Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.588
Filter
1.
Sci Rep ; 14(1): 10682, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724517

ABSTRACT

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Metabolomics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Hemerocallis/metabolism , Hemerocallis/genetics , Metabolome , Plant Proteins/genetics , Plant Proteins/metabolism , Amino Acids/metabolism , Seedlings/metabolism , Seedlings/growth & development , Seedlings/genetics
2.
PLoS One ; 19(5): e0303145, 2024.
Article in English | MEDLINE | ID: mdl-38728268

ABSTRACT

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Subject(s)
Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
3.
Planta ; 259(6): 151, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733553

ABSTRACT

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Plant Roots , Stress, Physiological , Tetraploidy , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Triticum/physiology , Nitrogen/metabolism , Stress, Physiological/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Adaptation, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/metabolism , Gene Expression Regulation, Plant
4.
Sci Rep ; 14(1): 10446, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714777

ABSTRACT

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Subject(s)
Allelopathy , Benzoxazines , Secale , Amaranthus/growth & development , Germination , Coculture Techniques/methods , Plant Weeds , Crops, Agricultural/growth & development , Seedlings/growth & development
5.
Braz J Biol ; 84: 279851, 2024.
Article in English | MEDLINE | ID: mdl-38747856

ABSTRACT

The present study was conducted to determine the efficiency of organomineral fertilizer from cupuaçu residues (ORFCup) and dose of maximum technical efficiency of Azospirillum brasilense on the initial growth and morphophysiological quality of Mezilaurus itauba seedlings in the northern Amazon. The variables evaluated were: shoot height (H, cm), stem diameter (SD, mm), shoot dry mass (SDM, g plant-1), root dry mass (RDM, g plant-1) total dry mass (TDM, g plant-1), Dickson quality index (DQI), net assimilation rate (NAR, g m-2 day-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), leaf relative growth rate (RGR, g m-2 day-1), leaf area ratio (LAR, m2 g-1), specific leaf area (SLA, cm2 g-1), and leaf mass ratio (LMR, g g-1). Organomineral fertilizer from cupuaçu residues promotes better quality and robustness in M. itauba seedlings at the dose of maximum technical efficiency of 0.45 mL. L-1 of A. brasilense.


Subject(s)
Azospirillum brasilense , Fertilizers , Seedlings , Seedlings/growth & development , Seedlings/microbiology , Azospirillum brasilense/physiology , Minerals/analysis
6.
BMC Plant Biol ; 24(1): 397, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745144

ABSTRACT

BACKGROUND AND AIMS: The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS: We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS: The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS: Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.


Subject(s)
Germination , Poaceae , Seeds , Seeds/growth & development , Seeds/physiology , Poaceae/growth & development , Poaceae/physiology , Seedlings/growth & development , Seedlings/physiology , Soil/chemistry , Stress, Physiological
7.
Arch Microbiol ; 206(5): 235, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722413

ABSTRACT

In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.


Subject(s)
Blueberry Plants , Fusarium , Plant Diseases , Plant Roots , Schizophyllum , Blueberry Plants/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Fusarium/physiology , Schizophyllum/metabolism , Schizophyllum/growth & development , Antibiosis , Hyphae/growth & development , Biological Control Agents , Seedlings/microbiology , Seedlings/growth & development
8.
Planta ; 259(6): 145, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709313

ABSTRACT

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Subject(s)
Genotype , Hordeum , Plant Roots , Seedlings , Soil , Hordeum/genetics , Hordeum/physiology , Hordeum/growth & development , Hordeum/anatomy & histology , Soil/chemistry , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/anatomy & histology , Phenotype , Hydrogen-Ion Concentration , Plant Breeding , Ethiopia , Genetic Variation , Principal Component Analysis , Acids/metabolism
9.
Planta ; 259(6): 144, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709333

ABSTRACT

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Subject(s)
Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
10.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
11.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657506

ABSTRACT

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Subject(s)
Germination , Porphyrins , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Germination/drug effects , Photosynthesis/drug effects , Magnetite Nanoparticles/toxicity , Magnetite Nanoparticles/chemistry , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Lipid Peroxidation/drug effects , Silicon Dioxide/toxicity , Silicon Dioxide/chemistry , Oxidative Stress/drug effects
12.
Plant Physiol Biochem ; 210: 108605, 2024 May.
Article in English | MEDLINE | ID: mdl-38593487

