Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 784
Filter
1.
Handb Clin Neurol ; 201: 165-181, 2024.
Article in English | MEDLINE | ID: mdl-38697738

ABSTRACT

The sciatic nerve is the body's largest peripheral nerve. Along with their two terminal divisions (tibial and fibular), their anatomic location makes them particularly vulnerable to trauma and iatrogenic injuries. A thorough understanding of the functional anatomy is required to adequately localize lesions in this lengthy neural pathway. Proximal disorders of the nerve can be challenging to precisely localize among a range of possibilities including lumbosacral pathology, radiculopathy, or piriformis syndrome. A correct diagnosis is based upon a thorough history and physical examination, which will then appropriately direct adjunctive investigations such as imaging and electrodiagnostic testing. Disorders of the sciatic nerve and its terminal branches are disabling for patients, and expert assessment by rehabilitation professionals is important in limiting their impact. Applying techniques established in the upper extremity, surgical reconstruction of lower extremity nerve dysfunction is rapidly improving and evolving. These new techniques, such as nerve transfers, require electrodiagnostic assessment of both the injured nerve(s) as well as healthy, potential donor nerves as part of a complete neurophysiological examination.


Subject(s)
Sciatic Neuropathy , Humans , Sciatic Neuropathy/diagnosis , Sciatic Neuropathy/physiopathology , Tibial Neuropathy/diagnosis , Electrodiagnosis/methods
2.
J Vet Intern Med ; 38(3): 1626-1638, 2024.
Article in English | MEDLINE | ID: mdl-38634245

ABSTRACT

BACKGROUND: Reports describing sciatic nerve injuries (SNI) and their outcome are scarce in veterinary medicine. HYPOTHESIS: Describe the causes of traumatic and iatrogenic SNI and evaluate which clinical and electrodiagnostic findings predict outcome. ANIMALS: Thirty-eight dogs and 10 cats with confirmed SNI referred for neurologic and electrodiagnostic evaluation. METHODS: Clinical and electrodiagnostic examination results, including electromyography (EMG), motor nerve conduction studies, muscle-evoked potential (MEP), F-waves, sensory nerve conduction studies, and cord dorsum potential (CDP), were retrospectively evaluated. Quality of life (QoL) was assessed based on owner interviews. RESULTS: Surgery (42%) and trauma (33%) were the most common causes of SNI; in dogs, 24% were caused by bites from wild boars. Ability to flex and extend the tarsus was significantly associated with positive outcome in dogs. Mean time from onset of clinical signs until electrodiagnostic evaluation was 67 ± 65 (range, 7-300) days and 65 ± 108 (range, 7-365) days for dogs and cats, respectively. A cut-off amplitude of 1.45 mV for compound motor action potentials (CMAP) was predictive of positive outcome in dogs (P = .01), with sensitivity of 58% and specificity of 100%. CONCLUSIONS AND CLINICAL IMPORTANCE: Clinical motor function predicts recovery better than sensory function. Electrodiagnostic findings also may play a role in predicting the outcome of SNI. Application of the proposed CMAP cut-off amplitude may assist clinicians in shortening the time to reassessment or for earlier suggestion of salvage procedures. Owners perceived a good quality of life (QoL), even in cases of hindlimb amputation.


Subject(s)
Dog Diseases , Electromyography , Sciatic Nerve , Animals , Dogs , Cats , Sciatic Nerve/injuries , Male , Female , Retrospective Studies , Dog Diseases/diagnosis , Dog Diseases/physiopathology , Electromyography/veterinary , Cat Diseases/diagnosis , Cat Diseases/physiopathology , Quality of Life , Electrodiagnosis/veterinary , Sciatic Neuropathy/veterinary , Sciatic Neuropathy/diagnosis , Sciatic Neuropathy/physiopathology , Iatrogenic Disease/veterinary , Neural Conduction/physiology
3.
Int. j. morphol ; 41(4): 1128-1134, ago. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514339

ABSTRACT

SUMMARY: This study investigated the role and mechanism of aspirin combined with rehabilitation training in the nerve injury repair and Schwann cell changes in rats with sciatic nerve injury. Totally, 120 male healthy SD rats were randomly divided into sham, model, aspirin, and aspirin + rehabilitation groups, with 30 rats in each group. The sciatic nerve function index (SFI), photothermal pain tolerance threshold and inclined plane test results at 4, 6, and 8 weeks after operation were compared. The distance of sensory nerve regeneration and the expression of S100B protein in Schwann cells were analyzed. Compared with the sham group, the SFI of the model, aspirin, and aspirin+rehabilitation groups were significantly lower at 4, 6, and 8 weeks after operation. However, the aspirin and aspirin+rehabilitation groups had significantly higher SFI than the model group. The SFI at 6 and 8 weeks after operation was higher in the aspirin+rehabilitation group than that in the aspirin group (P<0.05). The photothermal pain tolerance threshold of the sham, aspirin, and aspirin+rehabilitation groups were significantly higher than those of the model group at 4, 6, and 8 weeks after operation (P<0.05). The inclination angles of the model, aspirin, and aspirin+rehabilitation groups were significantly lower than those of the sham group at 4, 6, and 8 weeks after operation, and the inclination angle of the aspirin+rehabilitation group was significantly higher than that of the model and aspirin groups (P<0.05). The sensory nerve regeneration distance in aspirin and aspirin+rehabilitation groups was higher than that in the sham and model groups (P<0.05). The expression of S100B protein in the aspirin and aspirin+rehabilitation groups was higher than that in the model group (P<0.05). Aspirin combined with rehabilitation training can promote the functional recovery of sciatic nerve injury, and the mechanism may be related to the increase of the expression of S100B protein in Schwann cells.


