Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.049
Filter
1.
Sci Rep ; 14(1): 10682, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724517

ABSTRACT

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Metabolomics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Hemerocallis/metabolism , Hemerocallis/genetics , Metabolome , Plant Proteins/genetics , Plant Proteins/metabolism , Amino Acids/metabolism , Seedlings/metabolism , Seedlings/growth & development , Seedlings/genetics
2.
PLoS One ; 19(5): e0303145, 2024.
Article in English | MEDLINE | ID: mdl-38728268

ABSTRACT

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Subject(s)
Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
3.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730341

ABSTRACT

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Subject(s)
Genes, Plant , Real-Time Polymerase Chain Reaction , Seedlings , Seedlings/genetics , Cyperaceae/genetics , Reference Standards , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Droughts , Reproducibility of Results , Abscisic Acid/metabolism , Gibberellins/metabolism
4.
Planta ; 259(6): 151, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733553

ABSTRACT

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Plant Roots , Stress, Physiological , Tetraploidy , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Triticum/physiology , Nitrogen/metabolism , Stress, Physiological/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Adaptation, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/metabolism , Gene Expression Regulation, Plant
5.
Sci Rep ; 14(1): 10446, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714777

ABSTRACT

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Subject(s)
Allelopathy , Benzoxazines , Secale , Amaranthus/growth & development , Germination , Coculture Techniques/methods , Plant Weeds , Crops, Agricultural/growth & development , Seedlings/growth & development
6.
Braz J Biol ; 84: 279851, 2024.
Article in English | MEDLINE | ID: mdl-38747856

ABSTRACT

The present study was conducted to determine the efficiency of organomineral fertilizer from cupuaçu residues (ORFCup) and dose of maximum technical efficiency of Azospirillum brasilense on the initial growth and morphophysiological quality of Mezilaurus itauba seedlings in the northern Amazon. The variables evaluated were: shoot height (H, cm), stem diameter (SD, mm), shoot dry mass (SDM, g plant-1), root dry mass (RDM, g plant-1) total dry mass (TDM, g plant-1), Dickson quality index (DQI), net assimilation rate (NAR, g m-2 day-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), specific leaf area (SLA, cm2 g-1), and leaf mass ratio (LMR, g g-1). Organomineral fertilizer from cupuaçu residues promotes better quality and robustness in M. itauba seedlings at the dose of maximum technical efficiency of 0.45 mL. L-1 of A. brasilense.


Subject(s)
Azospirillum brasilense , Fertilizers , Seedlings , Seedlings/growth & development , Seedlings/microbiology , Azospirillum brasilense/physiology , Minerals/analysis
7.
BMC Plant Biol ; 24(1): 397, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745144

ABSTRACT

BACKGROUND AND AIMS: The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS: We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS: The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS: Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.


Subject(s)
Germination , Poaceae , Seeds , Seeds/growth & development , Seeds/physiology , Poaceae/growth & development , Poaceae/physiology , Seedlings/growth & development , Seedlings/physiology , Soil/chemistry , Stress, Physiological
8.
Arch Microbiol ; 206(5): 235, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722413

ABSTRACT

In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.


Subject(s)
Blueberry Plants , Fusarium , Plant Diseases , Plant Roots , Schizophyllum , Blueberry Plants/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Fusarium/physiology , Schizophyllum/metabolism , Schizophyllum/growth & development , Antibiosis , Hyphae/growth & development , Biological Control Agents , Seedlings/microbiology , Seedlings/growth & development
9.
Planta ; 259(6): 145, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709313

ABSTRACT

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Subject(s)
Genotype , Hordeum , Plant Roots , Seedlings , Soil , Hordeum/genetics , Hordeum/physiology , Hordeum/growth & development , Hordeum/anatomy & histology , Soil/chemistry , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/anatomy & histology , Phenotype , Hydrogen-Ion Concentration , Plant Breeding , Ethiopia , Genetic Variation , Principal Component Analysis , Acids/metabolism
10.
Planta ; 259(6): 144, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709333

ABSTRACT

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Subject(s)
Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
11.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
12.
Plant Signal Behav ; 19(1): 2348917, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38704856

ABSTRACT

Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Roots , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Plant Roots/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Darkness , Light , Seedlings/metabolism , Indoleacetic Acids/metabolism
13.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706002

ABSTRACT

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Subject(s)
Ascorbic Acid , Glutathione , Glycine max , Seedlings , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Glycine max/drug effects , Glycine max/metabolism , Glycine max/physiology , Ascorbic Acid/metabolism , Glutathione/metabolism , Minerals/metabolism , Salt Tolerance/drug effects , Salt Stress/drug effects , Chlorophyll/metabolism , Salinity
14.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698342

ABSTRACT

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Subject(s)
Cadmium , Oryza , Plant Proteins , Proteomics , Seedlings , Selenium , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Selenium/pharmacology , Cadmium/toxicity , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Gene Expression Profiling , Transcriptome , Genes, Plant
15.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732273

ABSTRACT

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Subject(s)
Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
16.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731424

ABSTRACT

Climate change, which causes periods with relatively high temperatures in winter in Poland, can lead to a shortening or interruption of the cold hardening of crops. Previous research indicates that cold acclimation is of key importance in the process of acquiring cereal tolerance to stress factors. The objective of this work was to verify the hypothesis that both natural temperature fluctuations and the plant genotype influence the content of metabolites as well as proteins, including antioxidant enzymes and photosystem proteins. The research material involved four winter triticale genotypes, differing in their tolerance to stress under controlled conditions. The values of chlorophyll a fluorescence parameters and antioxidant activity were measured in their seedlings. Subsequently, the contribution of selected proteins was verified using specific antibodies. In parallel, the profiling of the contents of chlorophylls, carotenoids, phenolic compounds, and proteins was carried out by Raman spectroscopy. The obtained results indicate that a better PSII performance along with a higher photosystem II proteins content and thioredoxin reductase abundance were accompanied by a higher antioxidant activity in the field-grown triticale seedlings. The Raman studies showed that the cold hardening led to a variation in photosynthetic dyes and an increase in the phenolic to carotenoids ratio in all DH lines.


