Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363403

ABSTRACT

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Subject(s)
Abscisic Acid , Scutellaria baicalensis , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Phylogeny , Plant Breeding , Stress, Physiological/genetics , Hormones/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
2.
BMC Genomics ; 25(1): 39, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191291

ABSTRACT

BACKGROUND: Scutellaria baicalensis Georgi has been extensively used as a medicinal herb in China for over 2000 years. They may be intentionally or inadvertently substituted or blended with comparable species in the local market, threatening clinical medication safety. Molecular markers are effective tools to prevent misidentification and eliminate doping and falsification among Scutellaria plants. This study screened four highly variable regions to identify Scutellaria and its adulterants. In addition, a phylogenetic analysis was performed using the complete cp genome combined with published Scutellaria species samples. Moreover, a comparative analysis of the cp genomes was conducted to investigate the cp genome evolution of S. baicalensis. RESULTS: The complete cp genome of five species of Scutellaria was sequenced for the first time, and four previously published Scutellaria species were re-sequenced. They all exhibited a conserved quadripartite structure in their cp genomes, including two distinct regions, namely a small and large single copy region, respectively, and two inverted repeats encompassing the majority of ribosomal RNA genes. Furthermore, the nine species exhibited high conservation from aspects of the genome structure, codon usage, repeat sequences, and gene content. Four highly variable regions (matK-rps16, ndhC-trnV-UAC, psbE-petL, and rps16-trnQ-UUG) may function as potential molecular markers for differentiating S. baicalensis from its adulterants. Additionally, the monophyly of Scutellaria was ascertained and could be reclassified into two subgenera, subgenus Anaspis and subgenus Scutellaria, as evidenced by the phylogenetic analyses on sequences of cp genome and shared protein-coding sequences. According to the molecular clock analysis, it has been inferred that the divergence of Scutellaria occurred at approximately 4.0 Mya during the Pliocene Epoch. CONCLUSION: Our study provides an invaluable theoretical basis for further Scutellaria species identification, phylogenetics, and evolution analysis.


Subject(s)
Genome, Chloroplast , Plants, Medicinal , Plants, Medicinal/genetics , Scutellaria baicalensis/genetics , Phylogeny , Chromosome Mapping
3.
BMC Plant Biol ; 23(1): 643, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097929

ABSTRACT

BACKGROUND: Bright flower colour assists plants attract insects to complete pollination and provides distinct ornamental values. In some medicinal plants, diverse flower colour variations usually imply differences in active ingredients. Compared to the common bluish purple of Scutellaria baicalensis flower (SB), the natural variants present rose red (SR) and white (SW) flowers were screened out under the same growing conditions in the genuine producing area Shandong Province, China. However, the mechanism of flower colour variation in S. baicalensis was remain unclear. In the present study, we conducted integrated transcriptome and metabolome analyses to uncover the metabolic difference and regulation mechanism in three S. baicalensis flowers. RESULTS: The results showed that 9 anthocyanins were identified. Among which, 4 delphinidin-based anthocyanins were only detected in SB, 4 cyanidin-based anthocyanins (without cyanidin-3-O-glucoside) mainly accumulated in SR, and no anthocyanin but high level of flavanone, naringenin, was detected in SW. The gene expression profile indicated that the key structural genes in the flavonoid and anthocyanin biosynthesis pathway differentially expressed in flowers with different colours. Compared to SB, the down-regulated expression of F3'5'H, ANS, and 3GT gene in SR might influence the anthocyanin composition. Especially the InDel site with deletion of 7 nucleotides (AATAGAG) in F3'5'H in SR might be the determinant for lack of delphinidin-based anthocyanins in rose red flowers. In SW, the lower expression levels of DFR and two F3H genes might reduce the anthocyanin accumulation. Notably the SNP site of G > A mutation in the splicing site of DFR in SW might block anthocyanin biosynthesis from flavanones and thus cause white flowers. In addition, several key transcription factors, including MYB, bHLH, and NAC, which highly correlated with structural gene expression and anthocyanin contents were also identified. CONCLUSIONS: These results provide clues to uncover the molecular regulatory mechanism of flower colour variation in S. baicalensis and promote novel insights into understanding the anthocyanin biosynthesis and regulation.


