Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
BMC Biol ; 22(1): 185, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218872

ABSTRACT

BACKGROUND: Scutellaria, a sub-cosmopolitan genus, stands as one of the Lamiaceae family's largest genera, encompassing approximately 500 species found in both temperate and tropical montane regions. Recognized for its significant medicinal properties, this genus has garnered attention as a research focus, showcasing anti-cancer, anti-inflammatory, antioxidant, and hepatoprotective qualities. Additionally, it finds application in agriculture and horticulture. Comprehending Scutellaria's taxonomy is pivotal for its effective utilization and conservation. However, the current taxonomic frameworks, primarily based on morphological characteristics, are inadequate. Despite several phylogenetic studies, the species relationships and delimitations remain ambiguous, leaving the genus without a stable and reliable classification system. RESULTS: This study analyzed 234 complete chloroplast genomes, comprising 220 new and 14 previously published sequences across 206 species, subspecies, and varieties worldwide. Phylogenetic analysis was conducted using six data matrices through Maximum Likelihood and Bayesian Inference, resulting in a robustly supported phylogenetic framework for Scutellaria. We propose three subgenera, recommending the elevation of Section Anaspis to subgeneric rank and the merging of Sections Lupulinaria and Apeltanthus. The circumscription of Subgenus Apeltanthus and Section Perilomia needs to be reconsidered. Comparative analysis of chloroplast genomes highlighted the IR/SC boundary feature as a significant taxonomic indicator. We identified a total of 758 SSRs, 558 longer repetitive sequences, and ten highly variable regions, including trnK-rps16, trnC-petN, petN-psbM, accD-psaI, petA-psbJ, rpl32-trnL, ccsA-ndhD, rps15-ycf1, ndhF, and ycf1. These findings serve as valuable references for future research on species identification, phylogeny, and population genetics. CONCLUSIONS: The phylogeny of Scutellaria, based on the most comprehensive sample collection to date and complete chloroplast genome analysis, has significantly enhanced our understanding of its infrageneric relationships. The extensive examination of chloroplast genome characteristics establishes a solid foundation for the future development and utilization of Scutellaria, an important medicinal plant globally.


Subject(s)
Genome, Chloroplast , Phylogeny , Scutellaria , Scutellaria/genetics
2.
Molecules ; 29(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274982

ABSTRACT

With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.


Subject(s)
Antineoplastic Agents, Phytogenic , Neoplasms , Plant Extracts , Scutellaria , Scutellaria/chemistry , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Neoplasms/drug therapy , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Cell Proliferation/drug effects
3.
J Ethnopharmacol ; 335: 118656, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39121924

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY: Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS: GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS: Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS: Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.


Subject(s)
Interleukin-6 , NF-kappa B , Scutellaria , Triple Negative Breast Neoplasms , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , NF-kappa B/metabolism , Interleukin-6/metabolism , Scutellaria/chemistry , Humans , Female , Cell Line, Tumor , Mice, Nude , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mice, Inbred BALB C , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Xenograft Model Antitumor Assays , Fibroblasts/drug effects , Fibroblasts/metabolism , Signal Transduction/drug effects
4.
Phytomedicine ; 133: 155928, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126924

ABSTRACT

BACKGROUND: The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE: This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS: Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS: Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION: Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Edema , Hypoglycemic Agents , Oils, Volatile , Scutellaria , Animals , Scutellaria/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Edema/drug therapy , Analgesics/pharmacology , Analgesics/chemistry , Male , Mice , Molecular Docking Simulation , Carrageenan , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Aromatherapy/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
5.
J Pharm Biomed Anal ; 248: 116325, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959755

