Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
BMC Plant Biol ; 24(1): 752, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103757

ABSTRACT

Present study assessed the growth of two plant species and ion uptake by them grown on different proportion of industrial solid waste and garden soil. The industrial waste having high concentration of chemicals were used with garden soil at different proportion i.e. 0% (T0), 5% (T1), 10% (T2), 15% (T3) and 20% (T4). Two species namely Conocarpus erectus (alien plant) and Dodonaea viscosa (indigenous) were used as test plants in pot study. Different parameters including growth, physiology, and anatomy of plants and concentration of cations (Na+, K+, Ca2+, and Mg2+) in the plant shoot and root were measured at different time duration (initial, 1st, 2nd, 3rd and 4th month). The key objective of the study was to use these plants to establish their plantations on the barren lands where industrial solid wastes were being disposed of. C. erectus showed better growth than D. viscosa, as well as more uptake of ions. A significant increase in plant growth was observed in fourth month in T1, where plant height reached 24.5% and 46% for C. erectus and D. viscosa, respectively. At harvest, in C. erectus, no significant difference in the fresh (65-78 g) and dry weight (24-30 g) of the shoot was observed across treatments compared to the control. In D. viscosa, at the time of harvest, the fresh and dry weights of the root and shoot showed a strong, significantly decreasing pattern across T1, T2, and T3, leading to the death of the plant at T3 and T4. Further, optimum ratio of waste soil to garden soil was found as 10:90 and 20:80 to establish the plantations of D. viscosa and C. erectus, respectively in areas where such solid waste from industries are disposed. Findings can be used for the restoration of such solid waste for the sustainable management of industrial areas and their associated ecosystems.


Subject(s)
Industrial Waste , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Sapindaceae/growth & development , Sapindaceae/metabolism , Sapindaceae/physiology , Ions/metabolism , Biodegradation, Environmental
2.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124855

ABSTRACT

Nature provides us with a wealth of inspiration for the design of bionic functional surfaces. Numerous types of plant leaves with exceptional wettability, anisotropy, and adhesion are extensively employed in many engineering applications. Inspired by the wettability, anisotropy, and adhesion of indocalamus leaves, bionic upper and lower surfaces (BUSs and BLSs) of the indocalamus leaf were successfully prepared using a facile approach combining laser scanning and chemical modification. The results demonstrated the BUSs and BLSs obtained similar structural features to the upper and lower surfaces of the indocalamus leaf and exhibited enhanced and more-controllable wettability, anisotropy, and adhesion. More importantly, we conducted a detailed comparative analysis of the wettability, anisotropy, and adhesion between BUSs and BLSs. Finally, BUSs and BLSs were also explored for the corresponding potential applications, including self-cleaning, liquid manipulation, and fog collection, thereby broadening their practical utility. We believe that this study can contribute to the enrichment of the research on novel biological models and provide significant insights into the development of multifunctional bionic surfaces.


Subject(s)
Bionics , Plant Leaves , Surface Properties , Wettability , Plant Leaves/chemistry , Anisotropy , Sapindaceae/chemistry
3.
Curr Biol ; 34(16): 3707-3721.e7, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39079534

ABSTRACT

Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.


Subject(s)
Genome, Plant , Rhizophoraceae/genetics , Rhizophoraceae/physiology , Germination/genetics , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Sapindaceae
4.
Plant Sci ; 347: 112184, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38996874

ABSTRACT

Nervonic acid (C24:1) is a very-long-chain fatty acid that plays an imperative role in human brain development and other health benefits. In plants, 3-ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for C24:1 biosynthesis. Xanthoceras sorbifolium is a valuable oil-producing economic woody species with abundant C24:1 in seed oils, but the key KCS gene responsible for C24:1 accumulation remains unknown. In this work, a correlation analysis between the transcript profiles of KCS and dynamic change of C24:1 content in developing seeds of X. sorbifolium were conducted to screen out three members of KCS, namely XsKCS4, XsKCS7 and XsKCS8, potentially involved in C24:1 biosynthesis. Of which, the XsKCS7 was highly expressed in developing seeds, while XsKCS4 and XsKCS8 displayed the highest expression in fruits and flowers, respectively. Overexpression of XsKCS4, XsKCS7 and XsKCS8 in yeast Saccharomyces cerevisiae and plant Arabidopsis thaliana indicated that only XsKCS7 possessed the ability to facilitate the biosynthesis of C24:1. These findings collectively suggested that XsKCS7 played a crucial role in specific regulation of C24:1 biosynthesis in X. sorbifolium seeds.