En este estudio se investigó el papel y el mecanismo que desempeña la aspirina combinada, con el entrenamiento de rehabilitación en la reparación de lesiones nerviosas y los cambios en los schwannocitos en ratas con lesiones en el nervio ciático. En total, 120 ratas SD macho sanas se dividieron aleatoriamente en cuatro grupos de 30 ratas en cada uno: simulación, modelo, aspirina y aspirina + rehabilitación. Se compararon el índice de función del nervio ciático (SFI), el umbral de tolerancia al dolor fototérmico y los resultados de la prueba del plano inclinado a las 4, 6 y 8 semanas después de la operación. Se analizó la distancia de regeneración del nervio sensorial y la expresión de la proteína S100B en los schwannocitos. En comparación con el grupo simulado, el SFI de los grupos modelo, aspirina y aspirina+rehabilitación fue significativamente menor a las 4, 6 y 8 semanas después de la operación. Sin embargo, los grupos de aspirina y aspirina + rehabilitación tuvieron un SFI significativamente más alto que el grupo modelo. El SFI a las 6 y 8 semanas después de la operación fue mayor en el grupo de aspirina + rehabilitación que en el grupo de aspirina (P<0,05). El umbral de tolerancia al dolor fototérmico de los grupos simulado, aspirina y aspirina+rehabilitación fue significativamente mayor que el del grupo modelo a las 4, 6 y 8 semanas después de la operación (P<0,05). Los ángulos de inclinación de los grupos modelo, aspirina y aspirina+rehabilitación fueron significativamente menores que los del grupo simulado a las 4, 6 y 8 semanas después de la operación, y el ángulo de inclinación del grupo aspirina+rehabilitación fue significativamente mayor que el de los grupos modelo y aspirina (P<0.05). La distancia de regeneración del nervio sensorial en los grupos de aspirina y aspirina+rehabilitación fue mayor que en los grupos simulado y modelo (P<0,05). La expresión de la proteína S100B en los grupos de aspirina y aspirina+rehabilitación fue mayor que en el grupo modelo (P<0,05). La aspirina combinada con el entrenamiento de rehabilitación puede promover la recuperación funcional de la lesión del nervio ciático, y el mecanismo puede estar relacionado con el aumento de la expresión de la proteína S100B en los schwannocitos.


Subject(s)
Animals , Rats , Sciatic Nerve/cytology , Exercise , Aspirin/therapeutic use , Sciatic Neuropathy/rehabilitation , Schwann Cells , Immunohistochemistry , Pain Threshold , Combined Modality Therapy , Sciatic Neuropathy/physiopathology , Disease Models, Animal
4.
Neurol Res ; 44(3): 252-261, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34581256

ABSTRACT

INTRODUCTION: Peripheral nerve traumas are common injuries in young adult population. The myriad of techniques and medications have been defined to obtain better recovery but none of them was proved to have superior effect. This study aims to determine the anti-fibrotic effect of the decorin on sciatic nerve injury in order to enhance functional outcome. MATERIALS AND METHODS: 24 12-week-old male Sprague-Dawley rats (350-400 gr) were divided into four groups. The sciatic nerve was dissected and exposed; a full-thickness laceration was created 1.5 cm proximal to the bifurcation point and 1.5 cm distal to where it originated from the lumbosacral plexus. Motor and sensory tests were conducted before and after the operations for evaluating the nerve healing. RESULTS: There was a statistically significant difference between DCN bolus and PBS bolus group. (p<0.0001, p<0.05) in neuromotor tests. Increase of the latency was significantly lower in DCN bolus and infusion group when compared with the PBS bolus group. (p<0,001). All operated gastrocnemius muscles were atrophic compared with the contralateral side. The differences between the averages in the sciatic functional index, the improvement of the DCN infusion group was 8.6 units better than the PBS group and 4.4 units better than the DCN bolus group. When the amount of stimulation was 10 mV at the proximal segment in electromyography, there was no significant difference between the DCN bolus and sham groups. (p> 0.05, p = 0.6623). CONCLUSION: Decorin protein reduces the fibrosis and enhances the motor and sensory recovery both clinically and histologically. Despite the high cost, short half-life and production issues, this protein could be administered after the microsurgical repair but more studies are required to overcome the limitations.


