle are an important reservoir of this pathogen. The objective of this study was to analyse serotype and anti-microbial resistance trends of Salmonella isolated from dairy cattle in the United States between 2007 and 2021. METHODS AND RESULTS: We collected data for bovine Salmonella isolates obtained from samples submitted to Cornell University's Animal Health Diagnostic Center (AHDC). We analysed 5114 isolates for serotype trends, and a subset of 2521 isolates tested for anti-microbial susceptibility were analysed for resistance trends. The most frequently identified serotypes were Salmonella Cerro, Dublin, Typhimurium, Montevideo, 4,[5],12:i:-, and Newport. Among these serotypes, a Cochran-Armitage trend test determined there was a significant increase in the proportion of isolates serotyped as Salmonella Dublin (p < 0.0001) and Montevideo (p < 0.0001) over time. There was a significant decrease in the proportion of isolates serotyped as Salmonella Cerro (p < 0.0001), Typhimurium (p < 0.0001), and Newport (p < 0.0001). For the anti-microbial resistance (AMR) analysis, we found an overall increase in the proportion of multi-drug-resistant isolates over time (p = 0.009). There was a significant increase in the proportion of isolates resistant to ampicillin (p = 0.007), florfenicol (p = 0.0002), and ceftiofur (p < 0.0001) and a marginal increase in resistance to enrofloxacin (p = 0.05). There was a significant decrease in the proportion of isolates resistant to spectinomycin (p = 0.0002), trimethoprim/sulphamethoxazole (p = 0.01), sulphadimethoxine (p = 0.003), neomycin (p < 0.0001), and gentamicin (p = 0.0002). CONCLUSIONS: Our results provide evidence of an increase in resistance to key anti-microbial agents, although the observed trends were driven by the sharp increase in the proportion of Salmonella Dublin isolates over time.


Subject(s)
Anti-Bacterial Agents , Cattle Diseases , Drug Resistance, Bacterial , Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Cattle , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Anti-Bacterial Agents/pharmacology , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/classification , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , New York/epidemiology , Microbial Sensitivity Tests , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification
8.
J Biomol Struct Dyn ; 41(5): 1776-1789, 2023 03.
Article in English | MEDLINE | ID: mdl-34996337

ABSTRACT

The AcrAB-TolC efflux pump (EP) confers multidrug resistance to Salmonella enterica, a major etiological agent of foodborne infections. Phytochemicals that inhibit the functions of AcrAB-TolC EP present ideal candidates for reversal of antibiotic resistance. Progressive technological advancements, have facilitated the development of computational methods that offer a rapid low-cost approach to screen and identify phytochemicals with inhibitory potential against EP. In this study, 71 phytochemicals derived from plants used for medicinal purposes in Mexico were screened for their potential as inhibitors of Salmonella AcrB protein using in silico approaches including molecular docking and molecular dynamics (MD) simulation. Consequently, naringenin, 5-methoxypsoralen, and licarin A were identified as candidate inhibitors of AcrB protein. The three phytochemicals bound distal/deep pocket (DP) and hydrophobic trap (HPT) residues of AcrB protein critical for interactions with inhibitors, with estimated binding free energies of -95.5 kJ/mol, -97.4 kJ/mol, and -143.8 kJ/mol for naringenin, 5-methoxypsoralen, and licarin A, respectively. Data from the 50 ns MD simulation study revealed stability of the protein-ligand complex and alterations in the AcrB protein DP conformation upon binding of phytochemicals to the DP and HPT regions. Based on the estimated binding free energy and interactions with three out of five residues lining the hydrophobic trap, licarin A demonstrated the highest inhibitory potential, supporting its further application as a candidate for overcoming drug resistance in pathogens. Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Bacterial Agents , Plants, Medicinal , Salmonella enterica , 5-Methoxypsoralen/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial , Mexico , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins , Plants, Medicinal/chemistry , Salmonella enterica/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacology
9.
Microbiol Spectr ; 10(6): e0185922, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453909

ABSTRACT

Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Salmonella enterica , Salmonella typhimurium , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella typhimurium/drug effects , Serogroup , Bacteriocins/pharmacology
10.
Microbes Infect ; 24(5): 104972, 2022.
Article in English | MEDLINE | ID: mdl-35358729

