Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Sci Food Agric ; 102(14): 6481-6490, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35570337

ABSTRACT

BACKGROUND: Selenium (Se) is an essential micronutrient for humans and animals, but not for plants. Generally, cereals including wheat and rice are the main source of dietary Se for humans. Although arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microbes and commonly develop symbionts with winter wheat (Triticum aestivum L.), the influence of AMF on accumulation and translocation of Se during developmental cycle of winter wheat is still unclear. RESULTS: Based on a pot trial, the present results indicated that the effects of AMF on grain Se concentration in winter wheat depend on the Se species spiked in the soil and that Rhizophagus intraradices (Ri) significantly enhanced grain Se concentration under selenite treatment. Moreover, inoculation of AMF significantly increased grain Se content under selenite and selenate treatments. The enhanced grain Se content of mycorrhizal wheat could be attributed to (i) apparently increased root growth of mycorrhizal wheat at jointing could absorb more Se for translocating to aerial tissues and consequently result in significantly higher stalk Se content and (ii) enhancing Se translocation from vegetative tissues to grains. The present study showed that AMF significantly (P < 0.05) increased pre-anthesis Se uptake under selenate treatment and post-anthesis Se uptake under selenite treatment. CONCLUSION: The present study indicated the feasibility of inoculation of AMF for increasing grain Se concentration under selenite treatment and enhancing the efficiency of biofortification of Se under selenate treatments. © 2022 Society of Chemical Industry.


Subject(s)
Mycorrhizae , Selenium , Edible Grain/chemistry , Humans , Micronutrients/analysis , Plant Roots , Selenic Acid/analysis , Selenious Acid/analysis , Selenium/analysis , Soil/chemistry , Triticum/chemistry
2.
Ecotoxicol Environ Saf ; 207: 111216, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32916525

ABSTRACT

Low concentrations of selenium (Se) are beneficial for plant growth. Foliar Se application at high concentrations is toxic to plants due to the formation of reactive oxygen species (ROS). This study characterized Se toxicity symptoms using X-ray fluorescence (XRF) technique in response to foliar Se application in cowpea plants. Five Se concentrations (0, 10, 25, 50, 100 e 150 g ha-1) were sprayed on leaves as sodium selenate. The visual symptoms of Se toxicity in cowpea leaves were separated into two stages: I) necrotic points with an irregular distribution and internerval chlorosis at the leaf limb border (50-100 g ha-1); II) total chlorosis with the formation of dark brown necrotic lesions (150 g ha-1). Foliar Se application at 50 g ha-1 increased photosynthetic pigments and yield. Ultrastructural analyses showed that Se foliar application above 50 g ha-1 disarranged the upper epidermis of cowpea leaves. Furthermore, Se application above 100 g ha-1 significantly increased the hydrogen peroxide concentration and lipid peroxidation inducing necrotic leaf lesions. Mapping of the elements in leaves using the XRF revealed high Se intensity, specifically in leaf necrotic lesions accompanied by calcium (Ca) as a possible attenuating mechanism of plant stress. The distribution of Se intensities in the seeds was homogeneous, without specific accumulation sites. Phosphorus (P) and sulfur (S) were found primarily located in the embryonic region. Understanding the factors involved in Se accumulation and its interaction with Ca support new preventive measurement technologies to prevent Se toxicity in plants.


Subject(s)
Selenium/metabolism , Vigna/metabolism , Lipid Peroxidation , Phosphorus/analysis , Photosynthesis , Plant Leaves/chemistry , Seeds/chemistry , Selenic Acid/analysis , Selenium/analysis , Sulfur/analysis
3.
Isotopes Environ Health Stud ; 56(3): 297-313, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32138548