Subject(s)
Decorin/pharmacology , Muscle, Skeletal/drug effects , Peripheral Nerve Injuries/drug therapy , Recovery of Function/drug effects , Sciatic Neuropathy/drug therapy , Animals , Decorin/administration & dosage , Disease Models, Animal , Electromyography , Fibrosis/drug therapy , Male , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/physiopathology , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology
5.
Oxid Med Cell Longev ; 2021: 9577874, 2021.
Article in English | MEDLINE | ID: mdl-34721761

ABSTRACT

BACKGROUND: Neuropathic pain is a debilitating disease with few effective treatments. Emerging evidence indicates the involvement of mitochondrial dysfunction and oxidative stress in neuropathic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a potent regulator of the antioxidant response system. In this study, we investigated whether RTA-408 (RTA, a novel synthetic triterpenoid under clinical investigation) could activate Nrf2 and promote mitochondrial biogenesis (MB) to reverse neuropathic pain and the underlying mechanisms. METHODS: Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Pain behaviors were measured via the von Frey test and Hargreaves plantar test. The L4-6 spinal cord was collected to examine the activation of Nrf2 and MB. RESULTS: RTA-408 treatment significantly reversed mechanical allodynia and thermal hyperalgesia in CCI mice in a dose-dependent manner. Furthermore, RTA-408 increased the activity of Nrf2 and significantly restored MB that was impaired in CCI mice in an Nrf2-dependent manner. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) is the key regulator of MB. We found that the PGC-1α activator also induced a potent analgesic effect in CCI mice. Moreover, the antinociceptive effect of RTA-408 was reversed by the preinjection of the PGC-1α inhibitor. CONCLUSIONS: Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Our results indicate that Nrf2 may be a potential therapeutic strategy to ameliorate neuropathic pain and many other disorders with oxidative stress and mitochondrial dysfunction.


Subject(s)
Analgesics/pharmacology , Mitochondria/drug effects , NF-E2-Related Factor 2/agonists , Neuralgia/prevention & control , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sciatic Neuropathy/drug therapy , Spinal Cord/drug effects , Triterpenes/pharmacology , Animals , Chronic Disease , Constriction, Pathologic , Disease Models, Animal , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , NF-E2-Related Factor 2/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Neuralgia/physiopathology , Pain Threshold/drug effects , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/physiopathology
6.
Clin Neurol Neurosurg ; 209: 106917, 2021 10.
Article in English | MEDLINE | ID: mdl-34507126

ABSTRACT

Localized hypertrophic neuropathy (LHN) are slowly growing nerve lesions causing progressive nerve deficit and weakness. We present the case of a 32-year old woman with long history of motor and sensory deficit complains along the sciatic nerve territory. The muscles involved were featured by delay in F waves at nerve conduction assessment. Magnetic resonance imaging (MRI) showed specific patterns, low intense on T1 and abnormally hyper intense on short tau inversion recovery (STIR) and T2, with no obvious enhancement, features compatible with either LHN or intraneural perineurioma (IP) of the sciatic nerve and/or the lumbosacral plexus. Focal thickening and hypertrophy of the sciatic nerve with preserved fascicular configuration and progressive enlargement of the right lumbosacral plexus could be noted. A nerve conduction assessment followed by an MRI eventually allowed to diagnose LHN, without performing a nerve biopsy. Although similar, LHN and IP are two distinct lesions which should be diagnosed and differentiated as soon as possible, to avoid potential complications due to delayed diagnosis and/or misdiagnosis.


Subject(s)
Lumbosacral Plexus/diagnostic imaging , Neural Conduction/physiology , Sciatic Nerve/diagnostic imaging , Sciatic Neuropathy/diagnostic imaging , Adult , Electrodiagnosis , Female , Humans , Lumbosacral Plexus/physiopathology , Magnetic Resonance Imaging , Sciatic Nerve/physiopathology , Sciatic Neuropathy/physiopathology
7.
BMC Neurosci ; 22(1): 50, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34384370