ABSTRACT

The high prevalence of cancer and detrimental side effects associated with many cancer treatments necessitate the search for effective alternative therapies. Natural products are increasingly being recognized and investigated for their potential therapeutic benefits. Scutellaria barbata D. Don (SBD), a plant with potent antitumor properties, has attracted significant interest from oncology researchers. Its primary flavonoid components-scutellarin and luteolin-which have limited oral bioavailability due to poor absorption. This hinders its application for cancer treatment. The gut microbiota, which is considered a metabolic organ, can modulate the biotransformation of compounds, thereby altering their bioavailability and efficacy. In this study, we employed liquid chromatography tandem mass spectrometry (LC-MS/MS 8060) and ion trap-time of flight (LC-MSn-IT-TOF) analysis to investigate the ex vivo metabolism of scutellarin and luteolin by the gut microbiota. Five metabolites and one potential metabolite were identified. We summarized previous studies on their antitumor effects and performed in vitro tumor cell line studies to prove their antitumor activities. The possible key pathway of gut microbiota metabolism in vitro was validated using molecular docking and pure enzyme metabolic experiments. In addition, we explored the antitumor mechanisms of the two components of SBD through network pharmacology, providing a basis for subsequent target identification. These findings expand our understanding of the antitumor mechanisms of SBD. Notably, this study contributes to the existing body of knowledge regarding flavonoid biotransformation by the gut microbiota, highlighting the therapeutic potential of SBD in cancer treatment. Moreover, our results provide a theoretical basis for future in vivo pharmacokinetic studies, aiming to optimize the clinical efficacy of SBD in oncological applications.


Subject(s)
Apigenin , Gastrointestinal Microbiome , Glucuronates , Luteolin , Scutellaria , Tandem Mass Spectrometry , Gastrointestinal Microbiome/drug effects , Luteolin/pharmacology , Luteolin/metabolism , Luteolin/pharmacokinetics , Scutellaria/chemistry , Apigenin/pharmacology , Glucuronates/metabolism , Humans , Tandem Mass Spectrometry/methods , Cell Line, Tumor , Animals , Molecular Docking Simulation , Plant Extracts/pharmacology , Chromatography, Liquid/methods , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacokinetics , Biological Availability , Male , Biotransformation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics
6.
J Pharm Biomed Anal ; 246: 116207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744199

ABSTRACT

Scutebarbatine B (SBT-B) is a neo-clerodane diterpenic compound isolated from Scutellaria barbata D. Don (S. barbata), which has been reported to exhibit inhibitory P-glycoprotein (P-gp) property in MCF-7/ADR cells. However, its metabolism and molecular mechanism of reversal multidrug resistance (MDR) in breast cancer remains unclear. This study investigated the metabolite profile of SBT-B in rats by UHPLC-Q-Orbitrap-MS/MS, and explored its mechanism of reversal MDR through network pharmacology and molecular docking studies. A total of 16 Phase I metabolites and 2 Phase II metabolites were identified, and 18 metabolites were all newly discovered metabolites as novel compounds. The metabolic pathway of SBT-B mainly includes oxidization, reduction, hydrolysis, acetylation and glycination. Meanwhile, network pharmacology analyses showed that SBT-B mainly regulated p27 phosphorylation during cell cycle progression, p53 signaling pathway, influence of Ras and Rho proteins on G1 to S Transition. Molecular docking studies revealed that SBT-B exhibits the potential to inhibit P-gp expression by selectively binding to GLN721 and ALA981 residue sites at the interface of P-gp. In addition, SBT-B exhibits moderate binding affinity with CDK2 and E2F1. This study illustrated the major metabolic pathways of SBT-B in vivo, clarified detailed information on SBT-B metabolites in rats, and uncovered the potential mechanism of SBT-B reversal MDR in breast cancer, providing new insights for the development of P-gp inhibitors.