ABSTRACT

Selenium and oxygen isotope systematics can be useful tools for tracing sources and fate of Se oxyanions in water. In order to measure δ18O values of selenate, SeO4 2- must first be sequestered from water by precipitation as BaSeO4(s). However, other dissolved oxyanions insoluble with Ba2+ require removal. Dissolved selenate was separated from dissolved selenite, carbonate, phosphate, and arsenate by addition of Ce3+ cations that quantitatively removed these oxyanions by precipitation as insoluble Ce2(SeO3)3(s), Ce2(CO3)3(s), CePO4(s), and CeAsO4(s), respectively. δ18O-selenate (-8.19 ± 0.17 ‰) did not change after four replicates of selenite removal by Ce2(SeO3)3(s) precipitation and Ce3+ removal by cation exchange (-8.20 ± 0.14, -8.32 ± 0.09, -8.17 ± 0.13, and -8.29 ± 0.13 ‰). δ18O-selenate values (-10.86 ± 0.45 ‰) were preserved also when selenate was pre-concentrated on anion exchange resin, quantitatively retrieved by elution, and processed with Ce3+ to remove interfering oxyanions (-10.77 ± 0.07 ‰). The extraction and purification steps developed here successfully isolated dissolved selenate from interfering oxyanions while preserving δ18O-selenate values. This method should be useful for characterizing δ18O-selenate when present with the co-occurring oxyanions above in laboratory experiments and field sites with high Se concentrations, although further research is required for methods to eliminate any co-occurring sulphate.


Subject(s)
Arsenates/analysis , Carbonates/analysis , Oxygen Isotopes/analysis , Phosphates/analysis , Selenic Acid/analysis , Selenious Acid/analysis , Water Pollutants, Chemical/analysis , Selenium/analysis , Solutions , Sulfates/analysis
4.
Chemosphere ; 248: 126123, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32059334

ABSTRACT

The immobilization of selenate (SeO42-) using metal oxides (CaO and MgO) and ferrous salt as the immobilization reagents were examined by the leaching test and solid-phase analysis via XRD, XAFS, TGA, and XPS. The results indicated that nearly all of SeO42- was reduced to SeO32- in the CaO-based reaction within 7 days. Then, the generated SeO32- was mainly sorbed onto the iron-based minerals (Fe2O3 and FeOOH) through the formation of both bidentate mononuclear edge-sharing (1E) and monodentate mononuclear corner-sharing (1V) inner-sphere surface complexes, suggested by PHREEQC simulation and EXAFS analysis. Differently, less amount of SeO42- (approximately 45.50%) was reduced to SeO32- for the MgO-based reaction. However, if the curing time increases to a longer time (more than 7 days), the further reduction could occur because there are still Fe(II) species in the matrix. As for the associations of Se in the solid residue, most of the selenium (SeO32- and SeO42-) was preferentially distributed onto the Mg(OH)2 through outer-sphere adsorption. Definitely, this research can provide a deep understanding of the immobilization of selenium using alkaline-earth metal oxide related materials and ferrous substances.


Subject(s)
Calcium Compounds/chemistry , Environmental Pollutants/analysis , Ferrous Compounds/chemistry , Magnesium Oxide/chemistry , Oxides/chemistry , Selenic Acid/analysis , Adsorption , Environmental Pollutants/chemistry , Models, Theoretical , Selenic Acid/chemistry , Water Purification/methods
5.
Ecotoxicol Environ Saf ; 190: 110147, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31918255

ABSTRACT

Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (µ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. µ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.


Subject(s)
Oryza/physiology , Selenium/toxicity , Soil Pollutants/toxicity , Animals , Endosperm , Glutens , Humans , Nutrients , Oryza/metabolism , Plant Proteins , Seeds/drug effects , Seeds/physiology , Selenic Acid/analysis , Sulfur/metabolism
6.
Environ Pollut ; 259: 113899, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31927276

ABSTRACT

Straw amendment and plant root exudates modify the quality and quantities of soil dissolved organic matter (DOM) and then manipulate the fractions of soil selenium (Se) and its bioavailability. Two typical soils with distinct pH were selected to investigate the effect of different contributors on DOM-Se in soil. The mechanisms relying on the variation in DOM characteristics (quality, quantity and composition) were explored by UV-Vis, ATR-FTIR and 3D-EEM. Straw amendment significantly (p < 0.05) suppressed the selenate bioavailability. The reduction in wheat Se content was greater in krasnozems than in Lou soil, as more HA fraction appeared in krasnozems. The root exudates of wheat mainly elevated the low molecular hydrophilic compounds (Hy) in soil, which contributed to the SOL-Hy-Se fractions and thus grain Se in soils (p < 0.01). However, straw amendment promoted DOM transforming from small molecules (Hy and FA) to aromatic large molecules (HA), when accompanied with the reduction and retention of Se associated with these molecules. As a result, selenium bioavailability and toxicity reduced with DOM amendment and DOM-Se transformation.


