Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.069
Filter
1.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38742628

ABSTRACT

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Nerve Regeneration/physiology , Motor Neurons/physiology , Nociceptors/physiology , Nociceptors/metabolism , Sequence Analysis, RNA , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Axotomy , Male , Sciatic Nerve/injuries , Neurons/physiology
2.
Biofabrication ; 16(3)2024 May 07.
Article in English | MEDLINE | ID: mdl-38604162

ABSTRACT

Peripheral nerve injuries can lead to sensory or motor deficits that have a serious impact on a patient's mental health and quality of life. Nevertheless, it remains a major clinical challenge to develop functional nerve conduits as an alternative to autologous grafts. We applied reduced graphene oxide (rGO) as a bioactive conductive material to impart electrophysiological properties to a 3D printed scaffold and the application of a pulsed magnetic field to excite the formation of microcurrents and induce nerve regeneration.In vitrostudies showed that the nerve scaffold and the pulsed magnetic field made no effect on cell survival, increased S-100ßprotein expression, enhanced cell adhesion, and increased the expression level of nerve regeneration-related mRNAs.In vivoexperiments suggested that the protocol was effective in promoting nerve regeneration, resulting in functional recovery of sciatic nerves in rats, when they were damaged close to that of the autologous nerve graft, and increased expression of S-100ß, NF200, and GAP43. These results indicate that rGO composite nerve scaffolds combined with pulsed magnetic field stimulation have great potential for peripheral nerve rehabilitation.


Subject(s)
Electromagnetic Fields , Graphite , Nerve Regeneration , Printing, Three-Dimensional , Rats, Sprague-Dawley , Sciatic Nerve , Tissue Scaffolds , Animals , Graphite/chemistry , Sciatic Nerve/physiology , Sciatic Nerve/injuries , Nerve Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats , Male
3.
Exp Neurol ; 376: 114774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599367

ABSTRACT

Peripheral nerve injury (PNI) resulting from trauma or neuropathies can cause significant disability, and its prognosis deteriorates with age. Emerging evidence suggests that gut dysbiosis and reduced fecal short-chain fatty acids (SCFAs) contribute to an age-related systemic hyperinflammation (inflammaging), which hinders nerve recovery after injury. This study thus aimed to evaluate the pro-regenerative effects of a rejuvenating fecal microbiota transplant (FMT) in a preclinical PNI model using aged mice. Aged C57BL/6 mice underwent bilateral crush injuries to their sciatic nerves. Subsequently, they either received FMT from young donors at three and four days after the injury or retained their aged gut microbiota. We analyzed gut microbiome composition and SCFA concentrations in fecal samples. The integrity of the ileac mucosal barrier was assessed by immunofluorescence staining of Claudin-1. Flow cytometry was utilized to examine immune cells and cytokine production in the ileum, spleen, and sciatic nerve. Various assessments, including behavioural tests, electrophysiological studies, and morphometrical analyses, were conducted to evaluate peripheral nerve function and repair following injury. Rejuvenating FMT reversed age-related gut dysbiosis by increasing Actinobacteria, especially Bifidobacteriales genera. This intervention also led to an elevation of gut SCFA levels and mitigated age-related ileac mucosal leakiness in aged recipients. Additionally, it augmented the number of T-helper 2 (Th2) and regulatory T (Treg) cells in the ileum and spleen, with the majority being positive for anti-inflammatory interleukin-10 (IL-10). In sciatic nerves, rejuvenating FMT resulted in increased M2 macrophage counts and a higher IL-10 production by IL-10+TNF-α- M2 macrophage subsets. Ultimately, restoring a youthful gut microbiome in aged mice led to improved nerve repair and enhanced functional recovery after PNI. Considering that FMT is already a clinically available technique, exploring novel translational strategies targeting the gut microbiome to enhance nerve repair in the elderly seems promising and warrants further evaluation.