ABSTRACT

BACKGROUND: Fibrin as an extracellular matrix feature like biocompatibility, creates a favorable environment for proliferation and migration of cells and it can act as a reservoir for storage and release of growth factors in tissue engineering. METHODS: In this study, the inner surface of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibrous conduit was biofunctionalized with laminin containing brain derived neurotrophic factor (BDNF) and gold nanoparticles in chitosan nanoparticle. The rats were randomly divided into five groups, including autograft group as the positive control, PLGA conduit coated by laminin and filled with DMEM/F12, PLGA conduit coated by laminin and filled with rat-adipose derived stem cells (r-ADSCs), PLGA conduit coated by laminin containing gold-chitosan nanoparticles (AuNPs-CNPs), BDNF-chitosan nanoparticles (BDNF-CNPs) and filled with r-ADSCs or filled with r-ADSCs suspended in fibrin matrix, and they were implanted into a 10 mm rat sciatic nerve gap. Eventually, axonal regeneration and functional recovery were assessed after 12 weeks. RESULTS: After 3 months post-surgery period, the results showed that in the PLGA conduit filled with r-ADSCs without fibrin matrix group, positive effects were obtained as compared to other implanted groups by increasing the sciatic functional index significantly (p < 0.05). In addition, the diameter nerve fibers had a significant difference mean in the PLGA conduit coated by laminin and conduit filled with r-ADSCs in fibrin matrix groups relative to the autograft group (p < 0.001). However, G-ratio and amplitude (AMP) results showed that fibrin matrix might have beneficial effects on nerve regeneration but, immunohistochemistry and real-time RT-PCR outcomes indicated that the implanted conduit which filled with r-ADSCs, with or without BDNF-CNPs and AuNPs-CNPs had significantly higher expression of S100 and MBP markers than other conduit implanted groups (p < 0.05). CONCLUSIONS: It seems, in this study differential effects of fibrin matrix, could be interfered it with other factors thereby and further studies are required to determine the distinctive effects of fibrin matrix combination with other exogenous factors in peripheral nerve regeneration.


Subject(s)
Brain-Derived Neurotrophic Factor/administration & dosage , Gold/administration & dosage , Mesenchymal Stem Cells , Metal Nanoparticles/administration & dosage , Nerve Regeneration/physiology , Sciatic Neuropathy/therapy , Animals , Combined Modality Therapy , Drug Delivery Systems/methods , Drug Therapy, Combination , Fibrin/administration & dosage , Male , Nerve Regeneration/drug effects , Rats , Rats, Wistar , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology
8.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445330

ABSTRACT

We investigated injury-induced heat shock protein 27 (HSP27) expression and its association to axonal outgrowth after injury and different nerve repair models in healthy Wistar and diabetic Goto-Kakizaki rats. By immunohistochemistry, expression of HSP27 in sciatic nerves and DRG and axonal outgrowth (neurofilaments) in sciatic nerves were analyzed after no, immediate, and delayed (7-day delay) nerve repairs (7- or 14-day follow-up). An increased HSP27 expression in nerves and in DRG at the uninjured side was associated with diabetes. HSP27 expression in nerves and in DRG increased substantially after the nerve injuries, being higher at the site where axons and Schwann cells interacted. Regression analysis indicated a positive influence of immediate nerve repair compared to an unrepaired injury, but a shortly delayed nerve repair had no impact on axonal outgrowth. Diabetes was associated with a decreased axonal outgrowth. The increased expression of HSP27 in sciatic nerve and DRG did not influence axonal outgrowth. Injured sciatic nerves should appropriately be repaired in healthy and diabetic rats, but a short delay does not influence axonal outgrowth. HSP27 expression in sciatic nerve or DRG, despite an increase after nerve injury with or without a repair, is not associated with any alteration in axonal outgrowth.


Subject(s)
HSP27 Heat-Shock Proteins/metabolism , Nerve Regeneration/physiology , Neuronal Outgrowth/physiology , Peripheral Nerve Injuries , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Female , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Rats , Rats, Wistar , Schwann Cells/metabolism , Schwann Cells/physiology , Sciatic Nerve/metabolism , Sciatic Nerve/physiopathology , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/physiopathology , Up-Regulation
9.
J Neurosci ; 41(35): 7492-7508, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34244365

ABSTRACT

Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.


Subject(s)
Chronic Pain/physiopathology , Depression/etiology , Endocannabinoids/physiology , Neuralgia/physiopathology , Prefrontal Cortex/physiopathology , Animals , Brain Mapping , Chronic Pain/complications , Chronic Pain/drug therapy , Chronic Pain/psychology , Depression/physiopathology , Feeding Behavior , Female , GABAergic Neurons/chemistry , Gabapentin/therapeutic use , Genes, fos , Hyperalgesia/physiopathology , Hyperalgesia/psychology , Interneurons/chemistry , Magnetic Resonance Imaging , Male , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/psychology , Nociception/physiology , Open Field Test , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/analysis , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/psychology , Specific Pathogen-Free Organisms , Swimming
10.
J Neurosci ; 41(34): 7300-7313, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34272312