Subject(s)
Breast Neoplasms , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Molecular Docking Simulation , Network Pharmacology , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Female , Tandem Mass Spectrometry/methods , Rats , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Multiple/drug effects , Humans , Chromatography, High Pressure Liquid/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Scutellaria/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
7.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581076

ABSTRACT

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Magnetic Resonance Spectroscopy , Metabolomics , Plant Extracts , Scutellaria , Scutellaria/chemistry , Humans , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Apigenin/pharmacology , Apigenin/chemistry , Apigenin/isolation & purification , Apigenin/analysis , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/isolation & purification , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glucuronates/pharmacology , Glucuronates/isolation & purification , Glucuronates/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Drug Screening Assays, Antitumor
8.
Bioprocess Biosyst Eng ; 47(8): 1321-1334, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38647679

ABSTRACT

Ultrasonic manufacturing has emerged as a promising eco-friendly approach to synthesize lipid-based nanocarriers for targeted drug delivery. This study presents the novel ultrasonic preparation of lipid nanocarriers loaded with Scutellaria barbata extract, repurposed for anticancer and antibacterial use. High-frequency ultrasonic waves enabled the precise self-assembly of DSPE-PEG, Span 40, and cholesterol to form nanocarriers encapsulating the therapeutic extract without the use of toxic solvents, exemplifying green nanotechnology. Leveraging the inherent anticancer and antibacterial properties of Scutellaria barbata, the study demonstrates that lipid encapsulation enhances the bioavailability and controlled release of the extract, which is vital for its therapeutic efficacy. Dynamic light scattering and transmission electron microscopy analyses confirmed the increase in size and successful encapsulation post-loading, along with an augmented negative zeta potential indicating enhanced stability. A high encapsulation efficiency of 91.93% was achieved, and in vitro assays revealed the loaded nanocarriers' optimized release kinetics and improved antimicrobial potency against Pseudomonas aeruginosa, compared to the free extract. The combination of ultrasonic synthesis and Scutellaria barbata in an eco-friendly manufacturing process not only advances green nanotechnology but also contributes to sustainable practices in pharmaceutical manufacturing. The data suggest that this innovative nanocarrier system could provide a robust platform for the development of nanotechnology-based therapeutics, enhancing drug delivery efficacy while aligning with environmental sustainability.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Plant Extracts , Scutellaria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Scutellaria/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Lipids/chemistry , Pseudomonas aeruginosa/drug effects , Nanoparticles/chemistry , Ultrasonic Waves , Humans , Green Chemistry Technology , Ultrasonics
9.
Phytomedicine ; 128: 155418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518647

ABSTRACT

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Subject(s)
Apigenin , Breast Neoplasms , Cell Proliferation , Glucuronates , Mice, Inbred NOD , Neoplastic Stem Cells , Scutellaria , Animals , Apigenin/pharmacology , Scutellaria/chemistry , Glucuronates/pharmacology , Neoplastic Stem Cells/drug effects , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, SCID , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Plant Extracts/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Hyaluronan Receptors/metabolism
10.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338331

ABSTRACT

Excess cortisol release is associated with numerous health concerns, including psychiatric issues (i.e., anxiety, insomnia, and depression) and nonpsychiatric issues (i.e., osteoporosis). The aim of this study was to assess the in vitro inhibition of cortisol release, bioaccessibility, and bioavailability exerted by a chemically characterized Scutellaria lateriflora L. extract (SLE). The treatment of H295R cells with SLE at increasing, noncytotoxic, concentrations (5-30 ng/mL) showed significant inhibition of cortisol release ranging from 58 to 91%. The in vitro simulated gastric, duodenal, and gastroduodenal digestions, induced statistically significant reductions (p < 0.0001) in the bioactive polyphenolic compounds that most represented SLE. Bioavailability studies on duodenal digested SLE, using Caco-2 cells grown on transwell inserts and a parallel artificial membrane permeability assay, indicated oroxylin A glucuronide and oroxylin A were the only bioactive compounds able to cross the Caco-2 cell membrane and the artificial lipid membrane, respectively. The results suggest possible applications of SLE as a food supplement ingredient against cortisol-mediated stress response and the use of gastroresistant oral dosage forms to partially prevent the degradation of SLE bioactive compounds. In vivo studies and clinical trials remain necessary to draw a conclusion on the efficacy and tolerability of this plant extract.