Subject(s)
Fatty Acids, Monounsaturated , Plant Proteins , Sapindaceae , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Sapindaceae/genetics , Sapindaceae/metabolism , Sapindaceae/enzymology , Sapindaceae/growth & development , Fatty Acids, Monounsaturated/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
Biomolecules ; 14(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38927108

ABSTRACT

(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.


Subject(s)
Acetates , Anti-Inflammatory Agents , Cyclopentanes , Lung Neoplasms , Oxylipins , Plant Roots , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Acetates/pharmacology , Acetates/chemistry , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Humans , RAW 264.7 Cells , Plant Roots/drug effects , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Apoptosis/drug effects , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/chemistry , A549 Cells , Sapindaceae/chemistry
6.
Nutrients ; 16(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892587

ABSTRACT

Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms of polysaccharides between dried and fresh longan remain unclear. The present study comparatively analyzed the mechanisms of macrophage activation induced by polysaccharides from dried (LPG) and fresh longan (LPX). The results revealed that LPG and LPX differentially promoted macrophage phagocytosis and the secretion of NO, TNF-α, and IL-6. RNA-seq analysis revealed that LPG and LPX differentially affected gene expression in macrophages. The LPG treatment identified Tnf and chemokine-related genes as core genes, while myd88 and interferon-related genes were the core genes affected by LPX. A comprehensive analysis of the differentially expressed genes showed that LPG initiated macrophage activation primarily through the TLR2/4-mediated TRAM/TRAF6 and CLR-mediated Src/Raf1 NF-κB signaling pathways. LPX initiated macrophage activation predominantly via the CLR-mediated Bcl10/MALT1 and NLR-mediated Rip2/TAK1 MAPK and NF-κB signaling pathways. Interestingly, the non-classical NF-κB signaling pathway was activated by polysaccharides in both dried and fresh longan to elicit a slow, mild immune response. LPG tends to promote immune cell migration to engage in the immune response, while LPX facilitates antigen presentation to promote T cell activation. These findings contribute insights into the mechanisms underlying the differences in bioactivity between dried and fresh longan and their potential applications in immune-enhancing strategies and functional-food development.


Subject(s)
Fruit , Macrophage Activation , Macrophages , Phagocytosis , Polysaccharides , Sapindaceae , Signal Transduction , Macrophage Activation/drug effects , Polysaccharides/pharmacology , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Signal Transduction/drug effects , Fruit/chemistry , Sapindaceae/chemistry , Phagocytosis/drug effects , NF-kappa B/metabolism
7.
Gene ; 927: 148698, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38908456

ABSTRACT

Glutamate decarboxylase (GAD) is involved in GABA metabolism and plays an essential regulatory role in plant growth, abiotic stresses, and hormone response. This study investigated the expression mechanism of the GAD family during longan early somatic embryogenesis (SE) and identified 6 GAD genes based on the longan genome. Homology analysis indicated that DlGAD genes had a closer relationship with dicotyledonous plants. The analysis of cis-acting elements in the promoter region suggests that the GAD genes were associated with various stress responses and hormones. RNA sequencing (RNA-Seq) and the qRT-PCR data indicated that most DlGAD genes were highly expressed in the incomplete compact pro-embryogenic cultures (ICpEC) and upregulated in longan embryogenic callus (EC) after treatments with 2,4-D, high temperature (35 °C), IAA, and ABA. Moreover, the RNA-Seq analysis also revealed that DlGADs exhibit different expression patterns in various tissues and organs. The subcellular localization results showed that DlGAD5 was localized in the cytoplasm, suggesting that it played a role in the cytoplasm. Transient overexpression of DlGAD5 enhanced the expression levels of DlGADs and increased the activity of glutamate decarboxylase in longan embryogenic callus (EC), while the content of glutamic acid decreased. Thus, the DlGAD gene can play an important role in the early somatic embryogenesis of longan by responding to hormones such as IAA and ABA. DlGAD5 can affect the growth and development of longan by stimulating the expression of the DlGAD gene family, thereby increasing the GAD activity in the early SE of longan, participating in hormone synthesis and signaling pathways.