ABSTRACT

Iron is an essential cofactor for several metabolic processes, including the generation of ATP in mitochondria, which is required for axonal function and regeneration. However, it is not known how mitochondria in long axons, such as those in sciatic nerves, acquire iron in vivo Because of their close proximity to axons, Schwann cells are a likely source of iron for axonal mitochondria in the PNS. Here we demonstrate the critical role of iron in promoting neurite growth in vitro using iron chelation. We also show that Schwann cells express the molecular machinery to release iron, namely, the iron exporter, ferroportin (Fpn) and the ferroxidase ceruloplasmin (Cp). In Cp KO mice, Schwann cells accumulate iron because Fpn requires to partner with Cp to export iron. Axons and Schwann cells also express the iron importer transferrin receptor 1 (TfR1), indicating their ability for iron uptake. In teased nerve fibers, Fpn and TfR1 are predominantly localized at the nodes of Ranvier and Schmidt-Lanterman incisures, axonal sites that are in close contact with Schwann cell cytoplasm. We also show that lack of iron export from Schwann cells in Cp KO mice reduces mitochondrial iron in axons as detected by reduction in mitochondrial ferritin, affects localization of axonal mitochondria at the nodes of Ranvier and Schmidt-Lanterman incisures, and impairs axonal regeneration following sciatic nerve injury. These finding suggest that Schwann cells contribute to the delivery of iron to axonal mitochondria, required for proper nerve repair.SIGNIFICANCE STATEMENT This work addresses how and where mitochondria in long axons in peripheral nerves acquire iron. We show that Schwann cells are a likely source as they express the molecular machinery to import iron (transferrin receptor 1), and to export iron (ferroportin and ceruloplasmin [Cp]) to the axonal compartment at the nodes of Ranvier and Schmidt-Lanterman incisures. Cp KO mice, which cannot export iron from Schwann cells, show reduced iron content in axonal mitochondria, along with increased localization of axonal mitochondria at Schmidt-Lanterman incisures and nodes of Ranvier, and impaired sciatic nerve regeneration. Iron chelation in vitro also drastically reduces neurite growth. These data suggest that Schwann cells are likely to contribute iron to axonal mitochondria needed for axon growth and regeneration.


Subject(s)
Axons/metabolism , Iron/metabolism , Mitochondria/metabolism , Nerve Regeneration/physiology , Schwann Cells/metabolism , Sciatic Neuropathy/physiopathology , Animals , Cation Transport Proteins/metabolism , Cells, Cultured , Ceruloplasmin/deficiency , Ceruloplasmin/metabolism , Female , Ganglia, Spinal/cytology , Iron Chelating Agents/pharmacology , Mice , Mice, Inbred C57BL , Neuronal Outgrowth , RNA/biosynthesis , Ranvier's Nodes/metabolism , Receptors, Transferrin/metabolism , Sciatic Nerve/cytology , Sciatic Nerve/physiology , Sensory Receptor Cells/physiology , Transcription, Genetic
11.
Neurobiol Dis ; 154: 105337, 2021 07.
Article in English | MEDLINE | ID: mdl-33753289

ABSTRACT

TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin+, nNOS+, calretinin+, ChAT+ interneurons and Nissl+ cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.


Subject(s)
Dopaminergic Neurons/physiology , Dystonia/physiopathology , Molecular Chaperones/physiology , Nerve Net/physiopathology , Sciatic Neuropathy/physiopathology , Animals , Dopaminergic Neurons/pathology , Dystonia/genetics , Dystonia/pathology , Hindlimb Suspension/methods , Hindlimb Suspension/physiology , Humans , Male , Nerve Net/pathology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Sciatic Neuropathy/genetics , Sciatic Neuropathy/pathology
12.
Neuropharmacology ; 189: 108529, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33741405

ABSTRACT

The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have synergistic analgesic efficacy in animal models of neuropathic pain when injected systemically. However, the relevance of this preclinical synergy to clinical neuropathic pain studies is unclear because many of the latter use oral administration. We therefore examined the oral effectiveness of these phytocannabinoids and their interactions in a mouse chronic constriction injury (CCI) model of neuropathic pain. THC produced a dose-dependent reduction in mechanical and cold allodynia, but also induced side-effects with similar potency. CBD also reduced allodynia, albeit with lower potency than THC, but did not produce cannabinoid-like side-effects at any dose tested. Combination THC:CBD produced a dose-dependent reduction in allodynia, however, it displayed little to no synergy. Combination THC:CBD produced substantial, synergistic side-effects which increased with the proportion of CBD. These findings demonstrate that oral THC and CBD, alone and in combination, have analgesic efficacy in an animal neuropathic pain model. Unlike prior systemic injection studies, combination THC:CBD lacks analgesic synergy when delivered orally. Furthermore, both THC and combination THC:CBD display a relatively poor therapeutic window when delivered orally. This suggests that CBD provides a safer, albeit lower efficacy, oral treatment for nerve injury induced neuropathic pain than THC-containing preparations. This article is part of the special issue on 'Cannabinoids'.