ABSTRACT

Under a changing climate, nanotechnological interventions for climate resilience in crops are critical to maintaining food security. Prior research has documented the affirmative response of nano zinc sulfide (nZnS) on physiological traits of fungal-infested rice seeds. Here, we propose an application of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds as nanobiostimulant to improve physiological parameters by triggering antioxidative defense system, whose mechanism was investigated at transcriptional level by differential expression of genes in germinated seedlings. Nanopriming of healthy rice seeds with ZnS-T NPs (50 µg/ml), considerably intensified the seed vitality factors, including germination percentage, seedling length, dry weight and overall vigor index. Differential activation of antioxidant enzymes, viz. SOD (35.47%), APX (33.80%) and CAT (45.94%), in ZnS-T NPs treated seedlings reduced the probability of redox imbalance and promoted the vitality of rice seedlings. In gene expression profiling by reverse transcription quantitative real time PCR (qRT-PCR), the notable up-regulation of target antioxidant genes (CuZn SOD, APX and CAT) and plant growth specific genes (CKX and GRF) in ZnS-T NPs treated rice seedlings substantiates their molecular role in stimulating both antioxidant defenses and plant growth mechanisms. The improved physiological quality parameters of ZnS-T NPs treated rice seeds under pot house conditions corresponded well with in vitro findings, which validated the beneficial boosted impact of ZnS-T NPs on rice seed development. Inclusively, the study on ZnS-T NPs offers fresh perspectives into biochemical and molecular reactions of rice, potentially positioning them as nanobiostimulant capable of eliciting broad-spectrum immune and growth-enhancing responses.


Subject(s)
Antioxidants , Nanoparticles , Oryza , Seeds , Sulfides , Zinc Compounds , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Sulfides/pharmacology , Zinc Compounds/pharmacology , Nanoparticles/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Metal Nanoparticles/chemistry
14.
Physiol Plant ; 176(3): e14321, 2024.
Article in English | MEDLINE | ID: mdl-38686595

ABSTRACT

Increasing density is an effective way to enhance wheat (Triticum aestivum L.) yield under limited cultivated areas. However, the physiological mechanisms underlying the reduction in grain weight when density increased are still unclear. Three field experiments were conducted during the 2014-2019 growing seasons to explore the physiological mechanisms by which polyamines affect grain weight formation. The results showed that when wheat planting density exceeded 450 × 104 seedlings ha-1 and 525 × 104 seedlings ha-1, wheat yield tended to decrease. Compared to moderate density (DM, 450 × 104 seedlings ha-1), the filling rate of inferior grains was reduced before 25 days after anthesis (DAA) and the active filling period was shortened by 6.4%-7.4% under high density (DH, 600 × 104 seedlings ha-1), resulting in a loss of 1000-grain weight by 5.4%-8.1%. DH significantly reduced sucrose and starch content in inferior grains at the filling stage. Meanwhile, DH inhibited the activity of key enzymes involved in polyamine synthesis [SAMDC (EC 4.1.1.50) and SpdSy (EC 2.5.1.16)] and induced the activity of ethylene (ETH) precursor synthase, resulting in a significant decrease in endogenous spermidine (Spd) content in inferior grains, but a significant increase in ETH release rate. Post-flowering application of exogenous Spd increased the accumulation of sucrose and starch in the inferior grains and positively regulated the filling and grain weight of the inferior grains, whereas exogenous ETH had a negative effect. Overall, Spd may affect wheat grain weight at high planting density by promoting the synthesis of sucrose and starch in inferior grains.


Subject(s)
Edible Grain , Spermidine , Starch , Sucrose , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Spermidine/metabolism , Starch/metabolism , Sucrose/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Seeds/growth & development , Seeds/metabolism , Seedlings/growth & development , Seedlings/metabolism
15.
Plant Signal Behav ; 19(1): 2334511, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38650457

ABSTRACT

Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.