Subject(s)
Gene Expression Regulation, Plant , Glutamate Decarboxylase , Plant Growth Regulators , Plant Proteins , Sapindaceae , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Sapindaceae/genetics , Sapindaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Phylogeny , Plant Somatic Embryogenesis Techniques , Genome, Plant , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Multigene Family , Abscisic Acid/metabolism , Abscisic Acid/pharmacology
8.
J Integr Plant Biol ; 66(8): 1561-1570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804840

ABSTRACT

The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.


Subject(s)
Genome, Plant , Genomics , Sapindaceae , Sapindaceae/genetics , Databases, Genetic , Molecular Sequence Annotation , Synteny/genetics , Gene Expression Regulation, Plant
9.
Int J Phytoremediation ; 26(10): 1655-1666, 2024.
Article in English | MEDLINE | ID: mdl-38711172

ABSTRACT

Herein, this work targets to employ the blended fruit wastes including rambutan (Nephelium lappaceum) peel and durian (Durio zibethinus) seed as a promising precursor to produce activated carbon (RPDSAC). The generation of RPDSAC was accomplished through a rapid and practical procedure (microwave-ZnCl2 activation). To evaluate the adsorptive capabilities of RPDSAC, its efficacy in eliminating methylene blue (MB), a simulated cationic dye, was measured. The Box-Behnken design (BBD) was utilized to optimize the crucial adsorption parameters, namely A: RPDSAC dose (0.02-01 g/100 mL), B: pH (4-10), and C: time (2-6 min). The BBD design determined that the highest level of MB removal (79.4%) was achieved with the condition dosage of RPDSAC at 0.1 g/100 mL, contact time (6 min), and pH (10). The adsorption isotherm data is consistent with the Freundlich concept, and the pseudo-second-order versions adequately describe the kinetic data. The monolayer adsorption capacity (qmax) of RPDSAC reached 120.4 mg/g at 25 °C. Various adsorption mechanisms are involved in the adsorption of MB dye onto the surface of RPDSAC, including π-π stacking, H-bonding, pore filling, and electrostatic forces. This study exhibits the potential of the RPDSAC as an adsorbent for removal of toxic cationic dye (MB) from contaminated wastewater.


Subject(s)
Biodegradation, Environmental , Charcoal , Chlorides , Methylene Blue , Water Pollutants, Chemical , Zinc Compounds , Water Pollutants, Chemical/metabolism , Adsorption , Charcoal/chemistry , Microwaves , Sapindaceae , Coloring Agents , Bombacaceae , Waste Disposal, Fluid/methods , Kinetics
10.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675650

ABSTRACT

Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.


Subject(s)
Arthritis, Experimental , C-Reactive Protein , Freund's Adjuvant , Interleukin-6 , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/chemically induced , C-Reactive Protein/metabolism , Interleukin-6/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Sapindaceae/chemistry , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar
11.
Carbohydr Res ; 539: 109120, 2024 May.
Article in English | MEDLINE | ID: mdl-38669825

ABSTRACT

Xanthoceras sorbifolium Bunge, also known as Tu-Mu-Gua and Wen-Dan-Ge-Zi, has several applications. Clinical data and experimental studies have shown anti-tumor, anti-inflammatory, anti-bacterial, and anti-oxidant properties of Xanthoceras sorbifolium Bunge that inhibits prostate hyperplasia, lowers blood pressure and lipid level, and treats enuresis and urinary incontinence. It also has neuroprotective effects and can treat Alzheimer's disease and Parkinson's syndrome. The research on the chemical composition and pharmacological effects of Xanthoceras sorbifolium Bunge has been increasing. Triterpenoid and triterpenoid saponins are the main constituents in Xanthoceras sorbifolium Bunge and exhibit biological activities. In this review, we summarized the research progress on triterpenoids and their glycosides in Xanthoceras sorbifolia, including the chemical constituents, pharmacological activities, and biogenic pathways of triterpenoid mother nucleus. The results would provide a reference for further research and development of triterpenoids and their glycosides in Xanthoceras sorbifolia.


Subject(s)
Saponins , Triterpenes , Saponins/chemistry , Saponins/pharmacology , Saponins/isolation & purification , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Humans , Sapindaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification
12.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675866

ABSTRACT

Gu-Sui-Bu, the dried rhizome of Davallia mariesii, is a traditional Chinese herbal remedy with a significant history of treating osteoporosis and inflammatory conditions. However, its potential as an anti-influenza agent and its underlying mechanisms of action remain unexplored. To obtain a more potent extract from D. mariesii and gain insights into its mechanism of action against influenza A virus (IAV), we utilized a partitioning process involving organic solvents and water, resulting in the isolation of butanolic subfractions of the D. mariesii extract (DMBE). DMBE exhibited a broad anti-viral spectrum, effectively inhibiting IAV, with an EC50 of 24.32 ± 6.19 µg/mL and a selectivity index of 6.05. We subsequently conducted a series of in vitro assays to evaluate the antiviral effects of DMBE and to uncover its mechanisms of action. DMBE was found to inhibit IAV during the early stages of infection by hindering the attachment of the virus onto and its penetration into host cells. Importantly, DMBE was observed to hinder IAV-mediated cell-cell fusion. It also inhibited neuraminidase activity, plaque size, and the expression levels of phospho-AKT. In summary, this study provides evidence for the effectiveness of D. mariesii as a complementary and alternative herbal remedy against IAV. Specifically, our data highlight DMBE's capabilities in inhibiting viral entry and the release of virions.


Subject(s)
Antiviral Agents , Influenza A virus , Plant Extracts , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Madin Darby Canine Kidney Cells , Dogs , Virus Internalization/drug effects , Sapindaceae/chemistry , Virus Replication/drug effects , Virus Attachment/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neuraminidase/metabolism , A549 Cells , Cell Line
13.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542248

ABSTRACT

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Subject(s)
Heterocyclic Compounds, 3-Ring , Lactones , Ovule , Sapindaceae , Ovule/genetics , Fertilization/genetics , Seeds , Sapindaceae/genetics , Hexoses/metabolism , Gene Expression Regulation, Plant
14.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528464

ABSTRACT

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Subject(s)
Arabidopsis , Sapindaceae , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers , Plant Leaves/metabolism , Sapindaceae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
15.
J Med Food ; 27(2): 167-175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38174988

ABSTRACT

Although various hair health medicines have been developed and are used today, additional safe and effective natural hair growth therapies still need to be developed. Nephelium lappaceum var. pallens (Hiern) Leenh. extract (NLE) reportedly exhibits anticancer, antidiabetic, and antioxidant effects, which could be linked to androgenic processes; however, there are no reports of its effects on testosterone (TS)-inhibited hair growth. The present study investigated the effects of NLE on TS-induced inhibition of hair growth in C57BL/6 mice and human follicular dermal papilla cells. Oral administration of NLE restored hair growth that was suppressed following subcutaneous injection of TS more effectively than finasteride, a drug used for treating hair loss. Histological analysis demonstrated that oral NLE administration increased the number and diameter of hair follicles in the dorsal skin of C57BL/6 mice. In addition, western blot and immunofluorescence assays showed that the oral NLE administration restored TS-induced suppression of cyclin D1, proliferating cell nuclear antigen, and loricrin expression in the skin cells of the mice. Finally, TS suppression of cell proliferation in human follicular dermal papilla cells was significantly reversed by NLE pretreatment. The results suggest that NLE is a promising nutraceutical for hair growth because it promotes hair growth in androgenetic alopecia-like models.


Subject(s)
Sapindaceae , Testosterone , Humans , Mice , Animals , Mice, Inbred C57BL , Hair , Hair Follicle , Alopecia/drug therapy , Cells, Cultured
16.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255805

ABSTRACT

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Subject(s)
Sapindaceae , Sapindaceae/genetics , Introns , GATA Transcription Factors/genetics , Hormones
17.
Int J Biol Macromol ; 259(Pt 2): 128857, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143063

ABSTRACT

This study assesses the viability of an accelerated solvent extraction technique employing environmentally friendly solvents to extract ellagitannins while producing cellulose-rich fibers from rambutan peel. Two sequential extraction protocols were investigated: 1) water followed by acetone/water (4:1, v:v), and 2) acetone followed by acetone/water (4:1, v:v), both performed at 50 °C. The first protocol had a higher extraction yield of 51 %, and the obtained extractives featured a higher total phenolic (531.4 ± 22.0 mg-GAE/g) and flavonoid (487.3 ± 16.9 mg-QE/g) than the second protocol (495.4 ± 32.8 mg-GAE/g and 310.6 ± 31.4 mg-QE/g, respectively). The remaining extractive-free fibers were processed by bleaching using either 2 wt% sodium hydroxide with 3 wt% hydrogen peroxide or 4-5 wt% peracetic acid. Considering bleaching efficiency, yield, and process sustainability, the single bleaching treatment with 5 wt% of peracetic acid was selected as the most promising approach to yield cellulose-rich fibers. The samples were analyzed by methanolysis to determine the amount and type of poly- and oligosaccharides and studied by 13C solid-state nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The products obtained from the peels demonstrate significant potential for use in various sectors, including food, nutraceuticals, cosmetics, and paper production.