Subject(s)
Analgesics, Non-Narcotic/administration & dosage , Cannabidiol/administration & dosage , Dronabinol/administration & dosage , Neuralgia/drug therapy , Neuralgia/physiopathology , Psychotropic Drugs/administration & dosage , Administration, Oral , Animals , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Neuralgia/psychology , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/psychology , Treatment Outcome
13.
J Musculoskelet Neuronal Interact ; 21(1): 68-78, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33657756

ABSTRACT

OBJECTIVES: Whole-body vibration (WBV) is commonly used to improve motor function, balance and functional performance, but its effects on the body are not fully understood. The main objective was to evaluate the morphometric and functional effects of WBV in an experimental nerve regeneration model. METHODS: Wistar rats were submitted to unilateral sciatic nerve crush and treated with WBV (4-5 weeks), started at 3 or 10 days after injury. Functional performances were weekly assessed by sciatic functional index, horizontal ladder rung walking and narrow beam tests. Nerve histomorphometry analysis was assessed at the end of the protocol. RESULTS: Injured groups, sedentary and WBV started at 3 days, had similar functional deficits. WBV, regardless of the start time, did not alter the histomorphometry parameters in the regeneration process. CONCLUSIONS: The earlier therapy did not change the expected and natural recovery after the nerve lesion, but when the WBV starts later it seems to impair function parameter of recovery.


Subject(s)
Nerve Regeneration/physiology , Peripheral Nerves/physiology , Recovery of Function/physiology , Sciatic Neuropathy/therapy , Vibration/therapeutic use , Animals , Male , Rats , Rats, Wistar , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology
14.
Neurochem Res ; 46(4): 957-963, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33566299

ABSTRACT

The complex pathogenesis and limited efficacy of available treatment make neuropathic pain difficult for long periods of time. Several findings suggested the regulatory role of microRNA in the development of neuropathic pain. This study aims to investigate the functional role of miR-122-5p in the development of neuropathic pain. Down-regulation of miR-122-5p was observed in spinal cords of rats with neuropathic pain. We also found that overexpressing miR-122-5p by intrathecal injection of miR-122-5p lentivirus in a mouse model of chronic sciatic nerve injury (CCI) prevented neuropathic pain behavior. In HEK-293 T cells, luciferase activity was significantly decreased in the transfection group with mimic-miR-122-5p in wild-type PDK4 reporter, compared with mutant PDK4 reporter. Increased PDK4 expression was also observed during the progression of neuropathic pain. Intrathecal injection of both mimic-miR-122-5p and shPDK4 in CCI mice downregulated PDK4 expression to a lower level when compared with injected with shPDK4. In CCI mice, transfection of shPDK4 suppressed mechanical allodynia and thermal hyperalgesia, while co-transfection of shPDK4 and LV-miR-122-5p resulted in stronger levels of mechanical allodynia and thermal hyperalgesia inhibition. Taken together, the data suggest that miR-122-5p inhibits PDK4 expression, attenuating neuropathic pain. This result suggests the potential role of miR-122-5p acting as a target for the treatment of neuropathic pain.


Subject(s)
MicroRNAs/metabolism , Neuralgia/physiopathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Sciatic Neuropathy/physiopathology , Animals , Female , HEK293 Cells , Humans , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Neuralgia/metabolism , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Neuropathy/metabolism , Up-Regulation/physiology
15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 545-553, 2021 03.
Article in English | MEDLINE | ID: mdl-33415504

ABSTRACT

Abdominal ischemia-reperfusion (I/R) is known to cause both structural and functional damage to sciatic nerve which is related to the oxidative stress. We investigated the protective effects of mitochondria-targeted antioxidant (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) on ischemia-reperfusion-induced nerve damage by using the conduction velocity distribution (CVD) calculations from in vitro compound nerve action potential (CNAP) recordings from rat sciatic nerve. Adult male Wistar albino rats were divided into three groups. The IR and IR + MT groups had aortic cross-clamping for 1 h followed by 2 h reperfusion, while SHAM group had the same procedure without cross-clamping. IR + MT group received 0.7 mg/kg/day MitoTEMPO injection for 28 days before I/R, while other groups received vehicle alone. Ischemia-reperfusion resulted in a significant decrease (p < .05) in maximum depolarizations (mV), areas (mV.ms), and maximum and minimum upstroke velocities (mV/ms) of CNAPs, while injection of MitoTEMPO showed a complete protective effect on these impairments. The histograms for CVD showed that I/R blocked the contribution of fast-conducting fibers (> 60 m/s). MitoTEMPO prevented that blockage and caused a shift in the CVD. Functional nerve damage caused by I/R can be prevented by MitoTEMPO, which can enter mitochondria, the main source of reactive oxygen species (ROS).