ABSTRACT

A multi-drug resistant, CTX-M-65 producing Salmonella Infantis was identified from a patient in Brazil. Whole genome sequencing followed by hybrid assembly (short and long reads) indicated the presence of blaCTX-M-65 in a pESI-like megaplasmid in this ST32 isolate and phylogenetic analysis showed high similarity with IncFIB S. Infantis isolates from food and poultry in the USA.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Brazil , Genomics , Humans , Phylogeny , Plasmids , Salmonella enterica/drug effects , Salmonella enterica/genetics , beta-Lactamases/genetics
11.
J Med Microbiol ; 71(2)2022 Feb.
Article in English | MEDLINE | ID: mdl-35156609

ABSTRACT

Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including Salmonella. However, data on AMR in companion animals is limited.Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.Purpose. This study aimed to phenotypically and genetically investigate AMR in Salmonella isolated from pet dogs and cats in Thailand.Methodology. Salmonella enterica were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the ß-lactamase genes bla TEM-1 and bla CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR Salmonella strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.


Subject(s)
Carrier State/veterinary , Cats , Dogs , Drug Resistance, Multiple, Bacterial , Salmonella enterica , Salmonella , Animals , Anti-Bacterial Agents/pharmacology , Cats/microbiology , Dogs/microbiology , Microbial Sensitivity Tests , Plasmids/genetics , R Factors , Salmonella/drug effects , Salmonella enterica/drug effects , Salmonella enterica/genetics , Thailand/epidemiology , beta-Lactamases/genetics
12.
BMC Microbiol ; 22(1): 51, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35144539

ABSTRACT

BACKGROUND: The management of enteric fever through antibiotics is difficult these days due to the emerging resistance of Salmonella to various antimicrobial agents. The development of antimicrobial resistance is associated with multiple factors including mutations in the specific genes. To know the current status of mutation-mediated fluoroquinolone-resistance among Salmonella enterica serovars; Typhi, Paratyphi A, B and C, this study was focused on detecting gyrA ser83 mutation by restriction digestion analysis of gyrA gene using HinfI endonuclease. RESULTS: A total of 948 blood samples were processed for isolation of Salmonella spp. and 3.4% of them were found to be positive for Salmonella growth. Out of the 32 Salmonella isolates, 2.2% were S. Typhi and 1.2% were S. Paratyphi A. More interestingly, we observed less than 5% of isolates were resistant to first-line drugs including chloramphenicol, cotrimoxazole and ampicillin. More than 80% of isolates were resistant to fluoroquinolones accounting for 84.4% to levofloxacin followed by 87.5% to ofloxacin and 100% to ciprofloxacin by disc diffusion methods. However, the minimum inhibitory concentration method using agar dilution showed only 50% of isolates were resistant to ciprofloxacin. A total of 3.1% of isolates were multidrug-resistant. Similarly, 90.6% of the Salmonella isolates showed gyrA ser83 mutation with resistance to nalidixic acid. CONCLUSIONS: The increased resistance to fluoroquinolones and nalidixic acid in Salmonella isolates in our study suggests the use of alternative drugs as empirical treatment. Rather, the treatment should focus on prescribing first-line antibiotics since we observed less than 5% of Salmonella isolates were resistant to these drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Mutation , Salmonella enterica/drug effects , Salmonella enterica/genetics , Serogroup , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Tertiary Care Centers/statistics & numerical data , Typhoid Fever/blood , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Young Adult
13.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163919

ABSTRACT

Extracts of Hibiscus sabdariffa L. (commonly called Rosselle or "Jamaica flower" in Mexico) have been shown to have antibiotic and antivirulence properties in several bacteria. Here, an organic extract of H. sabdariffa L. is shown to inhibit motility in Salmonella enterica serovars Typhi and Typhimurium. The compound responsible for this effect was purified and found to be the hibiscus acid. When tested, this compound also inhibited motility and reduced the secretion of both flagellin and type III secretion effectors. Purified hibiscus acid was not toxic in tissue-cultured eukaryotic cells, and it was able to reduce the invasion of Salmonella Typhimurium in epithelial cells. Initial steps to understand its mode of action showed it might affect membrane proton balance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Citrates/pharmacology , Flagella/physiology , Flowers/chemistry , Hibiscus/chemistry , Plant Extracts/pharmacology , Salmonella enterica/drug effects , Flagella/drug effects
14.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056664