Subject(s)
Anthocyanins , Scutellaria baicalensis , Anthocyanins/metabolism , Color , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Gene Expression Profiling , Flowers/metabolism , Transcriptome , Metabolome , Gene Expression Regulation, Plant , Pigmentation/genetics
4.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4634-4646, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802802

ABSTRACT

Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-ß-D-glucuronide, oroxylin A-7-O-ß-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Scutellaria baicalensis/genetics , Scutellaria baicalensis/chemistry , Glucuronides , Multiomics , Flavonoids/chemistry
5.
Plant Physiol Biochem ; 200: 107794, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257409

ABSTRACT

Scutellaria baicalensis Georgi is an important Chinese medicinal plant that is rich in the flavones baicalin, wogonoside, and wogonin, providing it with anti-cancer, anti-inflammatory, and antibacterial properties. However, although the biosynthetic pathways of baicalin and its derivates have been elucidated, the regulation of flavone biosynthesis in S. baicalensis is poorly understood. Here, we found that the contents of baicalin and its derivates increased and that baicalin biosynthetic pathway genes were induced in response to light, and baicalin and baicalein are not exclusively produced in the roots of S. baicalensis. Based on the fact that MYB transcription factors are known to play important roles in flavone biosynthesis, we identified SbMYB45 and SbMYB86.1 in S. baicalensis and determined that they bind to the promoter of the flavone biosynthesis gene SbCHI to enhance its transcription. Moreover, overexpressing SbMYB45 and SbMYB86.1 enhanced the accumulation of baicalin in S. baicalensis leaves. We demonstrate that SbMYB45 and SbMYB86.1 bind to the cis-acting element MBSII in the promoter of CHI to redundantly induce its expression upon light exposure. These findings indicate that SbMYB45 and SbMYB86.1 transcriptionally activate SbCHI in response to light and enhance flavone contents in S. baicalensis.


Subject(s)
Flavanones , Flavones , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Flavanones/metabolism , Flavonoids/genetics , Flavonoids/metabolism , Plant Roots/genetics , Plant Roots/metabolism
6.
Genes (Basel) ; 13(11)2022 11 14.
Article in English | MEDLINE | ID: mdl-36421789

ABSTRACT

The in vitro culture technique can be used for micropropagation of medicinal plants as well as for creating genotypes with an improved profile of phytochemical compounds. For this purpose, somaclonal variability may be used for the induction of genetic diversity among regenerants. The paper presents a protocol for obtaining Scutellaria baicalensis regenerants by indirect organogenesis and the assessment of their genetic variability with the use of start codon-targeted markers. The most intense process of indirect shoot organogenesis was observed on Murashige and Skoog medium supplemented with kinetin and 6-Benzylaminopurine (0.5 mg × dm-3 each)-7.4 shoot per explant on average. The callogenesis process occurred on the medium supplemented with TDZ, while the medium supplemented with GA3 allowed for direct shoot organogenesis and was used for the micropropagation of regenerants. In the analysis of plantlets obtained by indirect organogenesis, 11 ScoT markers generated a total of 130 amplicons, 45 of which were polymorphic. This analysis showed genetic diversity of regenerants in relation to the donor plant as well as within them, with mean similarity among the analyzed genotypes at the level of 0.90. This study confirms that the use of in vitro cultures allows for the possibility to generate genetic variability in Scutellaria baicalensis, which can be effectively revealed with the use of the SCoT marker.


Subject(s)
Plants, Medicinal , Scutellaria baicalensis , Scutellaria baicalensis/genetics , Plants, Medicinal/genetics , Codon, Initiator , Biomarkers , Genetic Variation/genetics
7.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012606

ABSTRACT

R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon-intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.


Subject(s)
Genes, myb , Scutellaria baicalensis , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Transcription Factors/metabolism
8.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1814-1823, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534251