Subject(s)
Neuroprotective Agents/therapeutic use , Organophosphorus Compounds/therapeutic use , Piperidines/therapeutic use , Reperfusion Injury/drug therapy , Sciatic Neuropathy/drug therapy , Action Potentials/drug effects , Animals , Male , Mitochondria/drug effects , Mitochondria/physiology , Neural Conduction/drug effects , Rats, Wistar , Reperfusion Injury/physiopathology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Sciatic Neuropathy/physiopathology
16.
PLoS One ; 15(12): e0244301, 2020.
Article in English | MEDLINE | ID: mdl-33338083

ABSTRACT

Adhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was prepared for the treatment of sciatic nerve compression in a rat model. The effects of the PCL-amnion nanofibrous membrane on the prevention of adhesion formation and nerve regeneration were evaluated using electrophysiology and histological analyses. Compared with the medical chitosan hydrogel dressing, the PCL-amnion nanofibrous membrane significantly reduced peripheral nerve adhesion and promoted the rapid recovery of nerve conduction. Moreover, the immunohistochemical analysis identified more Schwann cells and less pro-inflammatory M1 macrophages in the PCL-amnion group. Western blot and RT-PCR results showed that the expression levels of type-Ⅰ and Ⅲ collagen in the PCL-treated rats were half of those in the control group after 12 weeks, while the expression level of nerve growth factor was approximately 3.5 times that found in the rats treated with medical chitosan hydrogel. In summary, electrospun PCL-amnion nanofibrous membranes can effectively reduce adhesion after neural surgery and promote nerve repair and regeneration. The long-term retention in vivo and sustained release of cytokines make PCL-amnion a promising biomaterial for clinical application.


Subject(s)
Nerve Regeneration/drug effects , Polyesters/pharmacology , Tissue Adhesions/prevention & control , Amnion/pathology , Animals , Biocompatible Materials , Chitosan/pharmacology , Collagen/pharmacology , Disease Models, Animal , Hydrogels/pharmacology , Male , Nanofibers/chemistry , Rats , Rats, Sprague-Dawley , Schwann Cells/pathology , Sciatic Nerve/pathology , Sciatic Neuropathy/physiopathology , Tissue Adhesions/drug therapy , Tissue Engineering/methods , Tissue Scaffolds
17.
Pain Res Manag ; 2020: 7104392, 2020.
Article in English | MEDLINE | ID: mdl-33014214

ABSTRACT

Background: Protein kinase C (PKC), nuclear factor-kappa B p65 (NF-κB p65), and P2X3 receptor (P2X3R) play significant roles in the sensitization and transduction of nociceptive signals, which are considered as potential targets for the treatment of neuropathic pain. However, the mechanisms and relationships among them have not been clearly clarified. Methods: 80 rats were randomized and divided into 10 groups (n = 8). Sciatic chronic constriction injury (CCI) rats were intrathecally administered with bisindolylmaleimide I (GF109203X), a PKC-selective antagonist once a day, or pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor twice a day. Sham-operated rats were intrathecally administered with saline. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were evaluated in all the groups before CCI operation (baseline) and on the 1st, 3rd, 7th, 10th, and 14th day after CCI operation. Protein levels of p-PKCα, p-NF-κB p65, and P2X3R were analyzed in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs). Results: Intrathecal injection of GF109203X or PDTC alleviated the TWL and MWT in the following 2 weeks after CCI surgery. The protein levels of p-PKCα, p-NF-κB p65, and P2X3R in the ipsilateral DRGs significantly increased after CCI operation, which could be partly reversed by intrathecal administration of GF109203X or PDTC. Conclusion: The upregulation of p-PKCα, p-NF-κB p65, and P2X3R expression in the DRGs of CCI rats was involved in the occurrence and development of neuropathic pain. Phosphorylated PKCα and phosphorylated NF-κB p65 regulated with each other. Phosphorylated NF-κB p65 and PKCα have a mutual regulation relationship with P2X3R, respectively, while the specific regulatory mechanism needs further research.


Subject(s)
Ganglia, Spinal/metabolism , NF-kappa B/metabolism , Protein Kinase C/metabolism , Receptors, Purinergic P2X3/metabolism , Sciatic Neuropathy/metabolism , Animals , Ganglia, Spinal/physiopathology , Male , Neuralgia/metabolism , Neuralgia/physiopathology , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/physiopathology
18.
J Vis Exp ; (164)2020 10 06.
Article in English | MEDLINE | ID: mdl-33104075

ABSTRACT

Peripheral and central nerve injuries are mostly studied in rodents, especially rats, given the fact that these animal models are both cost-effective and a lot of comparative data has been published in the literature. This includes a multitude of assessment methods to study functional recovery following nerve injury and repair. Besides evaluation of nerve regeneration by means of histology, electrophysiology, and other in vivo and in vitro assessment techniques, functional recovery is the most important criterion to determine the degree of neural regeneration. Automated gait analysis allows recording of a vast quantity of gait-related parameters such as Paw Print Area and Paw Swing Speed as well as measures of inter-limb coordination. Additionally, the method provides digital data of the rats' paws after neuronal damage and during nerve regeneration, adding to our understanding of how peripheral and central nervous injuries affect their locomotor behavior. Besides the predominantly used sciatic nerve injury model, other models of peripheral nerve injury such as the femoral nerve can be studied by means of this method. In addition to injuries of the peripheral nervous systems, lesions of the central nervous system, e.g., spinal cord contusion can be evaluated. Valid and reproducible data assessment is strongly dependent on meticulous adjustment of the hard- and software settings prior to data acquisition. Additionally, proper training of the experimental animals is of crucial importance. This work aims to illustrate the use of computerized automated gait analysis to assess functional recovery in different animal models of peripheral nerve injury as well as spinal cord contusion injury. It also emphasizes the method's limitations, e.g., evaluation of nerve regeneration in rats with sciatic nerve neurotmesis due to limited functional recovery. Therefore, this protocol is thought to help researchers interested in peripheral and central nervous injuries to assess functional recovery in rodent models.