Subject(s)
Scutellaria , Humans , Scutellaria/chemistry , Hydrocortisone , Biological Availability , Caco-2 Cells , Plant Extracts/pharmacology
11.
Sci Rep ; 14(1): 963, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200019

ABSTRACT

The Hedyotis diffusa-Scutellaria officinalis pair (HD-SB) has therapeutic effects on a variety of cancers. Our study was to explore the mechanism of HD-SB in the treatment of hepatocellular carcinoma (HCC). A total of 217 active ingredients of HD-SB and 1196 HCC-related targets were reserved from the TCMSP and the SwissTarget Prediction database, and we got 63 intersection targets from GeneCards. We used a Venn diagram, and Cytoscape found that the three core ingredients were quercetin, luteolin, and baicalein. The PPI analysis showed that the core targets were TP53, CDK2, XPO1, and APP. Molecular docking results showed that these core ingredients had good binding potential with the core targets. HD-SB acts simultaneously on various HCC-related signaling pathways, including proteoglycans in cancer and the P53 signaling pathway. In vitro experiments confirmed that HD-SB can inhibit HepG2 cell proliferation by increasing TP53 and APP levels and decreasing XPO1 and CDK2 levels. This study analyzed active ingredients, core targets, and central mechanisms of HD-SB in the treatment of HCC. It reveals the role of HD-SB in targeting the P53 signaling pathway in the treatment of HCC. We hope that our research could provide a new perspective to the therapy of HCC and find new anticancer drugs.


Subject(s)
Carcinoma, Hepatocellular , Hedyotis , Liver Neoplasms , Oldenlandia , Scutellaria , Carcinoma, Hepatocellular/drug therapy , Molecular Docking Simulation , Tumor Suppressor Protein p53 , Liver Neoplasms/drug therapy , Pharmaceutical Vehicles
12.
J Ethnopharmacol ; 324: 117790, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38253276

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) and Coptis chinensis Franch (CCF) are traditional herbal medicine pairs used for clearing heat and eliminating dampness, stopping diarrhea, and detoxification. Traditionally, these two herbs are combined and decocted together, but the modern preparation procedures separate them to avoid the large amount of precipitation generated from co-decoction. Thus, a conflict lies between the traditional and modern extraction processes of Scutellaria baicalensis Georgi - Coptis chinensis Franch (SBG-CCF). AIM OF STUDY: There is a conflict between traditional medical practices of SBG-CCF and the modern formulation industry. In this study, we investigated the differences in the effects and mechanisms of SBG-CCF extracted by decocting separately and combining decoctions, as well as the scientific effectiveness of traditional and modern treatment methods on both. Acute alcoholic liver injury (ALI) rats were used as the pathological model. MATERIALS AND METHODS: SD rats were divided into 8 groups, including blank group, model group, low, medium, and high dose groups of SBG-CCF separated decoction, low, medium, and high dose groups of SBG-CCF combined decoction. Acute alcoholic liver injury model was induced in rats by gradually increasing the dose of alcohol through gavage everyday using white wine with an alcohol content 52%. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) were used as indicators to assess the intervention effect of SBG-CCF. And the potential active ingredients of SBG-CCF and the targets related to ALI were screened using network pharmacology, and the prediction results of network pharmacology were verified by quantitative real-time fluorescence PCR (qRT-PCR). RESULTS: SBG-CCF decoction alone and six combinations of decoctions have different degrees of improvement on alcoholic liver injury, with significant efficacy in the middle-dose group, and the combined decoction was superior to the individual decoction. SBG-CCF gavage can reduce the activity of AST, ALT, TC, TG, LDH, and MDA in the serum and liver of ALI rats, while increasing the levels of SOD and GSH. Network pharmacological analysis identified 39 active components, mainly flavonoids and alkaloids. Enrichment analysis suggested that SBG-CCF may treat ALI through the regulation of tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), interleukin-17 (IL-17), apoptosis, and the Toll-like receptor signaling pathways. The key targets in the Disease-Signaling Pathway-Target Network were MAPK8, IKBKB, MAPK10, MAPK3, MAPK1, and AKT1. qRT-PCR results indicated that targets regulating inflammation and lipid metabolism are MAPK8, MAPK10, MAPK3, and AKT1. CONCLUSION: SBG-CCF separately extracts and combines decoction can alleviate acute alcoholic liver injury, and the effect of combined decoction is more significant than separate decoction, implying that the precipitate produced by the combination of the two is also an active substance. The resistance mechanism of SBG-CCF ALI may be related to the modulation of lipid metabolism, inhibition of lipid peroxidation, and oxidative stress. SBG-CCF has the characteristics of multi-component, multi-pathway, and multi-target resistance to ALI.