Subject(s)
Melatonin , Plant Leaves , Seedlings , Stress, Physiological , Vitis , Vitis/drug effects , Vitis/metabolism , Vitis/physiology , Melatonin/pharmacology , Melatonin/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Stress, Physiological/drug effects , Plant Senescence/drug effects , Reactive Oxygen Species/metabolism , Chlorophyll/metabolism , Alkalies , Antioxidants/metabolism , Proline/metabolism
16.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631158

ABSTRACT

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Subject(s)
Citrus , Gene Expression Regulation, Plant , Magnesium , Seedlings , Citrus/metabolism , Citrus/genetics , Seedlings/metabolism , Seedlings/genetics , Seedlings/growth & development , Magnesium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Magnesium Deficiency/metabolism , Plant Leaves/metabolism , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
17.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38632051

ABSTRACT

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Subject(s)
Bacillus , Citrullus , Disease Resistance , Fusarium , Plant Diseases , Pseudomonas , Fusarium/growth & development , Citrullus/microbiology , Citrullus/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Bacillus/genetics , Bacillus/growth & development , Pseudomonas/growth & development , Pseudomonas/physiology , Antibiosis , Pseudomonas fluorescens/growth & development , Seedlings/growth & development , Seedlings/microbiology , Antifungal Agents/pharmacology
18.
J Hazard Mater ; 470: 134263, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613951

ABSTRACT

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Subject(s)
Antimony , Antioxidants , Gene Expression Regulation, Plant , Nanoparticles , Oryza , Selenium , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Antimony/toxicity , Antioxidants/metabolism , Selenium/toxicity , Gene Expression Regulation, Plant/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development
19.
BMC Ecol Evol ; 24(1): 50, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649814

ABSTRACT

BACKGROUND: Land uses such as crop production, livestock grazing, mining, and urban development have contributed to degradation of drylands worldwide. Loss of big sagebrush (Artemisia tridentata) on disturbed drylands across the western U.S. has prompted massive efforts to re-establish this foundational species. There has been growing interest in avoiding the severe limitations experienced by plants at the seed and seedling stages by instead establishing plants from containerized greenhouse seedlings ("tubelings"). In some settings, a potential alternative approach is to transplant larger locally-collected plants ("wildlings"). We compared the establishment of mountain big sagebrush (A. tridentata ssp. vaseyana) from tubelings vs. wildlings in southeastern Idaho. A mix of native and non-native grass and forb species was drill-seeded in a pasture previously dominated by the introduced forage grass, smooth brome (Bromus inermis). We then established 80 m x 80 m treatment plots and planted sagebrush tubelings (n = 12 plots, 1200 plants) and wildlings (n = 12 plots, 1200 plants). We also established seeded plots (n = 12) and untreated control plots (n = 6) for long-term comparison. We tracked project expenses in order to calculate costs of using tubelings vs. wildlings as modified by probability of success. RESULTS: There was high (79%) tubeling and low (10%) wildling mortality within the first year. Three years post-planting, chance of survival for wildlings was significantly higher than that of tubelings (85% and 14% respectively). Despite high up-front costs of planting wildlings, high survival rates resulted in their being < 50% of the cost of tubelings on a per-surviving plant basis. Additionally, by the third year post-planting 34% of surviving tubelings and 95% of surviving wildlings showed evidence of reproduction (presence / absence of flowering stems), and the two types of plantings recruited new plants via seed (3.7 and 2.4 plants, respectively, per surviving tubeling/wildling). CONCLUSIONS: Our results indicate that larger plants with more developed root systems (wildlings) may be a promising avenue for increasing early establishment rates of sagebrush plants in restoration settings. Our results also illustrate the potential for tubelings and wildlings to improve restoration outcomes by "nucleating" the landscape via recruitment of new plants during ideal climate conditions.


Subject(s)
Artemisia , Seedlings , Seedlings/growth & development , Idaho , Conservation of Natural Resources/methods
20.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646759

ABSTRACT

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Subject(s)
Charcoal , Cucumis sativus , Nitrogen , Plant Roots , Seedlings , Soil , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Nitrogen/metabolism , Soil/chemistry , Seedlings/growth & development , Seedlings/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Soil Microbiology , Agriculture/methods , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...