Subject(s)
Selenium , Soil Pollutants , Biological Availability , Selenic Acid/analysis , Selenium/analysis , Soil/chemistry , Soil Pollutants/analysis , Triticum/chemistry
7.
J Agric Food Chem ; 67(45): 12408-12418, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31644287

ABSTRACT

Vegetables are an ideal source of human Se intake; it is important to understand selenium (Se) speciation in plants due to the distinct biological functions of selenocompounds. In this hydroponic study, the accumulation and assimilation of selenite and selenate in pak choi (Brassica rapa), a vastly consumed vegetable, were investigated at 1-168 h with HPLC speciation and RNA-sequencing. The results showed that the Se content in shoots and Se translocation factors with selenate addition were at least 10.81 and 11.62 times, respectively, higher than those with selenite addition. Selenite and selenate up-regulated the expression of SULT1;1 and PHT1;2 in roots by over 240% and 400%, respectively. Selenite addition always led to higher proportions of seleno-amino acids, while SeO42- was dominant under selenate addition (>49% of all Se species in shoots). However, in roots, SeO42- proportions declined substantially by 51% with a significant increase of selenomethionine proportions (63%) from 1 to 168 h. Moreover, with enhanced transcript of methionine gamma-lyase (60% of up-regulation compared to the control) plus high levels of methylselenium in shoots (approximately 70% of all Se species), almost 40% of Se was lost during the exposure under the selenite treatment. This work provides evidence that pak choi can rapidly transform selenite to methylselenium, and it is promising to use the plant for Se biofortification.


Subject(s)
Brassica rapa/genetics , Brassica rapa/metabolism , Selenic Acid/metabolism , Selenious Acid/metabolism , Selenium/metabolism , Biotransformation , Brassica rapa/chemistry , Brassica rapa/growth & development , Chromatography, High Pressure Liquid , Hydroponics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Selenic Acid/analysis , Selenious Acid/analysis , Selenium/analysis , Sequence Analysis, RNA
8.
J Food Sci ; 84(10): 2840-2846, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31517998

ABSTRACT

Cu, Fe, Mn, Mo, Selenium (Se), and Zn bioavailability from selenate- and selenite-enriched lettuce plants was studied by in vitro gastrointestinal digestion followed by an assay with Caco-2 cells. The plants were cultivated in the absence and presence of two concentrations (25 and 40 µmol/L of Se). After 28 days of cultivation, the plants were harvested, dried, and evaluated regarding the total concentration, bioaccessibility, and bioavailability of the analytes. The results showed that biofortification with selenate leads to higher Se absorption by the plant than biofortification with selenite. For the other nutrients, Mo showed high accumulation in the plants of selenate assays, and the presence of any Se species led to a reduction of the plant uptake of Cu and Fe. The accumulation of Zn and Mn was not strongly influenced by the presence of any Se species. The bioaccessibility values were approximately 71%, 10%, 52%, 84%, 71%, and 86% for Cu, Fe, Mn, Mo, Se, and Zn, respectively, and the contribution of the biofortified lettuce to the ingestion of these minerals is very small (except for Se and Mo). Due to the low concentrations of elements from digested plants, it was not possible to estimate the bioavailability for some elements, and for Mo and Zn, the values are below 6.9% and 3.4% of the total concentration, respectively. For Se, the bioavailability was greater for selenite-enriched than selenate-enriched plants (22% and 6.0%, respectively), because selenite is biotransformed by the plant to organic forms that are better assimilated by the cells.


Subject(s)
Copper/analysis , Iron/analysis , Lactuca/chemistry , Manganese/analysis , Molybdenum/analysis , Selenium/analysis , Zinc/analysis , Biofortification , Biological Availability , Caco-2 Cells , Copper/metabolism , Humans , Iron/metabolism , Lactuca/metabolism , Manganese/metabolism , Molybdenum/metabolism , Selenic Acid/analysis , Selenic Acid/metabolism , Selenious Acid/analysis , Selenious Acid/metabolism , Selenium/metabolism , Zinc/metabolism
9.
Ecotoxicol Environ Saf ; 185: 109675, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31536913

ABSTRACT

Due to the two-dimensional effect of selenium (Se) to health, which form of Se is most effective for increasing the bioaccessible Se content in P. ostreatus and whether these products have potential health risks are worth considering. Three Se supplements were applied at different application rates into substrates for cultivating P. ostreatus. The total content and speciation of Se in P. ostreatus fruit bodies were analyzed, and the bioaccessibility of Se was determined via an in vitro physiologically based extraction test (PBET). Results showed that P. ostreatus had the highest utilization efficiency with selenite, followed by Se yeast and selenate. Organic Se (46%-90%) was the major Se speciation in P. ostreatus regardless applied Se species. Although the Se bioaccessibility of the gastrointestinal digestion of P. ostreatus was high (70%-92%), the estimated daily intake and target hazard quotient values are all within the safe ranges. Se-enriched P. ostreatus can be safely used as a dietary source of Se for increasing Se intake.