Subject(s)
Aging , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Mice, Inbred C57BL , Nerve Regeneration , Animals , Mice , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/physiology , Nerve Regeneration/physiology , Male , Peripheral Nerve Injuries/therapy , Inflammation/metabolism , Inflammation/therapy , Dysbiosis/therapy , Sciatic Nerve/injuries
4.
Ann Plast Surg ; 92(5): 585-590, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38685498

ABSTRACT

BACKGROUND: Acellular nerve allografts (ANAs) were developed to replace the autologous nerve grafts (ANGs) to fill the peripheral nerve defects. Poor vascularization relative to ANGs has been a limitation of application of ANAs. METHODS: A total of 60 female Sprague-Dawley rats were assigned 3 groups. The rats in A group received ANGs, the rats in B group received ANAs, and the rats in C group were transplanted with ANA carrying endothelial cells (ANA + ECs). In the 1st, 2nd, 4th, and 12th postoperative weeks, 5 rats were selected from each group for evaluating sciatic function index (SFI), electrophysiology, maximum tetanic force recovery rate, tibialis anterior muscle weights recovery rate, and microvessel density. In the 12th postoperative week, the nerves were harvested and stained with toluidine blue and observed under an electron microscope to compare nerve fibers, myelin width, and G-ratio. RESULTS: All the rats survived. In the first and second postoperative weeks, more microvessels were found in the ANA + EC group. In the 12th postoperative week, the nerve fibers were more numerous, and G-ratio was smaller in the C group compared with the B group. The compound muscle action potential and maximum tetanic force recovery rate in the tibialis anterior muscle in the C group were better than those in the B group in the 12th postoperative week. The A group showed better performances in electrophysiology, maximum tetanic force, muscle wet weight, and nerve regeneration. CONCLUSION: ANA + ECs can promote early angiogenesis, promoting nerve regeneration and neurological function recovery.


Subject(s)
Allografts , Endothelial Cells , Nerve Regeneration , Rats, Sprague-Dawley , Sciatic Nerve , Animals , Female , Rats , Sciatic Nerve/surgery , Sciatic Nerve/injuries , Sciatic Nerve/transplantation , Nerve Regeneration/physiology , Peripheral Nerve Injuries/surgery , Recovery of Function , Random Allocation
5.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664711

ABSTRACT

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Subject(s)
Activating Transcription Factor 3 , Axons , DNA Breaks, Double-Stranded , Ganglia, Spinal , Mesenchymal Stem Cells , Mitochondria , Nerve Regeneration , Reactive Oxygen Species , Sciatic Nerve , Up-Regulation , Animals , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Axons/metabolism , Nerve Regeneration/genetics , Up-Regulation/genetics , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Male
6.
J Cell Mol Med ; 28(9): e18340, 2024 May.
Article in English | MEDLINE | ID: mdl-38685681

ABSTRACT

This study delves into the impact of mesenchymal stem cells derived from bone marrow (BM-MSCs) and those sourced from dental pulp (DP-MSCs) on the recovery of motor function and morphological aspects of the rat's sciatic nerve after crush injuries. The findings highlight that the groups treated with BM-MSCs, DP-MSCs or a combination of both (BM + DP-MSCs) displayed enhanced sciatic functional index values when juxtaposed with the sham group. This points to bettered motor functionalities. A deeper morphological analysis showed that all the groups had retained perineurium structure and fascicular arrangement. Notably, the sham and BM-MSCs groups had very few inconsistencies. All groups showed standard vascular density. Remarkably, the combined treatment group (BM + DP-MSCs) presented diminished oedema and a lower count of inflammatory cells. Through immunohistochemical methods, the presence of S100 expression was noted in the groups that underwent treatment. In summation, the study suggests that both BM-MSCs and DP-MSCs, whether used singly or in combination, can significantly aid in motor function restoration and morphological enhancements. An interesting observation from our research and earlier studies is that stem cells from dental pulp, which are sourced with less discomfort from milk and wisdom teeth, show a heightened propensity to evolve into nerve cells. This is in contrast to the more uncomfortably acquired BM-MSCs.