ABSTRACT

Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4'-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antidiarrheals/pharmacology , Cupressus/chemistry , Diarrhea/drug therapy , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Salmonella enterica/drug effects , Animals , Castor Oil/toxicity , Cathartics/toxicity , Diarrhea/chemically induced , Diarrhea/pathology , Gastrointestinal Motility , In Vitro Techniques , Male , Mice
15.
Microbiol Spectr ; 10(1): e0146321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019684

ABSTRACT

Anthranilate is a diffusible molecule produced by Pseudomonas aeruginosa and accumulates as P. aeruginosa grows. Anthranilate is an important intermediate for the synthesis of tryptophan and the Pseudomonas quinolone signal (PQS), as well as metabolized by the anthranilate dioxygenase complex (antABC operon products). Here we demonstrate that anthranilate is a key factor that modulates the pathogenicity-related phenotypes of P. aeruginosa and other surrounding bacteria in the environment, such as biofilm formation, antibiotic tolerance, and virulence. We found that the anthranilate levels in P. aeruginosa cultures rapidly increased in the stationary phase and then decreased again, forming an anthranilate peak. Biofilm formation, antibiotic susceptibility, and virulence of P. aeruginosa were significantly altered before and after this anthranilate peak. In addition, these phenotypes were all modified by the mutation of antABC and exogenous addition of anthranilate. Anthranilate also increased the antibiotic susceptibility of other species of bacteria, such as Escherichia coli, Salmonella enterica, Bacillus subtilis, and Staphylococcus aureus. Before the anthranilate peak, the low intracellular anthranilate level was maintained through degradation from the antABC function, in which induction of antABC was also limited to a small extent. The premature degradation of anthranilate, due to its high levels, and antABC expression early in the growth phase, appears to be toxic to the cells. From these results, we propose that by generating an anthranilate peak as a signal, P. aeruginosa may induce some sort of physiological change in surrounding cells. IMPORTANCE Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an "anthranilate peak". This peak acts as a signal that induces physiological changes in surrounding cells, decreasing their antibiotic tolerance and biofilm formation. This study is important in that it provides a new insight into how microbial signaling substances can induce changes in the pathogenicity-related phenotypes of cells in the environment. In addition, this study shows that anthranilate can be used as an adjuvant to antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , ortho-Aminobenzoates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Humans , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Virulence
16.
Zoonoses Public Health ; 69(1): 1-12, 2022 02.
Article in English | MEDLINE | ID: mdl-34716745

ABSTRACT

Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from poultry, dairy and beef cattle, the environment and people with clinical salmonellosis globally. However, the sources of this serovar and its diversity and antimicrobial resistance capacities remain poorly described in many regions. To further understand the genetic diversity and antimicrobial sensitivity patterns among S. Kentucky strains isolated from non-human sources in Ireland, we sequenced and analysed the genomes of 61 isolates collected from avian, bovine, canine, ovine, piscine, porcine, environmental and vegetation sources between 2000 and 2016. The majority of isolates (n = 57, 93%) were sequence type (ST) 314, while only three isolates were ST198 and one was ST152. Several isolates were multidrug-resistant (MDR) and 14 carried at least one acquired antimicrobial resistance gene. When compared to a database of publicly available ST314, four distinct clades were identified (clades I-IV), with the majority of isolates from Ireland clustering together in Clade I. Two of the three ST198 isolates were characteristic of those originating outside of the Americas (Clade ST198.2), while one was distantly clustered with isolates from South and North America (Clade ST198.1). The genomes of the two clade ST198.2 isolates encoded Salmonella Genomic Island 1 (SGI1), were multidrug-resistant and encoded polymorphisms in the DNA gyrase (gyrA) and DNA topoisomerase (parC) known to confer resistance to fluoroquinolones. The single ST152 isolate was from raw beef, clustered with isolates from food and bovine sources in North America and was pan-susceptible. Results of this study indicate that most S. Kentucky isolates from non-human sources in Ireland are closely related ST314 and only a few isolates are antimicrobial-resistant. This study also demonstrates the presence of multidrug-resistant ST198 in food sources in Ireland.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Dogs , Drug Resistance, Multiple, Bacterial/genetics , Food Microbiology , Genomics , Ireland/epidemiology , Microbial Sensitivity Tests/veterinary , Poultry , Salmonella , Salmonella enterica/drug effects , Salmonella enterica/genetics , Serogroup , Sheep , Swine
17.
J Bacteriol ; 204(1): e0045021, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34662241