Subject(s)
Cellulose , Sapindaceae , Cellulose/analysis , Acetone , Hydrolyzable Tannins , Sapindaceae/chemistry , Peracetic Acid , Solvents/chemistry , Fruit/chemistry , Water/analysis
18.
Colloids Surf B Biointerfaces ; 234: 113712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157762

ABSTRACT

In the present study, a film based on the gelatin skin of tilapia (Oreochromis niloticus) was developed, using surfactants and adding plant extract of pitomba seed (Talisia esculenta). The aim was to investigate the mechanical and barrier properties of the cover, as well as its effectiveness in conserving papayas against diseases caused by fungi. The film presented tensile strength of 38.78 MPa, elongation of 120.49%, and water vapor permeability of 5.90 g.mm.h-1.m2.kPa-1 when equally composed of SDS and Tween 80, in a percentage of 40% in relation to the total mass of the film. The films lasted 12 d in an environment with a relative humidity of 75% (25 ºC), longer than the shelf life of papaya (limited to 8 d). With applying the film with the extract, the incidence of diseases such as anthracnose, fusariosis, and stem rot caused by these microorganisms in papaya was reduced.


Subject(s)
Carica , Cichlids , Sapindaceae , Tilapia , Animals , Gelatin , Plant Extracts , Hawaii , Tensile Strength , Permeability , Food Packaging
19.
Nat Prod Res ; 38(1): 10-15, 2024.
Article in English | MEDLINE | ID: mdl-35862620

ABSTRACT

Phytochemical investigation of methanolic extract of L. rubiginosa using modern chromatographic techniques has led to the isolation of three new triterpenoid saponins, lepiginosides A-C (1-3), a new farnesyl glycoside, lepiginoside D (4), together with lepisantheside B (5) and gleditsoside C (6). The characterization and structural elucidation of the isolated compounds were established by extensive spectroscopic data analysis and comparison with literature data. Moreover, the antibacterial activity against seven bacteria, but none is active.


Subject(s)
Cardiac Glycosides , Sapindaceae , Saponins , Triterpenes , Glycosides/pharmacology , Saponins/chemistry , Sapindaceae/chemistry , Triterpenes/chemistry , Molecular Structure
20.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203301

ABSTRACT

B3 family transcription factors play an essential regulatory role in plant growth and development processes. This study performed a comprehensive analysis of the B3 family transcription factor in longan (Dimocarpus longan Lour.), and a total of 75 DlB3 genes were identified. DlB3 genes were unevenly distributed on the 15 chromosomes of longan. Based on the protein domain similarities and functional diversities, the DlB3 family was further clustered into four subgroups (ARF, RAV, LAV, and REM). Bioinformatics and comparative analyses of B3 superfamily expression were conducted in different light and with different temperatures and tissues, and early somatic embryogenesis (SE) revealed its specific expression profile and potential biological functions during longan early SE. The qRT-PCR results indicated that DlB3 family members played a crucial role in longan SE and zygotic embryo development. Exogenous treatments of 2,4-D (2,4-dichlorophenoxyacetic acid), NPA (N-1-naphthylphthalamic acid), and PP333 (paclobutrazol) could significantly inhibit the expression of the DlB3 family. Supplementary ABA (abscisic acid), IAA (indole-3-acetic acid), and GA3 (gibberellin) suppressed the expressions of DlLEC2, DlARF16, DlTEM1, DlVAL2, and DlREM40, but DlFUS3, DlARF5, and DlREM9 showed an opposite trend. Furthermore, subcellular localization indicated that DlLEC2 and DlFUS3 were located in the nucleus, suggesting that they played a role in the nucleus. Therefore, DlB3s might be involved in complex plant hormone signal transduction pathways during longan SE and zygotic embryo development.


Subject(s)
Embryonic Development , Sapindaceae , Sapindaceae/genetics , Zygote , Hormones
SELECTION OF CITATIONS
SEARCH DETAIL