Subject(s)
Bone Marrow Cells , Dental Pulp , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Recovery of Function , Sciatic Nerve , Animals , Dental Pulp/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Sciatic Nerve/injuries , Mesenchymal Stem Cell Transplantation/methods , Rats , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Male , Nerve Regeneration , Rats, Wistar
7.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542483

ABSTRACT

With the development of single-cell sequencing technology, the cellular composition of more and more tissues is being elucidated. As the whole nervous system has been extensively studied, the cellular composition of the peripheral nerve has gradually been revealed. By summarizing the current sequencing data, we compile the heterogeneities of cells that have been reported in the peripheral nerves, mainly the sciatic nerve. The cellular variability of Schwann cells, fibroblasts, immune cells, and endothelial cells during development and disease has been discussed in this review. The discovery of the architecture of peripheral nerves after injury benefits the understanding of cellular complexity in the nervous system, as well as the construction of tissue engineering nerves for nerve repair and axon regeneration.


Subject(s)
Axons , Peripheral Nerve Injuries , Humans , Axons/physiology , Endothelial Cells , Nerve Regeneration/physiology , Schwann Cells/physiology , Sciatic Nerve/injuries , Peripheral Nerve Injuries/genetics
9.
Int J Nanomedicine ; 19: 2573-2589, 2024.
Article in English | MEDLINE | ID: mdl-38505172

ABSTRACT

Background: Treating peripheral nerve injuries (PNI) with defects remains challenging in clinical practice. The commercial conduits have shown suboptimal nerve regeneration and functional recovery due to their basic tubular design without electroactive and oriented topographical cues. Purpose: To develop a new scaffold with oriented microstructure and electroactive Graphene oxide (GO) and investigate its' therapeutic effect on nerve regeneration in vitro and in vivo. Methods: This study employed a straightforward approach to co-spin PCL and GO, yielding an oriented hybrid nanofibrous scaffold known as the O-GO/PCL scaffold. The physical and chemical properties of nanofibrous scaffold were tested by scanning electron microscopy (SEM), transmission electron microscope (TEM), tensile test and so on. Primary Schwann cells (SCs) and dorsal root ganglia (DRG) were used to investigate the impact of the newly developed scaffolds on the biological behavior of neural cells in vitro. Transcriptome sequencing (mRNA-seq) was employed to probe the underlying mechanisms of the synergistic effect of electroactive GO and longitudinal topographic guidance on nerve regeneration. Furthermore, the developed O-GO/PCL scaffold was utilized to bridge a 10-mm sciatic nerve defect in rat, aiming to investigate its therapeutic potential for peripheral nerve regeneration in vivo. Results and discussion: The SEM and TEM revealed that the newly developed O-GO/PCL scaffold showed longitudinally oriented microstructure and GO particles were homogenously and uniformly distributed inside the nanofibers. Primary SCs were utilized to assess the biocompatibility of the GO-based scaffold, revealing that negligible cytotoxicity when GO concentration does not exceed 0.5%. In vitro analysis of nerve regeneration demonstrated that axons in the O-GO/PCL group exhibited an average length of 1054.88 ± 161.32 µm, significant longer than those in the other groups (P < 0.05). Moreover, mRNA sequencing results suggested that the O-GO/PCL scaffold could enhance nerve regeneration by upregulating genes associated with neural regeneration, encompassing ion transport, axon guidance and cell-cell interactions. Most importantly, we employed the O-GO/PCL scaffold to repair a 10-mm sciatic nerve defect in rat, resulting in augmented nerve regeneration, myelination, and functional recovery. Conclusion: The O-GO/PCL scaffold with oriented microstructure and electroactive GO represents a promising heral nerve reconstruction.