Subject(s)
Fruiting Bodies, Fungal/chemistry , Pleurotus/chemistry , Selenic Acid/analysis , Selenious Acid/analysis , Bioaccumulation , Digestion , Fruiting Bodies, Fungal/metabolism , Humans , Pleurotus/metabolism , Risk Assessment , Selenic Acid/metabolism , Selenious Acid/metabolism
10.
J Sci Food Agric ; 99(13): 5969-5983, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31215030

ABSTRACT

BACKGROUND: Selenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha-1 ) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017. RESULTS: Application of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day-1 , Se application of 20 g ha-1 in 2016 or 10 g ha-1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 µg day-1 ) for humans. Phytic acid showed no direct response to Se application. CONCLUSION: Selenate provides greater phytoavailability than selenite. The application of 10 g Se ha-1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13-14 µg d-1 . © 2019 Society of Chemical Industry.


Subject(s)
Biofortification/methods , Phytic Acid/analysis , Selenic Acid/analysis , Selenious Acid/analysis , Selenium/analysis , Vigna/chemistry , Fertilizers/analysis , Phytic Acid/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Seeds/chemistry , Seeds/metabolism , Vigna/metabolism
11.
Ecotoxicol Environ Saf ; 180: 693-704, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31146156

ABSTRACT

Selenium (Se) enrichment has been demonstrated to vary by several orders of magnitude among species of planktonic algae. This is a substantial source of uncertainty when modelling Se biodynamics in aquatic systems. In addition, Se bioconcentration data are largely lacking for periphytic species of algae, and for multi-species periphyton biofilms, adding to the challenge of modelling Se transfer in periphyton-based food webs. To better predict Se dynamics in periphyton dominated, freshwater ecosystems, the goal of this study was to assess the relative influence of periphyton community composition on the uptake of waterborne Se oxyanions. Naturally grown freshwater periphyton communities, sampled from five different water bodies, were exposed to environmentally relevant concentrations of selenite [Se(IV)] or selenate [Se(VI)] (nominal concentrations of 5 and 25 µg Se L-1) under similar, controlled laboratory conditions for a period of 8 days. Unique periphyton assemblages were derived from the five different field sites, as confirmed by light microscopy and targeted DNA sequencing of the plastid 23S rRNA gene in algae. Selenium accumulation demonstrated a maximum of 23.6-fold difference for Se(IV) enrichment and 2.1-fold difference for Se(VI) enrichment across the periphyton/biofilm assemblages tested. The assemblage from one field site demonstrated both high accumulation of Se(IV) and iron, and was subjected to additional experimentation to elucidate the mechanism(s) of Se accumulation. Selenite accumulation (at nominal concentrations of 5 and 25 µg Se L-1 and mean pH of 7.5 across all treatment replicates) was assessed in both unaltered and heat-killed periphyton, and in periphyton from the same site grown without light to exclude phototrophic organisms. Following an exposure length of 8 days, all periphyton treatments showed similar levels of Se accumulation, indicating that much of the apparent uptake of Se(IV) was due to non-biological processes (i.e., surface adsorption). The results of this study will help reduce uncertainty in the prediction of Se dynamics and food-chain transfer in freshwater environments. Further exploration of the ecological consequences of extracellular adsorption of Se(IV) to periphyton, rather than intracellular absorption, is recommended to further refine predictions related to Se biodynamics in freshwater food webs.