ABSTRACT

Scutellaria baicalensis is a commonly used Chinese medicinal herb. In this study, we identified the germplasm resources of commercial S. baicalensis samples based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences according to the available chloroplast genome sequencing results, and measured the content of baicalin by HPLC. Through the above means we determined the best DNA barcode that can be used to detect the germplasm resources and evaluate the quality of commercial S. baicalensis samples. A total of 104 samples were collected from 24 provinces, from which DNA was extracted for PCR amplification. The amplification efficiencies of trnH-psbA, petA-psbJ, and ycf4-cemA sequences were 100%, 59.62%, and 25.96%, respectively. The results of sequence analysis showed that 5, 4, and 2 haplotypes were identified based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences, respectively. However, the sequences of haplotypes in commercial samples were different from that of the wild type, and the joint analysis of three fragments of S. baicalensis only identified 6 haplotypes. Furthermore, the phylogenetic analysis and genetic distance analysis indicated that trnH-psbA could be used to identify S. baicalensis from adulterants. The above analysis showed that trnH-psbA was the best fragment for identifying the germplasm resources of commercial S. baicalensis samples. We then analyzed the haplotypes(THap1-THap5) of commercial S. baicalensis samples based on trnH-psbA and found that THap2 was the main circulating haplotype of the commercial samples, accounting for 86.55% of the total samples, which indicated the scarce germplasm resources of commercial S. baicalensis samples. The content of baicalin in all the collected commercial S. baicalensis samples exceeded the standard in Chinese Pharmacopoeia and had significant differences(maximum of 12.21%) among samples, suggesting that the quality of commercial S. baicalensis samples varied considerably. However, there was no significant difference in baicalin content between different provinces or between different haplotypes. This study facilitates the establishment of the standard identification system for S. baicalensis, and can guide the commercial circulation and reasonable medication of S. baicalensis.


Subject(s)
DNA Barcoding, Taxonomic , Scutellaria baicalensis , Chromatography, High Pressure Liquid , DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Phylogeny , Scutellaria baicalensis/genetics
9.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457040

ABSTRACT

The WRKY gene family is an important inducible regulatory factor in plants, which has been extensively studied in many model plants. It has progressively become the focus of investigation for the secondary metabolites of medicinal plants. Currently, there is no systematic analysis of the WRKY gene family in Scutellaria baicalensis Georgi. For this study, a systematic and comprehensive bioinformatics analysis of the WRKY gene family was conducted based on the genomic data of S. baicalensis. A total of 77 WRKY members were identified and 75 were mapped onto nine chromosomes, respectively. Their encoded WRKY proteins could be classified into three subfamilies: Group I, Group II (II-a, II-b, II-c, II-d, II-e), and Group III, based on the characteristics of the amino acid sequences of the WRKY domain and genetic structure. Syntenic analysis revealed that there were 35 pairs of repetitive fragments. Furthermore, the transcriptome data of roots, stems, leaves, and flowers showed that the spatial expression profiles of WRKYs were different. qRT-PCR analysis revealed that 11 stress-related WRKYs exhibited specific expression patterns under diverse treatments. In addition, sub cellular localization analysis indicated that SbWRKY26 and SbWRKY41 were localized in nucleus. This study is the first to report the identification and characterization of the WRKY gene family in S. baicalensis, which is valuable for the further exploration of the biological function of SbWRKYs. It also provides valuable bioinformatics data for S. baicalensis and provides a reference for assessing the medicinal properties of the genus.


Subject(s)
Gene Expression Regulation, Plant , Scutellaria baicalensis , Multigene Family , Phylogeny , Plant Proteins/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism
10.
BMC Genomics ; 23(1): 169, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35232374

ABSTRACT

BACKGROUND: Flavonoid glycosides extracted from roots of Scutellaria baicalensis exhibit strong pharmaceutical antitumor, antioxidative, anti-inflammatory, and antiviral activities. UDP glycosyltransferase (UGT) family members are responsible for the transfer of a glycosyl moiety from UDP sugars to a wide range of acceptor flavonoids. Baicalin is the major flavonoid glycoside found in S. baicalensis roots, and its aglycone baicalein is synthesized from a specially evolved pathway that has been elucidated. However, it is necessary to carry out a genome-wide study of genes involved in 7-O-glucuronidation, the final biosynthesis step of baicalin, which might elucidate the relationship between the enzymes and the metabolic accumulation patterns in this medicinal plant. RESULTS: We reported the phylogenetic analysis, tissue-specific expression, biochemical characterization and evolutionary analysis of glucosyltransferases (SbUGTs) and glucuronosyltransferases (SbUGATs) genes based on the recently released genome of S. baicalensis. A total of 124 UGTs were identified, and over one third of them were highly expressed in roots. In vitro enzyme assays showed that 6 SbUGTs could use UDP-glucose as a sugar donor and convert baicalein to oroxin A (baicalein 7-O-glucoside), while 4 SbUGATs used only UDP-glucuronic acid as the sugar donor and catalyzed baicalein to baicalin. SbUGAT4 and SbUGT2 are the most highly expressed SbUGAT and SbUGT genes in root tissues, respectively. Kinetic measurements revealed that SbUGAT4 had a lower Km value and higher Vmax/Km ratio to baicalein than those of SbUGT2. Furthermore, tandem duplication events were detected in SbUGTs and SbUGATs. CONCLUSIONS: This study demonstrated that glucosylation and glucuronidation are two major glycosylated decorations in the roots of S. baicalensis. Higher expression level and affinity to substrate of SbUGAT4, and expansion of this gene family contribute high accumulation of baicalin in the root of S. baicalensis.