Subject(s)
Graphite , Nanofibers , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Nanofibers/chemistry , RNA, Messenger , Polyesters/chemistry
10.
Int J Nanomedicine ; 19: 2341-2357, 2024.
Article in English | MEDLINE | ID: mdl-38469057

ABSTRACT

Background: The treatment of long-gap peripheral nerve injury (PNI) is still a substantial clinical problem. Graphene-based scaffolds possess extracellular matrix (ECM) characteristic and can conduct electrical signals, therefore have been investigated for repairing PNI. Combined with electrical stimulation (ES), a well performance should be expected. We aimed to determine the effects of reduced graphene oxide fibers (rGOFs) combined with ES on PNI repair in vivo. Methods: rGOFs were prepared by one-step dimensionally confined hydrothermal strategy (DCH). Surface characteristics, chemical compositions, electrical and mechanical properties of the samples were characterized. The biocompatibility of the rGOFs were systematically explored both in vitro and in vivo. Total of 54 Sprague-Dawley (SD) rats were randomized into 6 experimental groups: a silicone conduit (S), S+ES, S+rGOFs-filled conduit (SGC), SGC+ES, nerve autograft, and sham groups for a 10-mm sciatic defect. Functional and histological recovery of the regenerated sciatic nerve at 12 weeks after surgery in each group of SD rats were evaluated. Results: rGOFs exhibited aligned micro- and nano-channels with excellent mechanical and electrical properties. They are biocompatible in vitro and in vivo. All 6 groups exhibited PNI repair outcomes in view of neurological and morphological recovery. The SGC+ES group achieved similar therapeutic effects as nerve autograft group (P > 0.05), significantly outperformed other treatment groups. Immunohistochemical analysis showed that the expression of proteins related to axonal regeneration and angiogenesis were relatively higher in the SGC+ES. Conclusion: The rGOFs had good biocompatibility combined with excellent electrical and mechanical properties. Combined with ES, the rGOFs provided superior motor nerve recovery for a 10-mm nerve gap in a murine acute transection injury model, indicating its excellent repairing ability. That the similar therapeutic effects as autologous nerve transplantation make us believe this method is a promising way to treat peripheral nerve defects, which is expected to guide clinical practice in the future.


Subject(s)
Graphite , Peripheral Nerve Injuries , Rats , Mice , Animals , Rats, Sprague-Dawley , Graphite/pharmacology , Nerve Regeneration , Sciatic Nerve/injuries , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Electric Stimulation/methods
11.
ACS Biomater Sci Eng ; 10(4): 2001-2021, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38487853

ABSTRACT

Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.


Subject(s)
Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/surgery , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Sciatic Nerve/surgery , Tissue Scaffolds , Tissue Engineering
12.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Article in English | MEDLINE | ID: mdl-38430538

ABSTRACT

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Subject(s)
Fibroins , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Rats , Peripheral Nerve Injuries/therapy , Fibroins/chemistry , Fibroins/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Schwann Cells/metabolism , Guided Tissue Regeneration/methods , Inflammation , Tissue Scaffolds/chemistry , Sciatic Nerve/injuries
13.
Neurotherapeutics ; 21(3): e00336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368171