Subject(s)
Fresh Water , Periphyton/physiology , Selenium/metabolism , Adsorption , Ecosystem , Food Chain , Fresh Water/chemistry , Periphyton/genetics , RNA, Ribosomal, 23S/genetics , Selenic Acid/analysis , Selenic Acid/metabolism , Selenious Acid/analysis , Selenious Acid/metabolism , Selenium/analysis
12.
Environ Sci Process Impacts ; 21(6): 957-969, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31081837

ABSTRACT

Selenium is of special interest in different research fields due to its narrow range between beneficial and toxic effects. On a global scale, Se deficiency is more widespread. Biofortification measures have successfully been applied to specifically increase Se concentrations in food crops. Still not much is known about the behaviour and long-term fate of externally supplied Se. Over many years, natural but external selenate is regularly introduced into the soil-plant system via irrigation at our study sites in Punjab which makes it also an ideal natural analogue to investigate the long term effect of biofortification. For our study, we combined total and species specific analysis of Se in soil and plant material. Selenium is clearly enriched in all investigated topsoils (0-15 cm) with concentrations of 1.5-13.0 mg kg-1 despite similar background Se concentrations (0.5 ± 0.1 mg kg-1) below 15 cm depth. Irrigation is indicated to be the primary source of excess Se. Processes like Se species transformation, uptake by plants and plant material decomposition further influence both the Se speciation and extent of Se enrichment in the soils. The Se concentration in different plants and plant parts is alarmingly high showing concentrations of up to 738 mg kg-1 in wheat. Irrigation induced selenate can be considered as an easily available short term pool of Se for plants and thus strongly controls their total Se concentration and speciation. The long-term pool of Se in the topsoil mainly consists of selenite and organic Se species. These species are readily retained but still sufficiently mobile to be taken up by plants. The formation of elemental Se can be considered as a non-available Se pool and is thus, the major cause of Se immobilization and long-term enrichment of Se in the soils. Our study clearly shows that biofortification with selenate, despite its effectiveness, bears the risk of easily increasing Se levels in plants to toxic levels and producing food with less favourable inorganic Se species if not done with care. Excess selenate is either lost due to biomethylation or immobilized within the soil which has to be considered as highly negative from both an economic and ecological point of few.


Subject(s)
Agricultural Irrigation , Groundwater/analysis , Plants/chemistry , Selenium/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , India , Selenic Acid/analysis
13.
Ecotoxicol Environ Saf ; 178: 123-129, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-30999180

ABSTRACT

The selenate removal mechanism of hydrogen-based membrane biofilm reactor (MBfR) for nitrate-polluted groundwater treatment was studied based on anaerobic biofilm analysis. A laboratory-scale MBfR was operated for over 60 days with electron balance, structural analysis, and bacterial community identification. Results showed that anaerobic biofilm had an excellent removal of both selenate (95%) and nitrate (100%). Reduction of Selenate → Selenite → Se0 with hydrogen was the main pathway of anaerobic biofilm for selenate removal with amorphous Se0 precipitate accumulating in the biofilm. The element selenium was observed to be evenly distributed along the cross-sectional thin biofilm. A part of selenate (3%) was also reduced into methyl-selenide by heterotrophic bacteria. Additionally, Hydrogenophaga bacteria of ß-Proteobacteria, capable of both nitrate and selenate removal, worked as the dominant species (over 85%) in the biofilm and contributed to the stable removal of both nitrate and selenate. With the selenate input, bacteria with a capacity for both selenate and nitrate removal were also developed in the anaerobic biofilm community.


Subject(s)
Biofilms/growth & development , Bioreactors/microbiology , Groundwater/chemistry , Hydrogen/chemistry , Nitrates/analysis , Selenic Acid/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Anaerobiosis , Betaproteobacteria/growth & development , Biofilms/drug effects , Membranes, Artificial , Models, Theoretical
14.
J Sci Food Agric ; 99(11): 5149-5156, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31032929

ABSTRACT

BACKGROUND: Selenium (Se) is an essential micronutrient due to its anticarsinogenic properties and positive influence on human immune system. Fortification of some fruits based on their rates of consumption and availability all year round appears to be an effective way to supplement Se in the human diet. In this study the possibility of augmenting Se content in 'Starking Delicious' apple fruit during two growing seasons was investigated. In 2016, the impact of 0, 0.5, 1 and 1.5 mg Se L-1 by foliar application on Se accumulation and fruit ripening as well as quality attributes was investigated. In 2017, the effects of 1.5 mg Se L-1 foliar application on fruit Se content and changes in the antioxidant system and storability were studied with a 30-day interval during 6 months storage at 0 ± 1 °C. RESULTS: Foliar application of Se significantly increased both leaf and fruit Se concentration. The increase in Se content enhanced the flesh firmness, titrable acidity, and soluble solid content of the fruit. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were markedly amplified by Se treatments as compared to the control, resulting in lower superoxide anion radical (O2 -• ) and hydrogen peroxide (H2 O2 ) contents, correspondingly higher membrane integrity as revealed by lower ion leakage and malondialdehyde accumulation and the fruit with lower water core. CONCLUSION: Application of Se was efficient in increasing fruit Se content and nutraceutical properties, retarding the flesh firmness reduction, and postponing fruit ripening resulting from lower ethylene biosynthesis rate, thereby positively affecting apple fruit quality and storability. © 2019 Society of Chemical Industry.