Subject(s)
Coptis , Scutellaria , Rats , Animals , Coptis chinensis , Scutellaria baicalensis , Rats, Sprague-Dawley , Liver , Superoxide Dismutase/metabolism
13.
BMC Complement Med Ther ; 23(1): 410, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964249

ABSTRACT

BACKGROUNDS: Scutellaria Pinnatifida subsp. pichleri (Stapf) Rech.f. (SP) is used in folk medicine for the treatment of diabetes. The aim of the study was to determine the phenolic profile of SP extract (SPE) by LC-MS/MS and to investigate the antidiabetic, hepatoprotective and nephroprotective effects of SPE in streptozotosin (STZ)-induced diabetic rat model. METHODS: Forty-two rats were randomly divided into six groups (n = 7): Control (nondiabetic), diabetes mellitus (DM), DM + SP-100 (diabetic rats treated with SPE, 100 mg/kg/day), DM + SP-200 (diabetic rats treated with SPE, 200 mg/kg/day), DM + SP-400 (diabetic rats treated with SPE, 400 mg/kg/day) and DM + Gly-3 (diabetic rats treated with glibenclamide, 3 mg/kg/day). Live body weight, fasting blood glucose (FBG) level, antidiabetic, serum biochemical and lipid profile parameters, antioxidant defense system, malondyaldehyde (MDA) and histopathological examinations in liver, kidney and pancreas were evaluated. RESULTS: Apigenin, luteolin, quinic acid, cosmosiin and epigallocatechin were determined to be the major phenolic compounds in the SPE. Administration of the highest dose of SP extract (400 mg/kg) resulted in a significant reduction in FBG levels and glycosylated hemoglobin levels in STZ-induced diabetic rats, indicating an antihyperglycemic effect. SPE (200 and 400 mg/kg) and glibenclamide significantly improved MDA in liver and kidney tissues. In addition, SPE contributed to the struggle against STZ-induced oxidative stress by stimulating antioxidant defense systems. STZ induction negatively affected liver, kidney and pancreas tissues according to histopathological findings. Treatment with 400 mg/kg and glibenclamide attenuated these negative effects. CONCLUSIONS: In conclusion, the extract of the aerial part of Scutellaria pinnatifida subsp. pichleri has hepatoprotective, nephroprotective and insulin secretion stimulating effects against STZ-induced diabetes and its complications due to its antidiabetic and antioxidant phytochemicals such as apigenin, luteolin, quinic acid, cosmosiin and epigallocatechin.


Subject(s)
Diabetes Mellitus, Experimental , Scutellaria , Rats , Animals , Antioxidants/therapeutic use , Streptozocin/therapeutic use , Apigenin , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Rats, Wistar , Blood Glucose , Glyburide/adverse effects , Chromatography, Liquid , Luteolin , Quinic Acid/therapeutic use , Tandem Mass Spectrometry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
14.
Sci Rep ; 13(1): 20422, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990031