ABSTRACT

A challenging complication in patients with peripheral compressive neuropathy is neuropathic pain. Excessive neuroinflammation at the injury site worsens neuropathic pain and impairs function. Currently, non-invasive modulation techniques like transcutaneous electrical nerve stimulation (TENS) have shown therapeutic promise with positive results. However, the underlying regulatory molecular mechanism for pain relief remains complex and unexplored. This study aimed to validate the therapeutic effect of ultrahigh frequency (UHF)-TENS in chronic constriction injury of the rat sciatic nerve. Alleviation of mechanical allodynia was achieved through the application of UHF-TENS, lasting for 3 days after one session of therapy and 4 days after two sessions, without causing additional damage to the myelinated axon structure. The entire tissue collection schedule was divided into four time points: nerve exposure surgery, 7 days after nerve ligation, and 1 and 5 days after one session of UHF therapy. Significant reductions in pain-related neuropeptides, MEK, c-Myc, c-FOS, COX2, and substance P, were observed in the injured DRG neurons after UHF therapy. RNA sequencing of differential gene expression in sensory neurons revealed significant downregulation in Cables, Pik3r1, Vps4b, Tlr7, and Ezh2 after UHF therapy, while upregulation was observed in Nfkbie and Cln3. UHF-TENS effectively and safely relieved neuropathic pain without causing further nerve damage. The decreased production of pain-related neuropeptides within the DRG provided the therapeutic benefit. Possible molecular mechanisms behind UHF-TENS may result from the modulation of the NF-κB complex, toll-like receptor-7, and phosphoinositide 3-kinase/Akt signaling pathways. These results suggest the neuromodulatory effects of UHF-TENS in rat sciatic nerve chronic constriction injury, including alleviation of neuropathic pain, amelioration of pain-related neuropeptides, and regulation of neuroinflammatory gene expression. In combination with the regulation of related neuroinflammatory genes, UHF-TENS could become a new modality for enhancing the treatment of neuropathic pain in the future.


Subject(s)
Neuralgia , Rats, Sprague-Dawley , Transcutaneous Electric Nerve Stimulation , Animals , Transcutaneous Electric Nerve Stimulation/methods , Neuralgia/therapy , Rats , Male , Hyperalgesia/therapy , Ganglia, Spinal/metabolism , Sciatic Nerve/injuries
14.
J Chem Neuroanat ; 136: 102395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320670

ABSTRACT

OBJECTIVE: To test the protective effects of Garcinia kola and curcumin on the ganglion tissues of diabetic rats following the use of autologous vein graft in peripheral nerve transection injury. METHODS: The sciatic nerve on the right side was transected, and anastomosis was performed between the proximal and distal ends using an autologous vein graft. Curcumin and Garcinia kola seed extract were administered daily by oral gavage. The ganglion tissues were harvested after a 90-day waiting period. Sensory neurons in the dorsal root ganglion at the L4 and L5 levels were used for stereological evaluations. Mean sensory neuron numbers were analyzed using a stereological technique. The size of the light and dark neurons was also estimated, and ultrastructural and immunohistochemical evaluations were performed. RESULTS: A statistically significant difference in sensory neuron numbers was observed between the groups with and without Garcinia kola and curcumin applications. The immunohistochemical results showed that the s-100 protein is expressed selectively between cell types. CONCLUSION: The results of this study show that curcumin and Garicinia kola prevented sensory neuron loss in diabetic rats following transection injury to the sciatic nerve.


Subject(s)
Curcumin , Diabetes Mellitus, Experimental , Garcinia kola , Peripheral Nerve Injuries , Rats , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Ganglia, Spinal/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Neurons/ultrastructure , Sciatic Nerve/injuries , Peripheral Nerve Injuries/metabolism
15.
J Chem Neuroanat ; 136: 102396, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331230

ABSTRACT

The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in order to permit effective communication. The dynamic cellular environment within the ganglion undergoes several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. Stereological techniques provide observer-independent and reliable results, which are particularly useful in the quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fractionator and disector techniques within stereological methodologies yields unbiased data when assessing parameters such as number. The fundamental concept underlying these methodologies involves ensuring that each part of the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury models.