Subject(s)
Fruit/chemistry , Malus/chemistry , Selenic Acid/analysis , Selenium/analysis , Antioxidants/analysis , Antioxidants/metabolism , Ascorbate Peroxidases/analysis , Biofortification , Catalase/analysis , Catalase/metabolism , Fertilizers/analysis , Food Storage , Fruit/metabolism , Malondialdehyde/analysis , Malondialdehyde/metabolism , Malus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Selenic Acid/metabolism , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism
15.
Environ Sci Pollut Res Int ; 26(10): 10159-10173, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30746628

ABSTRACT

Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq) concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50-50% mixture. The reduction efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8-n phases. The reduction efficiency of Se(IV)(aq) to bulk Se0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0, while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8-n formed. This work helps to guide the removal, reduction effectiveness, and products formed from AA, TH, and a 50-50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chloride processing operations, and acid mine drainage/acid rock drainage tailings. Graphical Abstract ᅟ.


Subject(s)
Ascorbic Acid/chemistry , Models, Chemical , Selenic Acid/chemistry , Selenious Acid/chemistry , Thiourea/chemistry , Ascorbic Acid/analysis , Mining , Oxidation-Reduction , Selenic Acid/analysis , Selenious Acid/analysis , Selenium/analysis , Selenium Compounds , Sulfur , Thiourea/analysis
16.
Ecotoxicol Environ Saf ; 162: 571-580, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30031318

ABSTRACT

Pak choi can readily accumulate cadmium (Cd) into its edible parts; this can pose a threat to human health. Although not essential for higher plants, selenium (Se) can be favorable for plant growth and antioxidative defense under heavy metal stress conditions. A pak choi hydroponic experiment was conducted to investigate the effect of two forms of Se on the Cd uptake kinetics and accumulation and oxidative stress. The results showed that selenite and selenate remarkably enhanced Cd uptake kinetics in pak choi. The maximum Cd uptake rate increased by more than 100% after treatment with 5 µM of selenite and selenate, and it further increased after treatment with 20 µM of both Se forms. The effects of Se on Cd content depended on the Se form, exposure time, and Cd dosage. Selenite reduced the Cd content in shoots by 41% after 3 days of treatment with 10 µM Cd, whereas selenate increased this rate by 89%. Both forms of Se decreased Cd content in the shoots by 40% after 7 days of treatment with 10 µM Cd, but they increased the Cd content by approximately 30% after treatment with 50 µM Cd. Se enhanced Cd-induced oxidative stress in pak choi. Malondialdehyde (MDA) generation was promoted by more than 33% by selenite and selenate treatments in combination with 10 µM Cd, and it was further enhanced by 106% and 185% at 50 µM Cd, respectively. Selenite also increased the H2O2 content at both Cd doses, but selenate did not have significant effects on H2O2 production. The effects of Se on antioxidative enzyme activity also depended on the dose of Cd. Selenite and selenate inhibited catalase activity by 11% and 29%, respectively, at 10 µM Cd, and by 13% and 42%, respectively, at 50 µM Cd. Moreover, both forms of Se increased superoxide dismutase activity after treatment with 10 µM Cd but inhibited its activity at 50 µM Cd. Therefore, Se exhibits dual effects on Cd accumulation and oxidative stress in pak choi and might cause further stress when combined with higher doses of Cd.