ABSTRACT

Accumulation of medicinally important flavones and acteoside was evaluated in Scutellaria lateriflora hairy root cultures subjected to different experimental strategies - feeding with precursors of phenolics biosynthesis (phenylalanine, cinnamic acid, and sodium cinnamate), addition of elicitors (chitosan, jasmonic acid) and Amberlite XAD-4 and XAD-7 resins and permeabilization with dimethyl sulfoxide (DMSO) and methanol. The production profile of S. lateriflora cultures changed under the influence of the applied strategies. Hairy roots of S. lateriflora were found to be a rich source of wogonoside or wogonin, depending on the treatment used. The addition of sodium cinnamate (1.0 mg/L) was the most effective approach to provide high production of flavonoids, especially wogonoside (4.41% dry weight /DW/; 566.78 mg/L). Permeabilization with DMSO (2 µg/ml for 12 h) or methanol (30% for 12 h) resulted in high biosynthesis of wogonin (299.77 mg/L and 274.03 mg/L, respectively). The obtained results provide new insight into the selection of the optimal growth conditions for the production of in vitro biomass with a significant level of flavone accumulation. The data may be valuable for designing large-scale cultivation systems of hairy roots of S. lateriflora with high productivity of bioactive compounds - wogonin or wogonoside.


Subject(s)
Flavones , Scutellaria , Dimethyl Sulfoxide , Methanol , Flavonoids , Phenols , Plant Roots
15.
BMC Vet Res ; 19(1): 164, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726783

ABSTRACT

BACKGROUND: A new antibacterial compound powder of amoxicillin (AMO)/Radix Scutellaria extract (RSE) was developed, and its pharmacokinetics were determined in pigs following oral administration. RESULTS: The MIC ranges of AMO against Escherichia coli, Staphylococcus aureus and Streptococcus were 1-8 µg/mL, 0.5-4 µg/mL and 0.5-64 µg/mL, respectively. The MIC ranges of RSE against E. coli, S. aureus, and Streptococcus were greater than 2.5 mg/mL, 0.156-2.5 mg/mL, and greater than 2.5 mg/mL, respectively. For S. aureus, the combined drug susceptibility test showed that AMO and RSE had an additive or synergistic effect. The results of compatibility test, the excipient screening test and the drug quality control test showed that the formulation had stable quality and uniform properties under the test conditions. Two studies were conducted to investigate the pharmacokinetics of the compound product in pigs. First, the pharmacokinetics of the AMO-RSE powder were compared with those of their respective single products. The results showed no significant change in the main pharmacokinetic parameters when either component was removed from the compound formulation; thus, AMO and RSE have no pharmacokinetic interaction in pigs. Second, pigs were orally administered three different doses of AMO-RSE powder. The Cmax and AUC increased proportionally with increasing p.o. dose; thus, the λz, t1/2λ, MRT, and Tmax were unchanged for the doses of 10, 20, and 30 mg/kg AMO and the doses of 5, 10, and 15 mg/kg BCL, showing that AMO/baicalin in AMO-RSE powder showed linear pharmacokinetic characteristics in pigs. CONCLUSIONS: The combined drug sensitivity test of AMO and RSE against S. aureus showed that the combination was additive or synergistic. Pharmacokinetic studies indicated that AMO and BCL do not interfere with each other in pigs when used in a compound formulation. The pharmacokinetic parameters remained unchanged regardless of the dose for p.o. administration, indicating linear pharmacokinetic properties over the tested dose range. The quality of the AMO-RSE powder was good and stable, providing a foundation for its clinical application in veterinary medicine. Further bioavailability, PK/PD and clinical trials are still needed to determine the final dosage regimen.


Subject(s)
Amoxicillin , Scutellaria , Animals , Swine , Escherichia coli , Powders , Staphylococcus aureus , Plant Extracts/pharmacology
16.
Sci Rep ; 13(1): 13331, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587207