Subject(s)
Glycosides , Scutellaria baicalensis , Flavonoids , Genome-Wide Association Study , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Phylogeny , Plant Roots/metabolism , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Uridine Diphosphate/analysis , Uridine Diphosphate/metabolism
11.
Biotechnol Bioeng ; 119(7): 1916-1925, 2022 07.
Article in English | MEDLINE | ID: mdl-35312063

ABSTRACT

Baicalein is a bioactive flavonoid isolated from the traditional Chinese medicinal plant, Scutellaria baicalensis Georgi. Microbial synthesis of flavonoids has been intensively developed owing to the eco-friendly nature of the process. However, the titer of the flavonoids obtained is still at a low level, and effective methods to enhance these titers are lacking. In this study, the synthetic performance of baicalein-producing engineered Escherichia coli was rationally evaluated to enhance the expression of key enzymes. Transcriptional analyses of baicalein-overproducing strain and a control strain enabled the identification of 13 beneficial genes, including eight genes that are seemingly irrelevant to baicalein metabolism. With the combination of the enzyme assembly and modularization strategy, the engineered DN-8 strain produced 367.8 mg/L baicalein in fed-batch fermentation, the maximum titer reported to date.


Subject(s)
Escherichia coli , Flavanones , Escherichia coli/genetics , Escherichia coli/metabolism , Flavanones/metabolism , Flavonoids/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928177

ABSTRACT

Scutellaria baicalensis is a commonly used Chinese medicinal herb. In this study, we identified the germplasm resources of commercial S. baicalensis samples based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences according to the available chloroplast genome sequencing results, and measured the content of baicalin by HPLC. Through the above means we determined the best DNA barcode that can be used to detect the germplasm resources and evaluate the quality of commercial S. baicalensis samples. A total of 104 samples were collected from 24 provinces, from which DNA was extracted for PCR amplification. The amplification efficiencies of trnH-psbA, petA-psbJ, and ycf4-cemA sequences were 100%, 59.62%, and 25.96%, respectively. The results of sequence analysis showed that 5, 4, and 2 haplotypes were identified based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences, respectively. However, the sequences of haplotypes in commercial samples were different from that of the wild type, and the joint analysis of three fragments of S. baicalensis only identified 6 haplotypes. Furthermore, the phylogenetic analysis and genetic distance analysis indicated that trnH-psbA could be used to identify S. baicalensis from adulterants. The above analysis showed that trnH-psbA was the best fragment for identifying the germplasm resources of commercial S. baicalensis samples. We then analyzed the haplotypes(THap1-THap5) of commercial S. baicalensis samples based on trnH-psbA and found that THap2 was the main circulating haplotype of the commercial samples, accounting for 86.55% of the total samples, which indicated the scarce germplasm resources of commercial S. baicalensis samples. The content of baicalin in all the collected commercial S. baicalensis samples exceeded the standard in Chinese Pharmacopoeia and had significant differences(maximum of 12.21%) among samples, suggesting that the quality of commercial S. baicalensis samples varied considerably. However, there was no significant difference in baicalin content between different provinces or between different haplotypes. This study facilitates the establishment of the standard identification system for S. baicalensis, and can guide the commercial circulation and reasonable medication of S. baicalensis.


Subject(s)
Chromatography, High Pressure Liquid , DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Phylogeny , Scutellaria baicalensis/genetics
13.
Sheng Wu Gong Cheng Xue Bao ; 37(4): 1312-1323, 2021 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-33973444

ABSTRACT

Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.