Subject(s)
Brassica/drug effects , Cadmium/pharmacokinetics , Oxidative Stress/drug effects , Selenium/chemistry , Brassica/chemistry , Catalase/metabolism , Hydrogen Peroxide/metabolism , Hydroponics , Malondialdehyde/metabolism , Plant Shoots/chemistry , Plant Shoots/drug effects , Selenic Acid/analysis , Selenious Acid/analysis , Superoxide Dismutase/metabolism
17.
Food Chem ; 265: 182-188, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29884371

ABSTRACT

Edible fungi have strong ability to transform inorganic Se into organic forms. Therefore, different concentrations of selenite, selenate and Se-yeast were injected as Se-supplements into substrates to produce Se-enriched Lentinula edodes. The Se content and its speciation distribution in the fruit bodies of L. edodes were analysed at different harvest times. Results indicate that Se concentrations of L. edodes increased first and then decreased over time. Based on Se accumulation in L. edodes, selenium use efficiency was ranked as selenite > selenate > Se-yeast. SeMet was the predominant Se speciation in the fruit bodies of L. edodes. SeMet made up the biggest proportion of total Se content and increased with application time for selenite and selenate treatments, whereas no significant change was found for Se-yeast treatment. This study demonstrates that Se-enriched L. edodes is a good source of dietary Se.


Subject(s)
Selenium/analysis , Selenium/pharmacology , Shiitake Mushrooms/chemistry , Dietary Supplements , Selenic Acid/analysis , Selenic Acid/pharmacokinetics , Selenious Acid/analysis , Selenious Acid/pharmacokinetics , Selenium Compounds/chemistry , Selenomethionine/analysis , Selenomethionine/metabolism , Shiitake Mushrooms/drug effects , Shiitake Mushrooms/metabolism
18.
Environ Toxicol Chem ; 37(8): 2112-2122, 2018 08.
Article in English | MEDLINE | ID: mdl-29672902

ABSTRACT

Selenium (Se) concentrations measured in lake planktonic food chains (microplankton <64 µm, copepods, and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate, or selenomethionine at various H+ ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate >> selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate, whereas the uptake of selenomethionine remained unchanged. Although the pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using the present laboratory measurements of Se uptake in microplankton and of natural Se concentrations in lake water allowed us to model Se concentrations in a lake pelagic food chain. Environ Toxicol Chem 2018;37:2112-2122. © 2018 SETAC.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Lakes , Plankton/metabolism , Selenic Acid/analysis , Selenious Acid/analysis , Selenium/analysis , Sulfates/analysis , Animals , Diptera/metabolism , Food Chain , Geography , Hydrogen-Ion Concentration , Larva/metabolism , Time Factors
19.
J Sci Food Agric ; 98(13): 4971-4977, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29577309

ABSTRACT

BACKGROUND: Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. RESULTS: Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 µg g-1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. CONCLUSION: The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry.


Subject(s)
Food, Fortified/analysis , Fruit/chemistry , Laser Therapy/methods , Mass Spectrometry/methods , Olea/chemistry , Selenium/metabolism , Fertilizers/analysis , Fruit/metabolism , Minerals/analysis , Olea/metabolism , Selenic Acid/analysis , Selenic Acid/metabolism , Selenium/analysis , Spectrum Analysis
20.
Water Sci Technol ; 78(11): 2404-2413, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30699092

ABSTRACT

Direct use of zero-valent iron (ZVI) in reductive removal of selenate (Se(VI)) is inefficient due to the intrinsic passive layer of ZVI. Here we observed that ZVI pretreated with H2O2 (P-ZVI-O) performs much better in Se(VI) removal from a mining effluent than other three modes of ZVI alone, acid washing ZVI (P-ZVI-A), and simultaneous addition of H2O2 and ZVI (ZVI-O) as well. The P-ZVI-O exhibits exceptionally high Se(VI) removal at a low dosage, wide pH range, with Se dropping down from 93.5 mg/L to <0.4 µg/L after 7-h reaction. Interestingly, the initial pH (2-6) of the mining effluent exerted little influence on the final Se(VI) removal. H2O2/HCl pretreatment results in the formation of various reducing corrosion products (e.g. Fe3O4, FeO and Fe2+), which greatly favors the efficient Se(VI) removal. In addition, surface-bound Fe2+ ions participated in the reduction of Se(VI). Combined with the influence of Se valence as well as pH and Fe2+ (whether dissolved or surface bound), it is deduced that the P-ZVI-O mode induced efficient Se(VI) removal via the adsorption-reduction and/or co-precipitation. This study demonstrates that H2O2/HCl pretreatment of ZVI is a very promising option to enhance the efficiency of reductive removal of Se(VI) from real effluents.


Subject(s)
Selenic Acid/chemistry , Water Pollutants/chemistry , Water Purification/methods , Hydrogen Peroxide , Iron , Selenic Acid/analysis , Water Pollutants/analysis , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...