ABSTRACT

Our previous study confirmed that the combination of Hedyotis diffusa (HD) and Scutellaria barbata (SB) significantly inhibited colorectal cancer cell proliferation and the WNT signaling pathway. However, the exact molecular modulation remains unclear. In this study, colorectal cancer cells (SW620) were treated with 1 mg/mL HD-SB for 24 h, and high-throughput sequencing of circRNAs was performed. The level of hsa_circ_0039933 in three colorectal cancer cell lines (HT-29, SW620, and HCT116) was verified by qPCR. After transfection of hsa_circ_0039933 overexpression plasmids or small interfering RNAs, CCK8, apoptosis, cell migration, and cell invasion were utilized to evaluate the function of hsa_circ_0039933 in the progression of colorectal cancer cells. We identified hsa_circ_0039933, which was downregulated in HD-SB-induced colorectal cancer cells and positively related to colorectal cancer progression. In SW620 cells with relatively high expression of hsa_circ_0039933, interfering with the expression of hsa_circ_0039933 inhibited the proliferation, invasion, and migration of SW620 cells. In HCT116 cells with relatively low expression of hsa_circ_0039933, overexpression of hsa_circ_0039933 promoted the proliferation and invasion and migration ability of HCT116. Mechanistically, hsa_circ_0039933 targeted hsa-miR-204-5p to increase the expression of wnt11, leading to the activation of the Wnt pathway, thereby promoting the proliferation of colorectal cancer cells. This work revealed the potential molecular mechanism of HD-SB for the treatment of colorectal cancer, which was to inhibit the Wnt signaling pathway through the hsa_circ_0039933/hsa-miR-204-5p/wnt11 axis, then suppressing proliferation, migration, and invasion in the colorectal cancer cell.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Plant Extracts , Humans , Colorectal Neoplasms/genetics , HCT116 Cells , Hedyotis/chemistry , MicroRNAs/genetics , Scutellaria/chemistry , Plant Extracts/pharmacology , RNA, Circular/genetics
17.
PLoS One ; 18(8): e0289121, 2023.
Article in English | MEDLINE | ID: mdl-37556490

ABSTRACT

Radix Scutellaria-Licorice drug pair (RSLDP), a frequently used herbal pair with the effect of clearing heat and detoxifying, is the commonly employed drug pair in TCM prescriptions for the treatment of COVID-19. Until now, the metabolism feature and anti-COVID-19 mechanism of RSLDP have not been fully elucidated. In this study, a sensitive and rapid method was developed for the separation and identification of the absorbed constituents of RSLDP in the rat plasma by UHPLC-QTOF-MS. Additionally, we optimized the conventional methodologies of network pharmacology and proposed a new concept called target network pharmacology (T-NP). It used the absorbed constituents and the corresponding targets to generate a compound-target network, and compared to conventional network pharmacology, it could reduce false-positive results. A total of 85 absorbed constituents were identified or tentatively characterized in dosed plasma, including 32 components in the group of Radix Scutellaria, 27 components in the group of Licorice, and 65 components in the group of RSLDP. The results showed that the compatibility of Radix Scutellaria and Licorice increased the number of components in vivo. We found that 106 potential targets among the 61 active compounds in RSLDP were related to COVID-19. And 12 targets (STAT3, AKT1, EGFR, HSP9AA1, MAPK3, JUN, IL6, VEGFA, TNF, IL2, RELA, and STAT1) could be core targets for RSLDP in treating COVID-19. Results from these targets indicate that RSLDP treatment of COVID-19 mainly involves response to chemical stress, response to oxygenates, positive regulation of cytokines, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway for diabetic complications, virus-related pathways such as novel coronavirus and human cytomegalovirus infection, inflammatory immune-related pathways, and so on. The metabolism feature of RSLDP in vivo was systematically uncovered. The combined use of the T-NP method could discover potential drug targets and disclose the biological processes of RSLDP, which will clarify the potential mechanisms of RSLDP in the treatment of COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Glycyrrhiza , Scutellaria , Rats , Humans , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Chromatography, High Pressure Liquid , Network Pharmacology , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation
18.
J Pharm Biomed Anal ; 234: 115481, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37413917