Subject(s)
Gait Analysis/methods , Peripheral Nerve Injuries/physiopathology , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Animals , Autografts , Automation , Disease Models, Animal , Femoral Nerve/pathology , Femoral Nerve/physiopathology , Gait/physiology , Hindlimb/physiopathology , Housing, Animal , Male , Nerve Regeneration/physiology , Rats, Inbred Lew , Rats, Sprague-Dawley , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Sciatic Neuropathy/physiopathology , Thoracic Vertebrae/pathology , Thoracic Vertebrae/physiopathology
19.
J Pharm Pharmacol ; 72(12): 1822-1829, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32930406

ABSTRACT

OBJECTIVES: Umbelliprenin (UMB) is a prenylated coumarin that acts as an in vitro antioxidant and inhibits lipoxygenase managing the inflammation pathways, while in vivo it exerts anti-inflammatory activities. METHODS: In this study, neuropathic pain was induced by four intraperitoneal doses of 2 mg/kg per day of paclitaxel (PTX) on days 1, 3, 5 and 7. Here, 49 male mice were randomly divided in the following groups: sham (not treated animals), negative control (PTX-treated receiving normal saline), single-dose UMB 6.25, 12.5 and 25 mg/kg groups (PTX-treated receiving UMB 6.25, 12.5 and 25 mg/kg, respectively), prevention (PTX-treated receiving PTX along with UMB 12.5 mg/kg on days 1, 3, 5 and 7) and positive control group (PTX-treated receiving imipramine 10 mg/kg as acute treatment). Hot-plate test was done to assess response to heat. Finally, interleukin (IL)-6 levels in the sciatic nerve and lipid peroxidation in sera were assessed. KEY FINDINGS: Umbelliprenin was found equally effective for acute treatment with imipramine, when comparing the prevention group and the positive control group. Single, 25 mg/kg UMB effectively attenuated hyperalgesia, lipid peroxidation and IL-6 levels. CONCLUSIONS: Umbelliprenin alleviated neuropathic pain, and decreased serum IL-6 levels and oxidative stress. UMB deserves further investigations, especially in clinical settings.


Subject(s)
Analgesics/pharmacology , Sciatic Nerve/drug effects , Sciatic Neuropathy/prevention & control , Umbelliferones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Interleukin-6/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Oxidative Stress/drug effects , Paclitaxel , Pain Threshold/drug effects , Sciatic Nerve/metabolism , Sciatic Nerve/physiopathology , Sciatic Neuropathy/chemically induced , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/physiopathology
20.
J Manipulative Physiol Ther ; 43(7): 700-707, 2020 09.
Article in English | MEDLINE | ID: mdl-32896420

ABSTRACT

OBJECTIVE: Traumatic injuries are common and may promote disruption of neuromuscular communication, triggering phenomena that lead to nerve degeneration and affect muscle function. A laser accelerates tissue recovery; however, the parameters used are varied, making it difficult to compare studies. The purpose of this study was to evaluate the effect of low-level laser therapy, at 660- and 830-nm wavelengths, on the tibialis anterior muscle of Wistar rats after sciatic nerve compression. METHODS: Twenty animals were separated into 4 groups: control, sciatic nerve injury, lesion + 660-nm laser, and lesion + 830-nm laser. In the lesion groups, the right sciatic nerve was surgically exposed and compressed with hemostatic forceps for 30 seconds. After the third postoperative day, the groups with laser therapy were submitted to treatment for 2 weeks totaling 10 applications, performed directly on the surgical scar of the nerve injury. Grip strength was analyzed before and after the nerve injury and during the treatment period. The tibialis anterior muscle was processed for light microscopy, area measurement, smaller diameter, number of fibers, nuclei, and connective tissue. RESULTS: The animals submitted to the injury experienced muscular atrophy and morphological changes in the number of muscle fibers and nuclei. In the connective tissue morphometry, there was a decrease in the treated groups compared with the untreated groups. CONCLUSION: The laser treatment at different wavelengths showed no improvement in the tibialis anterior muscle of Wistar rats within the morphological and functional aspects evaluated.


Subject(s)
Low-Level Light Therapy/methods , Muscle, Skeletal/radiation effects , Peripheral Nerve Injuries/radiotherapy , Sciatic Neuropathy/radiotherapy , Animals , Connective Tissue/pathology , Rats , Rats, Wistar , Sciatic Nerve/radiation effects , Sciatic Neuropathy/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...