Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biol Drug Des ; 101(6): 1299-1306, 2023 06.
Article in English | MEDLINE | ID: mdl-36752700

ABSTRACT

In this study, five neolignans were isolated from Saururus cernuus-threo-dihydroguaiaretic acid (1), threo-austrobailignan-6 (2), threo-austrobailignan-5 (3), verrucosin (4), and saucernetin (5)-and have their cytotoxic effects evaluated in prostate cancer cell lines (PC3 and DU145). Initially, using an in silico approach, tested compounds were predicted to be absorbed by the gastrointestinal tract, be able to permeate the blood-brain barrier and did not show any alert in PAINS (pan-assay structures interference). In vitro assays showed that compounds 2, 4, and 5 reduced cell viability of DU145 cell line at 100 µmol/L after 48 h while compounds 1 and 3 showed to be inactive at the same conditions. Furthermore, compounds 4 and 5 reduced cell number as early as in 24 h at 50 µmol/L and compound 2 showed effects at 100 µmol/L in 24 h against both cancer cell lines PC3 and DU145. Studies using flow cytometry were conducted and indicated that compound 4 induced strong necrosis and apoptosis whereas compound 5 induced strong necrosis. Otherwise, less active compound 2 did not show evidence of induction of apoptosis or necrosis, suggesting that its mechanism of action involves inhibition of cell proliferation. In conclusion, compounds 4 and 5 have been shown to be promising cytotoxic agents against prostate cancer cell lines and can be used as a starting point for the development of new drugs for the treatment of prostate cancer.


Subject(s)
Antineoplastic Agents , Lignans , Prostatic Neoplasms , Saururaceae , Male , Humans , Saururaceae/chemistry , Lignans/pharmacology , Lignans/therapeutic use , Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Apoptosis , Cell Line, Tumor , Necrosis/drug therapy
2.
Sci Rep ; 12(1): 19320, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369516

ABSTRACT

Schistosomiasis, a parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, especially in developing countries. Despite the significant economic and public health consequences, only one drug is currently available for treatment of schistosomiasis, praziquantel. Thus, there is an urgent demand for new anthelmintic agents. Based on our continuous studies involving the chemical prospection of floristic biodiversity aiming to discover new bioactive compounds, this work reports the in vitro antiparasitic activity against Schistosoma mansoni adult worms of neolignans threo-austrobailignan-6 and verrucosin, both isolated from Saururus cernuus L. (Saururaceae). These neolignans showed a significant in vitro schistosomicidal activity, with EC50 values of 12.6-28.1 µM. Further analysis revealed a pronounced reduction in the number of S. mansoni eggs. Scanning electron microscopy analysis revealed morphological alterations when schistosomes were exposed to either threo-austrobailignan-6 or verrucosin. These relevant antischistosomal properties were accompanied by low cytotoxicity potential against the animal (Vero) and human (HaCaT) cell lines, resulting in a high selectivity index. Considering the promising chemical and biological properties of threo-austrobailignan-6 and verrucosin, this research should be of interest to those in the area of neglected diseases and in particular antischistosomal drug discovery.


Subject(s)
Lignans , Saururaceae , Schistosomiasis mansoni , Schistosomiasis , Animals , Humans , Schistosoma mansoni , Saururaceae/chemistry , Schistosomiasis mansoni/drug therapy
3.
J Pharm Pharmacol ; 71(12): 1871-1878, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31595517

ABSTRACT

OBJECTIVE: This work describes the isolation of anti-Leishmania amazonensis metabolites from Saururus cernuus (Saururaceae). Additionally, ultrastructural changes in promastigotes were evidenced by electron microscopy. METHODS: The MeOH extract from the leaves of S. cernuus was subjected to bioactivity-guided fractionation. Anti-L. amazonensis activity of purified compounds was performed in vitro against promastigote and amastigote forms. KEY FINDINGS: Bioactivity-guided fractionation of the MeOH extract from the leaves of S. cernuus afforded two related tetrahydrofuran dineolignans: threo,threo-manassantin A (1) and threo,erythro-manassantin A (2). Compounds 1 and 2 displayed activity against promastigotes (EC50 of 35.4 ± 7.7 and 17.6 ± 4.2 µm, respectively) and amastigotes (EC50 of 20.4 ± 1.9 and 16.0 ± 1.1 µm, respectively), superior to that determined for the positive control miltefosine (EC50 of 28.7 ± 3.5 µm). Reduced cytotoxicity for host cells was observed for both compounds. Additionally, ultrastructural changes in promastigotes leading to an alteration of structural morphology were observed, as evidenced by electron microscopy. Furthermore, these compounds altered the morphology and physiology of the plasmatic membrane of L. amazonensis. CONCLUSIONS: The obtained results indicated that dineolignans 1 and 2 could be considered as a scaffold for the design of novel and selective drug candidates for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Lignans/pharmacology , Saururaceae/chemistry , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Furans/chemistry , Furans/isolation & purification , Furans/pharmacology , Leishmaniasis/parasitology , Lignans/chemistry , Lignans/isolation & purification , Mice , Mice, Inbred BALB C , Microscopy, Electron , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Plant Leaves
4.
Fitoterapia ; 137: 104251, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31271783

ABSTRACT

The MeOH extract from leaves of Saururus cernuus L. (Saururaceae) displayed in vitro activity against trypomastigote forms of T. cruzi (100% of parasite death at 200 µg/mL), suggesting the presence of bioactive compounds. Thus, the bioactivity-guided fractionation was carried out, leading to the isolation of three related neolignan derivatives, identified as threo-austrobailignan-5 (1), threo-austrobailignan-6 (2), and threo-dihydroguaiaretic acid (3). Anti-T. cruzi activity of compounds 1-3 was performed against cell-derived trypomastigotes and intracellular amastigotes. Additionally, the mammalian cytotoxicity was investigated using NCTC cells. Compound 2 was the most effective against extracellular trypomastigotes with IC50 of 3.7 µM, while compound 3 showed activity in both clinically relevant forms of the parasite, trypomastigotes and amastigotes, with IC50 values of 7.0 and 16.2 µM, respectively. However, the structurally related compound 1 was inactive. Based on these results, compounds 2 and 3 were selected to evaluate the mechanism of cellular death. Compound 2 induced alteration in the plasma membrane permeability and consequently in the ROS levels after 120 min of incubation. By using flow cytometry and fluorescence microscopy, compound 3 showed alterations in the mitochondrial membrane potential (ΔΨm) of trypomastigotes. Considering the promising chemical and biological properties of neolignans 2 and 3, these compounds could be used as starting points to develop new lead compounds for Chagas disease.


Subject(s)
Lignans/pharmacology , Membrane Potential, Mitochondrial/drug effects , Saururaceae/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Brazil , Cells, Cultured , Guaiacol/analogs & derivatives , Lignans/isolation & purification , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry , Reactive Oxygen Species/metabolism , Trypanocidal Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL