Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.036
Filter
1.
Sci Rep ; 14(1): 10556, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719847

ABSTRACT

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Subject(s)
Fertilizers , Glycine max , Nickel , Soil , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Fertilizers/analysis , Soil/chemistry , Urease/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Nitrogen Fixation/drug effects , Nitrogen/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Agriculture/methods
2.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732273

ABSTRACT

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Subject(s)
Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
3.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773358

ABSTRACT

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Subject(s)
Acacia , Colchicine , Seeds , Colchicine/pharmacology , Acacia/drug effects , Acacia/physiology , Acacia/growth & development , Acacia/metabolism , Seeds/drug effects , Seeds/growth & development , Photosynthesis/drug effects , Antioxidants/metabolism
4.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760701

ABSTRACT

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Subject(s)
Antioxidants , Plasma Gases , Seedlings , Solanum lycopersicum , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Plasma Gases/pharmacology , Antioxidants/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism
5.
Physiol Plant ; 176(3): e14324, 2024.
Article in English | MEDLINE | ID: mdl-38705866

ABSTRACT

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Subject(s)
Brassinosteroids , Helianthus , Orobanche , Seeds , Helianthus/drug effects , Helianthus/immunology , Helianthus/physiology , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Orobanche/physiology , Orobanche/drug effects , Seeds/drug effects , Seeds/immunology , Plant Weeds/drug effects , Plant Weeds/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Immunity/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/immunology , Plant Roots/drug effects , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Malondialdehyde/metabolism
6.
Environ Geochem Health ; 46(6): 193, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696028

ABSTRACT

Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.


Subject(s)
Copper , Germination , Perilla , Polyvinyl Chloride , Seeds , Germination/drug effects , Copper/toxicity , Seeds/drug effects , Perilla/drug effects , Microplastics/toxicity , Particle Size , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Soil Pollutants/toxicity
7.
Sci Rep ; 14(1): 10356, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710732

ABSTRACT

Herbicide use may pose a risk of environmental pollution or evolution of resistant weeds. As a result, an experiment was carried out to assess the influence of different non-chemical weed management tactics (one hoeing (HH) at 12 DAS followed by (fb) one hand weeding at 30 DAS, one HH at 12 DAS fb Sesbania co-culture and its mulching, one HH at 12 DAS fb rice straw mulching @ 4t ha-1, one HH at 12 DAS fb rice straw mulching @ 6 t ha-1) on weed control, crop growth and yield, and economic returns in direct-seeded rice (DSR). Experiment was conducted during kharif season in a split-plot design and replicated thrice. Zero-till seed drill-sown crop (PN) had the lowest weed density at 25 days after sowing (DAS), while square planting geometry (PS) had the lowest weed density at 60 DAS. PS also resulted in a lower weed management index (WMI), agronomic management index (AMI), and integrated weed management index (IWMI), as well as higher growth attributes, grain yield (4.19 t ha-1), and net return (620.98 US$ ha-1). The cultivar Arize 6444 significantly reduced weed density and recorded higher growth attributes, yield, and economic return. In the case of weed management treatments, one HH at 12 DAS fb Sesbania co-culture and its mulching had the lowest weed density, Shannon-weinner index and eveness at 25 DAS. However, one hoeing at 12 DAS fb one hand weeding at 30 DAS (HH + WH) achieved the highest grain yield (4.85 t ha-1) and net returns (851.03 US$ ha-1) as well as the lowest weed density at 60 DAS. PS × HH + WH treatment combination had the lowest weed persistent index (WPI), WMI, AMI, and IWMI, and the highest growth attributes, production efficiency, and economic return.


Subject(s)
Crops, Agricultural , Oryza , Plant Weeds , Weed Control , Oryza/growth & development , Weed Control/methods , Plant Weeds/growth & development , Plant Weeds/drug effects , Crops, Agricultural/growth & development , Agriculture/methods , Seeds/growth & development , Seeds/drug effects , Herbicides/pharmacology , Crop Production/methods
8.
PLoS One ; 19(5): e0303040, 2024.
Article in English | MEDLINE | ID: mdl-38713652

ABSTRACT

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Subject(s)
Antioxidants , Germination , Glycine max , Melatonin , Nutritive Value , Pesticide Residues , Seeds , Melatonin/pharmacology , Germination/drug effects , Pesticide Residues/analysis , Seeds/drug effects , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Glycine max/chemistry , Antioxidants/metabolism , Edible Grain/drug effects , Edible Grain/metabolism , Phenols/analysis , Food Contamination/analysis , Glutathione/metabolism
9.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726824

ABSTRACT

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Subject(s)
Cicer , Germination , Mitochondria , Mitochondrial Proteins , Nitric Oxide , Oxidative Stress , Oxidoreductases , Plant Proteins , Superoxides , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Plant Proteins/metabolism , Germination/drug effects , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Reactive Oxygen Species/metabolism , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Pyruvic Acid/metabolism
10.
PLoS One ; 19(5): e0303145, 2024.
Article in English | MEDLINE | ID: mdl-38728268

ABSTRACT

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Subject(s)
Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
11.
Plant Physiol Biochem ; 210: 108605, 2024 May.
Article in English | MEDLINE | ID: mdl-38593487

ABSTRACT

Under a changing climate, nanotechnological interventions for climate resilience in crops are critical to maintaining food security. Prior research has documented the affirmative response of nano zinc sulfide (nZnS) on physiological traits of fungal-infested rice seeds. Here, we propose an application of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds as nanobiostimulant to improve physiological parameters by triggering antioxidative defense system, whose mechanism was investigated at transcriptional level by differential expression of genes in germinated seedlings. Nanopriming of healthy rice seeds with ZnS-T NPs (50 µg/ml), considerably intensified the seed vitality factors, including germination percentage, seedling length, dry weight and overall vigor index. Differential activation of antioxidant enzymes, viz. SOD (35.47%), APX (33.80%) and CAT (45.94%), in ZnS-T NPs treated seedlings reduced the probability of redox imbalance and promoted the vitality of rice seedlings. In gene expression profiling by reverse transcription quantitative real time PCR (qRT-PCR), the notable up-regulation of target antioxidant genes (CuZn SOD, APX and CAT) and plant growth specific genes (CKX and GRF) in ZnS-T NPs treated rice seedlings substantiates their molecular role in stimulating both antioxidant defenses and plant growth mechanisms. The improved physiological quality parameters of ZnS-T NPs treated rice seeds under pot house conditions corresponded well with in vitro findings, which validated the beneficial boosted impact of ZnS-T NPs on rice seed development. Inclusively, the study on ZnS-T NPs offers fresh perspectives into biochemical and molecular reactions of rice, potentially positioning them as nanobiostimulant capable of eliciting broad-spectrum immune and growth-enhancing responses.


Subject(s)
Antioxidants , Nanoparticles , Oryza , Seeds , Sulfides , Zinc Compounds , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Sulfides/pharmacology , Zinc Compounds/pharmacology , Nanoparticles/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Metal Nanoparticles/chemistry
12.
Int J Biol Macromol ; 267(Pt 2): 131477, 2024 May.
Article in English | MEDLINE | ID: mdl-38604430

ABSTRACT

Salt stress severely limits the growth and yield of wheat in saline-alkali soil. While nanozymes have shown promise in mitigating abiotic stress by scavenging reactive oxygen species (ROS) in plants, their application in alleviating salt stress for wheat is still limited. This study synthesized a highly active nanozyme catalyst known as ZnPB (Zn-modified Prussian blue) to improve the yield and quality of wheat in saline soil. According to the Michaelis-Menten equation, ZnPB demonstrates exceptional peroxidase-like enzymatic activity, thereby mitigating oxidative damage caused by salt stress. Additionally, studies have shown that the ZnPB nanozyme is capable of regulating intracellular Na+ efflux and K+ retention in wheat, resulting in a decrease in proline and soluble protein levels while maintaining the integrity of macromolecules within the cell. Consequently, field experiments demonstrated that the ZnPB nanozyme increased winter wheat yield by 12.15 %, while also significantly enhancing its nutritional quality. This research offers a promising approach to improving the salinity tolerance of wheat, while also providing insights into its practical application.


Subject(s)
Ferrocyanides , Salt Tolerance , Seeds , Triticum , Zinc , Triticum/drug effects , Ferrocyanides/chemistry , Zinc/chemistry , Zinc/pharmacology , Salt Tolerance/drug effects , Seeds/drug effects , Peroxidase/metabolism , Sodium/metabolism , Reactive Oxygen Species/metabolism
13.
Sci Rep ; 14(1): 9378, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654029

ABSTRACT

Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.


Subject(s)
Droughts , Potassium , Vigna , Vigna/growth & development , Vigna/genetics , Vigna/drug effects , Potassium/metabolism , Water/metabolism , Fertilizers , Nutrients/metabolism , Genotype , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Dehydration , Drought Resistance
14.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38660981

ABSTRACT

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Subject(s)
Avena , Germination , Seeds , Ultraviolet Rays , Avena/drug effects , Avena/radiation effects , Avena/growth & development , Seeds/radiation effects , Seeds/drug effects , Seeds/growth & development , Germination/drug effects , Germination/radiation effects , Salt Stress/drug effects , Seedlings/radiation effects , Seedlings/drug effects , Seedlings/growth & development , Sodium Chloride
15.
Ecotoxicol Environ Saf ; 277: 116382, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677067

ABSTRACT

Excess copper (Cu) imparts negative effects on plant growth and productivity in soil. To develop the ability of O. biennis to govern pollution soil containing excessive Cu, we investigated seed germination, seedling growth, and seed yield. Furthermore, Cu content and the expression levels of Cu transport related genes in different tissues were measured under exogenous high concentration Cu. O. biennis seeds were sensitive to excess Cu, with an observed reduction in the germination rate, primary root length, fresh weight, and number of seeds germinated daily. Consecutive Cu stress did not cause fatal damage to evening primrose, yet it slowed down plant growth slightly by reducing the leaf water, chlorophyll, plant yield, and seed oil contents while increasing the soluble sugar, proline, malondialdehyde, and H2O2 contents. The Cu content in different organs of O. biennis was disrupted by excess Cu. In particular, the Cu content in O. biennis seeds and seed oil increased and subsequently decreased with the increase of exogenous Cu, reaching a peak under 600 mg·kg-1 consecutive Cu. Furthermore, the 4-month 900 mg·kg-1 Cu treatment did not induce the excessive accumulation of Cu in peels, seeds, and seed oil, maintaining the Cu content within the range required by the Chinese National Food Safety Standards. The treatment also resulted in an upregulation of Cu-uptake (ObCOPT5, ObZIP4, and ObYSL2) and vigorous efflux (ObHMA1) of transport genes, of which expression levels were significant positive correlation (p < 0.05) with the Cu content. Among all organs, the stem replaced the root as the organ exhibited the greatest ability to absorb and store Cu, and even the Cu transport genes could still function continuously in stem under excess Cu. This work identified a species that can tolerate high Cu content in soil while maintaining a high yield. Furthermore, the results revealed the enrichment of Cu to occur primarily in the O. biennis stem rather than the seeds and peel under excess Cu.


Subject(s)
Copper , Germination , Oenothera biennis , Seeds , Soil Pollutants , Soil Pollutants/toxicity , Copper/toxicity , Seeds/drug effects , Germination/drug effects , Oenothera biennis/drug effects , Oenothera biennis/genetics , Soil/chemistry , Seedlings/drug effects
16.
Int J Biol Macromol ; 267(Pt 2): 131404, 2024 May.
Article in English | MEDLINE | ID: mdl-38582466

ABSTRACT

Chitosan has received much more attention as a functional biopolymer with applications in pharmaceuticals, agricultural, drug delivery systems and cosmetics. The objectives of present investigation were to carry out modification of chitosan for enhancement of aqueous solubility, which will impart increased solubility and dissolution rate of poorly soluble drug itraconazole (ITZ) and also evaluate the modified chitosan for soyabean seed germination studies. The modification of chitosan was accomplished through the antisolvent precipitation method; employing five carboxylic acids. The resulting products were assessed for changes in molecular weight, degree of deacetylation, solubility and solid state characterization. Subsequently, the modified chitosan was complexed with itraconazole using the co-grinding technique. The prepared formulations were evaluated for solubility, FTIR (Fourier-transform infrared spectroscopy), PXRD (Powder X-ray diffraction), in-vitro dissolution studies. Furthermore the effect of modified chitosan has been evaluated on soybean seed germination. Results demonstrated that, modified chitosan improves self and solubility of itraconazole by six folds. As there was increased degree of deacetylation of chitosan leads to improvement in solubility. The results of FTIR showed the slight shifting of peaks in co-grind formulations of itraconazole. Formulations showed reduction in crystallinity of drug which leads to enhancement in dissolution rate as compared to pure itraconazole. Retention of property of seed germination was observed with modified chitosan at optimum concentration of 3 % w/v, with benefit of enhanced aqueous solubility of chitosan. This positive result paves the way for the advancement of pharmaceutical and agrochemical products employing derivatives of chitosan.