ABSTRACT

Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contributes to their functional differences in a Salmonella enterica host.


Subject(s)
Bacterial Proteins/metabolism , Fungal Proteins/pharmacology , Ketoglutaric Acids/metabolism , Pyridoxal/metabolism , Saccharomyces cerevisiae/chemistry , Salmonella enterica/drug effects , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/physiology , Glucose , Ketoglutaric Acids/pharmacology , Metabolic Networks and Pathways/physiology , Mutation , Pyridoxal/pharmacology
18.
Food Microbiol ; 101: 103876, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579844

ABSTRACT

The efficacy of plant-based antimicrobials against Salmonella Newport and Listeria monocytogenes on melon rinds was evaluated. Four cantaloupe and 3 honeydew melon varieties grown in Georgia, Arizona, Texas, North Carolina, Indiana and California were tested. Melon rinds (10 g pieces) were inoculated with 5-6 log CFU/10 g rind of S. Newport or L. monocytogenes. Samples were then immersed in 5 % olive extract or 0.5 % oregano oil antimicrobial solution and gently agitated for 2 min. Samples were stored at 4 °C and surviving populations of both bacteria were enumerated at days 0 and 3. Plant-based antimicrobials reduced S. Newport and L.monocytogenes population on all rind samples, regardless of the melon types, varieties or growing locations. Compared to the control, antimicrobial treatments caused up to 3.6 and 4.0 log reductions in populations of Salmonella and L. monocytogenes, respectively. In most cases, plant-based antimicrobial treatments reduced pathogen populations to below the detection limit (1 log CFU/g) at day 3. In general, oregano oil had better antimicrobial activity than olive extract and the antimicrobial treatments were more effective on Salmonella than on L. monocytogenes. The plant-based antimicrobial treatments exhibited better microbial reductions on honeydews than on cantaloupes. These antimicrobials could potentially be used as sanitizers for decontaminating melons.


Subject(s)
Anti-Infective Agents , Cucurbitaceae , Food Contamination/prevention & control , Listeria monocytogenes , Salmonella enterica , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Consumer Product Safety , Cucurbitaceae/microbiology , Food Handling , Food Microbiology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , United States
20.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34882531

ABSTRACT

Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a ß-lactam-susceptible Salmonella enterica serovar Heidelberg clinical isolate (recipient) and a ß-lactam resistant Escherichia coli O80:H26 isolate (donor) carrying a blaCMY-2 gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, blaCMY-2 abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of S. Heidelberg transconjugant and the relative abundance of Enterobacteriaceae increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal Enterobacteriaceae in the inflamed intestine promoted significantly (P<0.05) higher and possibly wider dissemination of the blaCMY-2 gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of S. Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal E. coli O2:H6 transconjugant, which carries three copies of the blaCMY-2 gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.


Subject(s)
Ampicillin/administration & dosage , Escherichia coli/genetics , Gram-Negative Bacterial Infections/drug therapy , Salmonella enterica/genetics , Streptomycin/administration & dosage , beta-Lactam Resistance , beta-Lactamases/genetics , Ampicillin/pharmacology , Animals , Antibiotic Prophylaxis , Disease Models, Animal , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Feces/microbiology , Female , Gene Transfer, Horizontal , Gram-Negative Bacterial Infections/microbiology , Mice , Proof of Concept Study , RNA, Ribosomal, 16S/genetics , Salmonella Infections , Salmonella enterica/drug effects , Salmonella enterica/pathogenicity , Streptomycin/pharmacology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...