Subject(s)
Neurons , Peripheral Nerve Injuries , Rats , Animals , Sciatic Nerve/injuries , Microscopy, Electron , Neuronal Plasticity/physiology
16.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373630

ABSTRACT

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Subject(s)
Electroacupuncture , MicroRNAs , Peripheral Nerve Injuries , Sciatic Neuropathy , Rats , Animals , Rats, Sprague-Dawley , Semaphorin-3A/pharmacology , Axons , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Sciatic Neuropathy/therapy , Peripheral Nerve Injuries/therapy , MicroRNAs/genetics , MicroRNAs/pharmacology
17.
J Transl Med ; 22(1): 194, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388913

ABSTRACT

BACKGROUND: Peripheral nerve injury (PNI) is commonly observed in clinical practice, yet the underlying mechanisms remain unclear. This study investigated the correlation between the expression of a Ras-related protein Rab32 and pyroptosis in rats following PNI, and potential mechanisms have been explored by which Rab32 may influence Schwann cells pyroptosis and ultimately peripheral nerve regeneration (PNR) through the regulation of Reactive oxygen species (ROS) levels. METHODS: The authors investigated the induction of Schwann cell pyroptosis and the elevated expression of Rab32 in a rat model of PNI. In vitro experiments revealed an upregulation of Rab32 during Schwann cell pyroptosis. Furthermore, the effect of Rab32 on the level of ROS in mitochondria in pyroptosis model has also been studied. Finally, the effects of knocking down the Rab32 gene on PNR were assessed, morphology, sensory and motor functions of sciatic nerves, electrophysiology and immunohistochemical analysis were conducted to assess the therapeutic efficacy. RESULTS: Silencing Rab32 attenuated PNI-induced Schwann cell pyroptosis and promoted peripheral nerve regeneration. Furthermore, our findings demonstrated that Rab32 induces significant oxidative stress by damaging the mitochondria of Schwann cells in the pyroptosis model in vitro. CONCLUSION: Rab32 exacerbated Schwann cell pyroptosis in PNI model, leading to delayed peripheral nerve regeneration. Rab32 can be a potential target for future therapeutic strategy in the treatment of peripheral nerve injuries.


Subject(s)
Peripheral Nerve Injuries , Rats , Animals , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Reactive Oxygen Species/metabolism , Pyroptosis , Rats, Sprague-Dawley , Cell Proliferation , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Nerve Regeneration/physiology
18.
J Control Release ; 368: 24-41, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367864

ABSTRACT

Peripheral nerve injury (PNI) and the limitations of current treatments often result in incomplete sensory and motor function recovery, which significantly impact the patient's quality of life. While exosomes (Exo) derived from stem cells and Schwann cells have shown promise on promoting PNI repair following systemic administration or intraneural injection, achieving effective local and sustained Exo delivery holds promise to treat local PNI and remains challenging. In this study, we developed Exo-loaded decellularized porcine nerve hydrogels (DNH) for PNI repair. We successfully isolated Exo from differentiated human adipose-derived mesenchymal stem cells (hADMSC) with a Schwann cell-like phenotype (denoted as dExo). These dExo were further combined with polyethylenimine (PEI), and DNH to create polyplex hydrogels (dExo-loaded pDNH). At a PEI content of 0.1%, pDNH showed cytocompatibility for hADMSCs and supported neurite outgrowth of dorsal root ganglions. The sustained release of dExos from dExo-loaded pDNH persisted for at least 21 days both in vitro and in vivo. When applied around injured nerves in a mouse sciatic nerve crush injury model, the dExo-loaded pDNH group significantly improved sensory and motor function recovery and enhanced remyelination compared to dExo and pDNH only groups, highlighting the synergistic regenerative effects. Interestingly, we observed a negative correlation between the number of colony-stimulating factor-1 receptor (CSF-1R) positive cells and the extent of PNI regeneration at the 21-day post-surgery stage. Subsequent in vitro experiments demonstrated the potential involvement of the CSF-1/CSF-1R axis in Schwann cells and macrophage interaction, with dExo effectively downregulating CSF-1/CSF-1R signaling.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Peripheral Nerve Injuries , Mice , Humans , Swine , Animals , Macrophage Colony-Stimulating Factor , Hydrogels , Quality of Life , Nerve Regeneration , Sciatic Nerve/injuries , Schwann Cells , Peripheral Nerve Injuries/therapy
19.
J Biomed Mater Res B Appl Biomater ; 112(2): e35378, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356051