Subject(s)
Agrochemicals , Chitosan , Itraconazole , Solubility , Chitosan/chemistry , Agrochemicals/chemistry , Agrochemicals/pharmacology , Itraconazole/chemistry , Itraconazole/pharmacology , Glycine max/chemistry , Germination/drug effects , Seeds/chemistry , Seeds/drug effects , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared , Molecular Weight , X-Ray Diffraction
17.
Sci Rep ; 14(1): 9342, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653763

ABSTRACT

Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.


Subject(s)
Cicer , Crops, Agricultural , Germination , Seeds , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Germination/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Plant Proteins/metabolism , Malondialdehyde/metabolism
18.
Environ Sci Pollut Res Int ; 31(19): 27689-27698, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519614

ABSTRACT

Cruciferae brassica oilseed rape is the third largest oilseed crop in the world and the first in China, as well as a fertilizer-dependent crop. With the increased application of organic fertilizers from livestock manure in agricultural production in recent years, the resulting antibiotic pollution and its ecological health effects have attracted widespread attention. In this study, typical tetracycline and sulfonamide antibiotics tetracycline (TC) and sulfamethoxazole (SMZ) were used to investigate the effects of antibiotics on rapeseed quality and oxidative stress at the level of secondary metabolism on the basis of examining the effects of the two drugs on the growth of soil-cultivated rapeseed seedlings. The results showed that both plant height and biomass of rapeseed seedlings were significantly suppressed and ROS were significantly induced in rapeseed by exposure to high concentrations (2.5 mg/kg) of TC and SMZ. Carotenoids, tocopherols, and SOD enzymes were involved in the oxidative stress response to scavenge free radicals in rapeseed, but phenolic acids and flavonoids contents were decreased, which reduced the quality of the seeds to some extent.


Subject(s)
Anti-Bacterial Agents , Oxidative Stress , Seeds , Oxidative Stress/drug effects , Seeds/drug effects , Brassica rapa/drug effects , Secondary Metabolism/drug effects , Brassica napus/drug effects , Seedlings/drug effects , China
19.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047840

ABSTRACT

In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated over two harvest years. In addition to plasma-treated seeds, a control sample, fungicide-treated seeds, an eco-layer, and a plasma and eco-layer combination, were planted. Seedling emergence, plant number at tasseling (plants/m2), and yield (kg/ha), were recorded. In the first harvest year, results were negatively affected by the presence of an insect pest. In the second harvest year, plant number and yield results were more uniform. In both years, for two and three hybrids, respectively, the highest yield arose from plants from plasma-treated seeds, but the differences were only partially significant. Considering our results, plasma treatment of maize seeds appears to have a positive effect on the yield of the plant.


Subject(s)
Germination , Insect Control , Oxygen , Plasma Gases , Seeds , Zea mays , Germination/drug effects , Zea mays/drug effects , Zea mays/growth & development , Seeds/drug effects , Seeds/growth & development , Plasma Gases/pharmacology , Oxygen/pharmacology
20.
An Acad Bras Cienc ; 94(4): e20201735, 2022.
Article in English | MEDLINE | ID: mdl-35830071

ABSTRACT

The environmental and health risks associated with the application of synthetic chemical inputs in agriculture increased the demand for technologies that allow higher performance and quality of vegetable crops by implementing synergistic materials with the principles of sustainability. In this work, the seed coating with the biomass of Dunaliella salina incorporated in a bioplastic film of Manihot esculenta (cassava) was evaluated as an initial growth and secondary compounds stimulator of Coriandrum sativum (coriander) plants. The obtained results demonstrated that the coating stimulated an increase in the germination percentage (28.75%) and also in concentration of bioactive compounds, such as the six-fold increment of caffeic acid (13.33 mg 100 g-1). The carbohydrates, lipids, and proteins present in the microalgae biomass seem to be responsible for these increments once they are known for providing energy to the seedling development and coordinating the secondary metabolites synthesis. As conclusion, we consider the coating with biomass of D. salina an alternative for crop improvement that contributes to the development of sustainable agricultural practices.


Subject(s)
Biomass , Chlorophyceae , Coriandrum , Microalgae , Plant Development , Secondary Metabolism , Seeds , Caffeic Acids , Carbohydrates , Chlorophyceae/chemistry , Coriandrum/chemistry , Coriandrum/drug effects , Coriandrum/growth & development , Coriandrum/metabolism , Crop Production/methods , Lipids , Manihot/chemistry , Microalgae/chemistry , Plant Development/drug effects , Secondary Metabolism/drug effects , Seeds/chemistry , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Sustainable Development
SELECTION OF CITATIONS
SEARCH DETAIL
...