Subject(s)
Anthocyanins , Scutellaria baicalensis , Cloning, Molecular , Color , Phylogeny , Scutellaria baicalensis/genetics
14.
Metab Eng ; 64: 64-73, 2021 03.
Article in English | MEDLINE | ID: mdl-33486093

ABSTRACT

Baicalin, baicalein, and wogonin are valuable natural flavonoid compounds produced by Scutellaria baicalensis. In this study, we showed that the maize transcription factor Lc can enhance the production of these three flavonoids in hairy root cultures of S. baicalensis by comprehensively upregulating flavonoid biosynthesis pathway genes (SbPAL1, SbC4H, and Sb4CL) and baicalein 7-O-glucuronosyltransferase (UBGAT), ultimately yielding total flavonoid contents of up to 80.5 ± 6.15 mg g-1 dry weight, which was 322% greater than the average value of total flavonoid contents produced by three GUS-overexpressing lines. Similarly, the Arabidopsis transcription factor PAP1 was found to enhance flavonoid accumulation by upregulating SbPAL1, SbPAL2, SbPAL3, SbC4H, Sb4CL, SbCHI, and UBGAT, ultimately yielding total flavonoid contents of up to 133 ± 7.66 mg g-1 dry weight, which was 532% greater than the average value of total flavonoid contents produced by three GUS-overexpressing lines. These findings indicate that metabolic engineering in S. baicalensis can be achieved using Agrobacterium rhizogenes-mediated transformation and that the production of baicalin, baicalein, and wogonin can be enhanced via the overexpression of ZmLc and AtPAP1 in hairy root cultures. These results also indicate that ZmLc and AtPAP1 can be used as positive regulators of the flavonoid biosynthetic pathway of S. baicalensis hairy root cultures.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flavanones , Flavones , Scutellaria baicalensis , Transcription Factors , Zea mays , Agrobacterium , Arabidopsis/genetics , Flavonoids , Metabolic Engineering , Plant Roots/genetics , Scutellaria baicalensis/genetics , Transcription Factors/genetics , Zea mays/genetics
15.
Mol Biol Rep ; 48(2): 1115-1126, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33511512

ABSTRACT

Scutellaria baicalensis Georgi is a famous medicinal plant with its dried roots having been used as a traditional Chinese medicinal for more than 2000 years. Although its genome sequence has previously been published and molecular biology methods have been used to study this species, no suitable internal reference genes have been investigated for standardization of gene expression via quantitative real-time polymerase chain reaction (qRT-PCR). Here, the stabilities of 10 candidate reference genes, ACT11, ACT7, α-TUB, ß-TUB, GAPDH, UBC, RPL, SAM, HSP70, and PP2A, were analyzed by four different procedures of GeNorm, NormFinder, BestKeeper, and RefFinder. Their expression stabilities were evaluated under various conditions, including different tissue types (root, stem, leaf, and flower), hormone stimuli treatments (methyl jasmonate, salicylic acid, and abscisic acid), and abiotic stresses (heavy metal, salt, drought, cold, and wounding). The results indicated that ß-TUB was the most stable gene for all tested samples, while ACT11 was the most unstable. The most stable reference gene was not consistent under different conditions. ß-TUB exhibited the highest stability for different tissue types and abiotic stresses, while for hormone stimuli treatments, ACT7 showed the highest stability. To confirm the applicability of suitable reference genes, we selected to SbF6H and SbF8H as target genes to analyze their expression levels in different tissues. This study helps to the accurate quantification of the relative expression levels of interest genes in S. baicalensis via qRT-PCR analysis.


Subject(s)
Genes, Plant/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Scutellaria baicalensis/genetics , Droughts , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Scutellaria baicalensis/growth & development , Stress, Physiological/genetics
16.
Chinese Journal of Biotechnology ; (12): 1312-1323, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878633

ABSTRACT

Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.


Subject(s)
Anthocyanins , Cloning, Molecular , Color , Phylogeny , Scutellaria baicalensis/genetics
17.
Int J Mol Sci ; 20(18)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505762

ABSTRACT

Scutellaria baicalensis is a well-known medicinal plant that produces biologically active flavonoids, such as baicalin, baicalein, and wogonin. Pharmacological studies have shown that these compounds have anti-inflammatory, anti-bacterial, and anti-cancer activities. Therefore, it is of great significance to investigate the genetic information of S. baicalensis, particularly the genes related to the biosynthetic pathways of these compounds. Here, we constructed the full-length transcriptome of S. baicalensis using a hybrid sequencing strategy and acquired 338,136 full-length sequences, accounting for 93.3% of the total reads. After the removal of redundancy and correction with Illumina short reads, 75,785 nonredundant transcripts were generated, among which approximately 98% were annotated with significant hits in the protein databases, and 11,135 sequences were classified as lncRNAs. Differentially expressed gene (DEG) analysis showed that most of the genes related to flavonoid biosynthesis were highly expressed in the roots, consistent with previous reports that the flavonoids were mainly synthesized and accumulated in the roots of S. baicalensis. By constructing unique transcription models, a total of 44,071 alternative splicing (AS) events were identified, with intron retention (IR) accounting for the highest proportion (44.5%). A total of 94 AS events were present in five key genes related to flavonoid biosynthesis, suggesting that AS may play important roles in the regulation of flavonoid biosynthesis in S. baicalensis. This study provided a large number of highly accurate full-length transcripts, which represents a valuable genetic resource for further research of the molecular biology of S. baicalensis, such as the development, breeding, and biosynthesis of active ingredients.


Subject(s)
DNA, Complementary , Gene Expression Regulation/physiology , High-Throughput Nucleotide Sequencing , Plant Roots , Plants, Medicinal , Scutellaria baicalensis , DNA, Complementary/genetics , DNA, Complementary/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism
18.
Mol Plant ; 12(7): 935-950, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30999079

ABSTRACT

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, "Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.


Subject(s)
Biosynthetic Pathways/genetics , Flavanones , Flavonoids/genetics , Scutellaria baicalensis/genetics , Flavanones/genetics , Flavanones/metabolism , Flavonoids/metabolism , Genome, Plant , Medicine, Chinese Traditional , Plant Extracts , Plant Roots/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Scutellaria baicalensis/metabolism , Whole Genome Sequencing
19.
Mol Plant ; 11(1): 135-148, 2018 01 08.
Article in English | MEDLINE | ID: mdl-28842248

ABSTRACT

Baicalein, wogonin, and their glycosides are major bioactive compounds found in the medicinal plant Scutellaria baicalensis Georgi. These flavones can induce apoptosis in a variety of cancer cell lines but have no effect on normal cells. Furthermore, they have many additional benefits for human health, such as anti-oxidant, antiviral, and liver-protective properties. Here, we report the isolation and characterization of two CYP450 enzymes, SbCYP82D1.1 and SbCYP82D2, which function as the flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H), respectively, in S. baicalensis. SbCYP82D1.1 has broad substrate specificity for flavones such as chrysin and apigenin and is responsible for biosynthesis of baicalein and scutellarein in roots and aerial parts of S. baicalensis, respectively. When the expression of SbCYP82D1.1 is knocked down, baicalin and baicalein levels are reduced significantly while chrysin glycosides accumulate in hairy roots. SbCYP82D2 is an F8H with high substrate specificity, accepting only chrysin as its substrate to produce norwogonin, although minor 6-hydroxylation activity can also be detected. Phylogenetic analysis suggested that SbCYP82D2 might have evolved from SbCYP82D1.1 via gene duplication followed by neofunctionalization, whereby the ancestral F6H activity is partially retained in the derived SbCYP82D2.


Subject(s)
Flavones/metabolism , Plant Roots/metabolism , Scutellaria baicalensis/metabolism , Apigenin/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flavanones/metabolism , Flavonoids/metabolism , Humans , Phylogeny , Saccharomyces cerevisiae/metabolism , Scutellaria baicalensis/genetics
20.
Zhongguo Zhong Yao Za Zhi ; 41(1): 139-143, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-28845656

ABSTRACT

The stress effect is a characteristic of Dao-di herbs caused by environmental gene expression of medical plants is influenced by environmental changes and finally affects the formation and accumulation of metabolites. Using Scutellaria baicalensis as material, active component of wild type of S. baicalensis from 19 production areas were analysed; It was found that climate change can influence the accumulation of active components. Then, S. baicalensis suspension cells was exposed to various environments, and enzyme activity and gene expression were measured, indicating the molecular mechanism of stress effect on S. baicalensis. Hence, we found the prerequisite and method to study the stress effect on Dao-di herbs, and we hope this research can provides some references for another studies of Dao-di herbs.


Subject(s)
Scutellaria baicalensis/physiology , Ecosystem , Environment , Gene Expression Regulation, Plant , Plant Extracts/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...