Subject(s)
Plant Proteins , Seedlings , Spectrum Analysis, Raman , Triticale , Seedlings/metabolism , Seedlings/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Triticale/genetics , Triticale/metabolism , Spectrum Analysis, Raman/methods , Chlorophyll/metabolism , Temperature , Carotenoids/metabolism , Antioxidants/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Seasons , Chlorophyll A/metabolism
17.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657506

ABSTRACT

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Subject(s)
Germination , Porphyrins , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Germination/drug effects , Photosynthesis/drug effects , Magnetite Nanoparticles/toxicity , Magnetite Nanoparticles/chemistry , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Lipid Peroxidation/drug effects , Silicon Dioxide/toxicity , Silicon Dioxide/chemistry , Oxidative Stress/drug effects
18.
Plant Physiol Biochem ; 210: 108605, 2024 May.
Article in English | MEDLINE | ID: mdl-38593487

ABSTRACT

Under a changing climate, nanotechnological interventions for climate resilience in crops are critical to maintaining food security. Prior research has documented the affirmative response of nano zinc sulfide (nZnS) on physiological traits of fungal-infested rice seeds. Here, we propose an application of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds as nanobiostimulant to improve physiological parameters by triggering antioxidative defense system, whose mechanism was investigated at transcriptional level by differential expression of genes in germinated seedlings. Nanopriming of healthy rice seeds with ZnS-T NPs (50 µg/ml), considerably intensified the seed vitality factors, including germination percentage, seedling length, dry weight and overall vigor index. Differential activation of antioxidant enzymes, viz. SOD (35.47%), APX (33.80%) and CAT (45.94%), in ZnS-T NPs treated seedlings reduced the probability of redox imbalance and promoted the vitality of rice seedlings. In gene expression profiling by reverse transcription quantitative real time PCR (qRT-PCR), the notable up-regulation of target antioxidant genes (CuZn SOD, APX and CAT) and plant growth specific genes (CKX and GRF) in ZnS-T NPs treated rice seedlings substantiates their molecular role in stimulating both antioxidant defenses and plant growth mechanisms. The improved physiological quality parameters of ZnS-T NPs treated rice seeds under pot house conditions corresponded well with in vitro findings, which validated the beneficial boosted impact of ZnS-T NPs on rice seed development. Inclusively, the study on ZnS-T NPs offers fresh perspectives into biochemical and molecular reactions of rice, potentially positioning them as nanobiostimulant capable of eliciting broad-spectrum immune and growth-enhancing responses.


Subject(s)
Antioxidants , Nanoparticles , Oryza , Seeds , Sulfides , Zinc Compounds , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Sulfides/pharmacology , Zinc Compounds/pharmacology , Nanoparticles/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Metal Nanoparticles/chemistry
20.
Plant Physiol Biochem ; 210: 108083, 2024 May.
Article in English | MEDLINE | ID: mdl-38615441

ABSTRACT

Tomato is an important horticultural cash crop, and low-temperature stress has seriously affected the yield and quality of tomato. 5-Aminolevulinic acid (ALA) is widely used in agriculture as an efficient and harmless growth regulator. It is currently unclear whether exogenous ALA can cope with low-temperature stress by regulating tomato starch content and phenylalanine metabolism. In this study, exogenous ALA remarkably improved the low-temperature tolerance of tomato seedlings. RNA-sequencing results showed that exogenous ALA affected starch metabolism and phenylalanine metabolism in tomato seedling leaves under low-temperature stress. Subsequently, we used histochemical staining, observation of chloroplast microstructure, substance content determination, and qRT-PCR analysis to demonstrate that exogenous ALA could improve the low-temperature tolerance of tomato seedlings by regulating starch content and phenylalanine metabolism (SlPAL, SlPOD1, and SlPOD2). Simultaneously, we found that exogenous ALA induced the expression of SlMYBs and SlWRKYs under low-temperature stress. In addition, dual luciferase, yeast one hybrid, and electrophoretic mobility shift assays indicate that SlMYB4 and SlMYB88 could regulate the expression of SlPOD2 in phenylalanine metabolism. We demonstrated that exogenous ALA could improve the low-temperature tolerance of tomato seedlings by regulating starch content and phenylalanine metabolism.


Subject(s)
Aminolevulinic Acid , Phenylalanine , Seedlings , Solanum lycopersicum , Starch , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Starch/metabolism , Seedlings/metabolism , Seedlings/drug effects , Aminolevulinic Acid/metabolism , Aminolevulinic Acid/pharmacology , Phenylalanine/metabolism , Gene Expression Regulation, Plant/drug effects , Cold Temperature , Plant Proteins/metabolism , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...