ABSTRACT

Globally, peripheral nerve injury (PNI) is a common clinical issue. Successfully repairing severe PNIs has posed a major challenge for clinicians. GW3965 is a highly selective LXR agonist, and previous studies have demonstrated its positive protective effects in both central and peripheral nerve diseases. In this work, we examined the potential reparative effects of GW3965-loaded polylactic acid co-glycolic acid microspheres in conjunction with a chitosan nerve conduit for peripheral nerve damage. The experiment revealed that GW3965 promoted Schwann cell proliferation and neurotrophic factor release in vitro. In vivo experiments conducted on rats showed that GW3965 facilitated the restoration of motor function, promoted axon and myelin regeneration in the sciatic nerve, and enhanced the microenvironment of nerve regeneration. These results offer a novel therapeutic approach for the healing of nerve damage. Overall, this work provides valuable insights and presents a promising therapeutic strategy for addressing PNI.


Subject(s)
Benzoates , Benzylamines , Chitosan , Peripheral Nerve Injuries , Rats , Animals , Chitosan/pharmacology , Liver X Receptors/therapeutic use , Microspheres , Schwann Cells , Sciatic Nerve/injuries , Peripheral Nerve Injuries/drug therapy , Nerve Regeneration
20.
Int Orthop ; 48(3): 849-856, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38195944

ABSTRACT

PURPOSE: This study aimed to investigate the incidence, risk factors of the sciatic nerve injury in patients with acetabulum fractures and assess its prognosis. METHODS: A retrospective cross-sectional review was conducted on 273 patients with acetabulum fractures who were treated between January 1st, 2017, and December 30th, 2019. The medical records and radiographs of these patients were analyzed. RESULTS: The overall nerve injury rate was 7.7% (21 of 273 cases), with 3.1% (8 of 273 cases) occurring because of the initial injury and 12.8% (13 of 101 cases) as post-operative complications. Among those with nerve injuries, 95.2% (20 of 21 cases) were males and the average age of the patients was 31.5 (SD 9.5) years. The most common mechanism of injury was motor vehicle collisions with 55.7% (152 of 273 cases), and the most common fracture pattern associated with nerve injury was posterior column and posterior wall fracture with 31.6% (6 of 21 cases). Hip dislocation was found in 16.5% (14 of 21 cases) of patients with nerve injury. The Kocher Langenbeck approach was the most common approach used for patients with post-operative nerve injury, and the prone position was significantly associated with sciatic nerve injury during the operation. Of all patients with nerve injury, 52% (11 of 21 cases) had fully recovered, 29% (6 of 21 cases) had partially recovered, and 19% (4 of 21 cases) had no improvement. The average follow-up was 15 months. CONCLUSION: This study emphasizes the incidence of sciatic nerve injuries in individuals with acetabulum fractures and highlights key risk factors, including hip dislocation, posterior column, and posterior wall fractures. It is noteworthy that the Kocher Langenbeck approach and the prone position may contribute to iatrogenic nerve injuries. Encouragingly, over half of the patients who suffered nerve injuries achieved full recovery, while nearly one-third experienced partial recovery. These findings underscore the vital significance of recognizing and addressing these risk factors in clinical practice.


Subject(s)
Fractures, Bone , Hip Dislocation , Hip Fractures , Peripheral Nerve Injuries , Spinal Fractures , Male , Humans , Adult , Female , Cross-Sectional Studies , Retrospective Studies , Hip Dislocation/surgery , Incidence , Acetabulum/diagnostic imaging , Acetabulum/surgery , Acetabulum/injuries , Fracture Fixation, Internal/adverse effects , Hip Fractures/surgery , Fractures, Bone/complications , Fractures, Bone/epidemiology , Fractures, Bone/surgery , Spinal Fractures/complications , Prognosis , Risk Factors , Peripheral Nerve Injuries/epidemiology , Peripheral Nerve Injuries/etiology , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...