ABSTRACT

Scutellaria baicalensis Georgi (SG) and Scutellaria rehderiana Diels (SD) belong to the same genus of Scutellaria in the Labiatae (Lamiaceae) family. SG is confirmed as the medicinal source according to the Chinese Pharmacopeia, but SD is often used as a substitute for SG due to its abundant plant resources. However, the current quality standards are far from sufficient to judge the quality differences between SG and SD. In this study, an integrated strategy of "biosynthetic pathway (specificity) - plant metabolomics (difference) - bioactivity evaluation (effectiveness)" was established to evaluate this quality differences. First, an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS) method was developed for the identification of chemical components. The abundant components information was obtained and the characteristic constituents were screened according to the location in the biosynthetic pathway as well as species specificity. Then, plant metabolomics combined with multivariate statistical analysis to find differential components between SG and SD. The chemical markers for quality analysis were determined based on the differential and characteristic components, and the content of each marker was tentatively evaluated through the semi-quantitative analysis of UHPLC-Q/TOF-MS/MS. Finally, the anti-inflammatory activity of SG and SD was compared by measuring the inhibitory effect on the release of NO from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Under this analytical strategy, a total of 113 compounds were tentatively identified in both SG and SD, among which baicalein, wogonin, chrysin, oroxylin A 7-O-ß-D-glucuronoside, pinocembrin and baicalin were selected as chemical markers due to their species characteristics and differentiation. The contents of oroxylin A 7-O-ß-D-glucuronoside and baicalin was higher in SG, and the others were higher in SD. In addition, both SG and SD exhibited prominent anti-inflammatory activity, but SD was less effective. The analysis strategy combining phytochemistry and bioactivity evaluation realized the scientific evaluation of the intrinsic quality differences between SG and SD, which provides a reference for fully utilizing and expanding the medicinal resources, and also provides a reference for the comprehensive quality control of herbal medicines.


Subject(s)
Scutellaria , Scutellaria/chemistry , Scutellaria baicalensis/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/pharmacology , Chromatography, Liquid/methods
19.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513260

ABSTRACT

Four undescribed pyranone derivatives, named ascomycopyrones A-D (1-4), as well as one known analogue simplicilopyrone (5) (this is the first study to report the absolute configuration), were isolated from the endophytic fungus Ascomycota sp. FAE17 derived from the flowers of Scutellaria formosa. The structures of these pyranones were identified by comprehensive spectroscopic and MS analyses, and the absolute configurations were determined by their experimental and quantum chemical electronic circular dichroism (ECD) calculations. All isolated compounds were tested for various bioactivities, including antibacterial, cytotoxic activity, and NO inhibitory activity. Unfortunately, none of the compounds showed significant bioactivities.


Subject(s)
Ascomycota , Scutellaria , Fungi/chemistry , Ascomycota/chemistry , Taiwan , Molecular Structure
20.
J Nat Med ; 77(4): 748-760, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37329417

ABSTRACT

In this study, we isolated two new methoxyflavones (1 and 2) and eight known methoxyflavones (3-10) from the whole plant of Scutellaria rubropunctata Hayata var. rubropunctata (SR). Based on spectroscopic analyses, the methoxyflavones were identified as 5,8,2',6'-tetramethoxy-6,7-methylenedioxyflavone (1) and 5,2',6'-trimethoxy-6,7-methylenedioxyflavone (2). We reported SR might have effects on promoting osteoblast differentiation and stimulating estrogen receptor (ER) in the previous study. Then, the effects of 1-10 on pre-osteoblast MC3T3-E1 cells were investigated, and 1, 2, and 9 were observed to promote alkaline phosphatase activity. To evaluate their effect on osteogenesis-related genes, we performed gene expression analysis using quantitative real-time PCR after treatment of MC3T3-E1 cells with these compounds. Although 2 was only effective at lower concentrations, 1 and 9 upregulated the mRNA levels of Runx2, Osterix, Osteopontin, Osteocalcin, Smad1, and Smad4. These results indicate that 1 and 9 may induce osteoblast differentiation by activating Runx2 via the BMP/Smad pathway and may play a central role in the promotion of osteoblast differentiation by SR. The ER agonist activity of 1-10 were tested using a luciferase reporter assay in HEK293 cells. However, none of the compounds exhibited remarkable activity. Thus, SR may contain other compounds that contribute to its ER agonist activity.


Subject(s)
Osteogenesis , Scutellaria , Humans , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , HEK293 Cells , Cell Differentiation , Osteoblasts , Scutellaria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL