ABSTRACT
Total selenium (Se) and Se species concentrations were determined in 50 infant formulas and milk samples commercialized in Brazil and Belgium. Infant formula categories were starter, follow-up, specialized and plant-based (soy and rice), while milk samples included whole, skimmed, semi-skimmed and plant-based products. Total Se content was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), after microwave digestion. An enzymatic extraction method was applied to evaluate the Se species, mostly selenomethionine (SeMet), Se(IV) and Se(VI), through High Performance Liquid Chromatography coupled to ICP-MS (LC-ICP-MS). Starters and follow-up samples presented the highest total Se concentrations and values up to 30 µg/kg were observed in the reconstituted product. The lowest level (below the LOQ = 10 µg/kg) was verified in an anti-regurgitation specialized formula. The relative agreement between the measured total Se and the Se content declared on the label varied from 55 % to 317 %. Concentrations in infant formulas were not markedly different from concentrations in milk except for rice and oat milk samples that showed values below the LOQ. SeMet was the main species found in milks, while in infant formulas the species concentrations varied according to the product. The daily intake (DI) of Se via infant formula consumption was calculated and compared with the Adequate Intake (AI) value and the Dietary Reference Intake (DRI) established by the EFSA NDA Panel and ANVISA, respectively. Estimated maximum intakes of total Se obtained for reconstituted infant formula were 40.6 mg/day, corresponding to 400 % and 202 % of the DRI and AI, respectively.
Subject(s)
Selenium , Humans , Infant , Animals , Selenium/analysis , Infant Formula/analysis , Brazil , Belgium , Milk/chemistry , Selenomethionine/analysisABSTRACT
Selenium is an essential element in human and animal metabolism integrated into the catalytic site of glutathione peroxidase (GPX1), an antioxidant enzyme that protects cells from damage caused by reactive oxygen species (ROS). Oxidative stress refers the imbalance between ROS and antioxidant defense systems. It generates alterations of DNA, proteins and lipid peroxidation. The imbalance occurs particularly during ischemia and lack of postmortem perfusion. This mechanism is of relevance in transplant organs, affecting their survival. The aim of this research is to evaluate the effect of seleno-methionine (SeMet) as a protective agent against postmortem ischemia injury in transplant organs. Wistar rats were orally administered with SeMet. After sacrifice, liver, heart and kidney samples were collected at different postmortem intervals (PMIs). SeMet administration produced a significant increase of Se concentration in the liver (65%, p < 0.001), heart (40%, p < 0.01) and kidneys (45%, p < 0.05). Levels of the oxidative stress marker malondialdehyde (MDA) decreased significantly compared to control in the heart (0.21 ± 0.04 vs. 0.12 ± 0.02 mmol g-1) and kidneys (0.41 ± 0.02 vs. 0.24 ± 0.03 mmol g-1) in a PMI of 1-12 h (p < 0.01). After SeMet administration for 21 days, a significant increase in GPX1 activity was observed in the liver (80%, p < 0.001), kidneys (74%, p < 0.01) and heart (35%, p < 0.05). SeMet administration to rats significantly decreased the oxidative stress in the heart, liver and kidneys of rats generated by postmortem ischemia.
Subject(s)
Heart , Ischemia/metabolism , Kidney/metabolism , Liver/metabolism , Selenomethionine/metabolism , Administration, Oral , Animals , Female , Oxidative Stress , Rats , Rats, Wistar , Selenomethionine/administration & dosage , Selenomethionine/analysisABSTRACT
This study describes a method for seleno-amino acids determination in Argentinean olive oils. Preliminary total selenium determination in olive oils probed low concentrations (62.8±1.6 to 117.4±3.0 µg/kg) and the necessity of implementing a preconcentration method. To this end a XAD® resin was employed as sorbent for selenomethionine (Se-Met), selenomethylselenocysteine (Se-MetSeCys), and selenocysteine (Se-Cys) preconcentration. Determinations were performed by UPLC-ESI-MS/MS. Recoveries were between 84% and 97% for the seleno-amino acids studied, reaching a detection limit of 0.09 µg/kg, a precision of 10% (RSD, n=6), and an enhancement factor of 60-fold (6 for the extraction system and 10 for the preconcentration approach). The only detected Se species in the olive oils was Se-MetSeCys in concentrations ranging from 2.0 to 8.3 µg/kg.
Subject(s)
Plant Oils/analysis , Selenocysteine/analogs & derivatives , Selenomethionine/analysis , Chromatography, High Pressure Liquid , Limit of Detection , Olive Oil , Polystyrenes/chemistry , Polyvinyls/chemistry , Selenocysteine/analysis , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methodsABSTRACT
A method based on stir bar sorptive extraction (SBSE) and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of seleno-methyl-selenocysteine (SeMetSeCys) and selenomethionine (SeMet) in biota samples. Aliquots of freeze-dried tissue, a mixture of protease XIV-lipase and water were sonicated for 2min. After extraction, the extract was separated by centrifugation and subjected to derivatization and SBSE-TD-GC-MS. The parameters affecting derivatization, absorption and desorption steps were investigated. The optimized conditions consist of a derivatization with 40µL of ethyl chloroformate (ECF) in 400µL of a water:ethanol:pyridine (60:32:8) mixture, followed by dilution to 1.5mL of 70g NaClL(-1) in water at neutral pH and an extraction step using 10mm×1mm PDMS stir bar, stirring at 800rpm for 20min at room temperature (23±1°C). Three stir bars were used for the extraction of three different aliquots of the same sample and then placed in a single glass desorption liner and simultaneously desorbed for GC-MS analysis. The desorption step required the following conditions: 300°C (desorption temperature), 6min (desorption time), 50mLmin(-1) (vent flow) and -5°C (cryotrapping temperature). The method provided precise (8.1%) and accurate results in the mgSekg(-1) range (using the selected-ion monitoring-SIM mode) against certified reference material SELM-1 yeast, with recoveries higher than 80% for spiked algae and clams samples.
Subject(s)
Biota , Gas Chromatography-Mass Spectrometry/methods , Selenocysteine/analogs & derivatives , Selenomethionine/analysis , Sonication/methods , Absorption , Animals , Bivalvia/chemistry , Ethanol/chemistry , Haptophyta/chemistry , Linear Models , Lipase/chemistry , Pronase/chemistry , Pyridines/chemistry , Selenocysteine/analysis , Selenocysteine/isolation & purification , Selenomethionine/isolation & purificationABSTRACT
The distribution and speciation of selenium (Se) in freshwater fish (muscle and liver tissue) from lakes in Argentina was investigated. Three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis), and one native species, creole perch (Percichthys trucha), were investigated. Values for total selenium in muscle ranged from 0.66 to 1.61 µg/g, while in the liver, concentrations were much higher, from 4.46 to 73.71 µg/g on a dry matter basis. Separation of soluble Se species (SeCys(2), selenomethionine (SeMet), SeMeSeCys, selenite and selenate) was achieved by ion exchange chromatography and detection was performed by inductively coupled plasma-mass spectrometry. The results showed that in fish muscle, from 47 to 55 % of selenium was soluble and the only Se species identified was SeMet, which represented around 80 % of soluble Se, while in the liver, the amount of soluble Se ranged from 61 to 76 % and the percentage of species identified (SeMet and SeCys(2)) was much lower and ranged from 8 to 17 % of soluble Se.
Subject(s)
Liver/metabolism , Muscles/metabolism , Perches , Selenium/metabolism , Trout , Animals , Argentina , Chromatography, Ion Exchange , Environmental Monitoring/methods , Fats/metabolism , Fresh Water , Lakes , Perches/metabolism , Reproducibility of Results , Selenomethionine/analysis , Selenomethionine/metabolism , Sodium Selenite/analysis , Sodium Selenite/metabolism , Solubility , Trout/metabolismABSTRACT
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5±0.4 ng g(-1) and 1726±55 ng g(-1), and that in soil samples varied between 113±6.5 ng g(-1) and 1692±21 ng g(-1).
Subject(s)
Fabaceae/chemistry , Selenium/analysis , Soil/analysis , Spectrophotometry, Atomic/methods , Acids/chemistry , Oxidation-Reduction , Reducing Agents/chemistry , Reference Values , Selenium/chemistry , Selenomethionine/analysis , Selenomethionine/chemistry , Glycine max/chemistry , TemperatureABSTRACT
Avaliaram-se o efeito da suplementação de selênio, na dieta ofertada aos animais, sobre a concentração do mineral no sangue e no leite e as alterações nas características físico-químicas, contagem de células somáticas (CCS) e produção de leite. O experimento durou 63 dias, dos quais os primeiros 21 foram pré-experimental. Foram utilizadas 32 vacas em lactação da raça Jersey, as quais apresentavam, ao início, peso corporal de 402,5+58,4kg, escore de condição corporal de 3,19+0,31, produção de leite de 10,4+2,1kg e número de dias em lactação de 141,4+69,3. Os tratamentos foram: sem suplementação (grupo-controle); com suplementação de selênio inorgânico 0,3 (dieta-padrão + 0,3mg selenito de sódio/kg de concentrado - SI0,3); com suplementação com selênio orgânico 0,3 (dieta-padrão + 0,3mg seleniometionina/kg de concentrado - SO0,3) e com suplementação de selênio orgânico 0,6 (dieta-padrão + 0,6mg seleniometionina/kg de concentrado - SO0,6). As quantidades totais de selênio das dietas foram, respectivamente, 2,38; 4,18; 4,18 e 5,98mg/dia para os tratamentos controle, SI0,3, SO0,3 e SO0,6. O delineamento experimental foi o completamente ao acaso. O número de dias em lactação e os valores obtidos no início do experimento foram usados como covariáveis. Foram realizadas avaliações da produção de leite, do peso, da condição corporal, da composição do leite e do sangue nos dias 0, 14, 28 e 42 do período experimental. Entre os tratamentos, não foram detectadas alterações quanto à produção de leite, peso, condição corporal, características físico-químicas e microbiológicas do leite, e perfil bioquímico do sangue, exceto em relação à concentração de selênio no sangue entre o tratamento-controle e os tratamentos suplementados. Não houve diferenças quanto aos teores de selênio no sangue entre as fontes de selênio e as doses. Os teores de selênio no sangue evoluíram distintamente durante o experimento conforme a dose e a fonte. A suplementação com selênio ...(AU)
The effects of the dietary supplementation with selenium were evaluated on the concentration of the mineral in blood and milk, as well as changes in milk yield, physical and chemical characteristics, and somatic cells count (SCC). The trial lasted 63 days, the first 21 were designed to adaptation of animals to experimental conditions and standard diet. Thirty-two lactating Jersey cows were used and, at the beginning of the trial, they presented body weight of 402.5+58.4kg, body condition score of 3.19+0.31, milk yield of 10.4+2.1kg/day, and 141.4+69.3 days in milking. Treatments were: control (standard diet without added selenium), inorganic selenium (standard diet + 0.3mg sodium selenite/kg concentrate - SI0.3), organic selenium 0.3 (standard diet + 0.3mg selenomethionine/kg concentrate - SO0.3), and organic selenium 0.6 (standard diet + 0.6mg selenomethionine/kg concentrate - SO0.6). Total daily amounts of selenium were 2.38, 4.18, 4.18, and 5.98mg/cow, respectively, for control, SI0.3, SO0.3, and SO0.6 treatments. The trial was conducted as a completely randomized design. The number of days in milking and the values for all attributes measured at the end of the adaptation period were used as covariates. Measurements of body weight and condition score, milk yield and composition, and blood composition were performed on days 0, 14, 28, and 42 of the experimental period. No differences were detected among treatments for milk yield and composition, body weight and condition score, physical-chemical characteristics of milk, somatic cells count, and biochemical profile of the blood, except for Se contents of blood of control compared to supplemented. There were no differences caused by selenium sources or levels. Selenium supplementation did not alter neither milk nor blood components.(AU)
Subject(s)
Animals , Selenium-Binding Proteins/administration & dosage , Selenium-Binding Proteins/adverse effects , Selenium-Binding Proteins/analysis , Selenomethionine/administration & dosage , Selenomethionine/adverse effects , Selenomethionine/analysis , Cattle , Milk , Infant Nutritional Physiological PhenomenaABSTRACT
Avaliaram-se o efeito da suplementação de selênio, na dieta ofertada aos animais, sobre a concentração do mineral no sangue e no leite e as alterações nas características físico-químicas, contagem de células somáticas (CCS) e produção de leite. O experimento durou 63 dias, dos quais os primeiros 21 foram pré-experimental. Foram utilizadas 32 vacas em lactação da raça Jersey, as quais apresentavam, ao início, peso corporal de 402,5+58,4kg, escore de condição corporal de 3,19+0,31, produção de leite de 10,4+2,1kg e número de dias em lactação de 141,4+69,3. Os tratamentos foram: sem suplementação (grupo-controle); com suplementação de selênio inorgânico 0,3 (dieta-padrão + 0,3mg selenito de sódio/kg de concentrado - SI0,3); com suplementação com selênio orgânico 0,3 (dieta-padrão + 0,3mg seleniometionina/kg de concentrado - SO0,3) e com suplementação de selênio orgânico 0,6 (dieta-padrão + 0,6mg seleniometionina/kg de concentrado - SO0,6). As quantidades totais de selênio das dietas foram, respectivamente, 2,38; 4,18; 4,18 e 5,98mg/dia para os tratamentos controle, SI0,3, SO0,3 e SO0,6. O delineamento experimental foi o completamente ao acaso. O número de dias em lactação e os valores obtidos no início do experimento foram usados como covariáveis. Foram realizadas avaliações da produção de leite, do peso, da condição corporal, da composição do leite e do sangue nos dias 0, 14, 28 e 42 do período experimental. Entre os tratamentos, não foram detectadas alterações quanto à produção de leite, peso, condição corporal, características físico-químicas e microbiológicas do leite, e perfil bioquímico do sangue, exceto em relação à concentração de selênio no sangue entre o tratamento-controle e os tratamentos suplementados. Não houve diferenças quanto aos teores de selênio no sangue entre as fontes de selênio e as doses. Os teores de selênio no sangue evoluíram distintamente durante o experimento conforme a dose e a fonte. A suplementação com selênio ...
The effects of the dietary supplementation with selenium were evaluated on the concentration of the mineral in blood and milk, as well as changes in milk yield, physical and chemical characteristics, and somatic cells count (SCC). The trial lasted 63 days, the first 21 were designed to adaptation of animals to experimental conditions and standard diet. Thirty-two lactating Jersey cows were used and, at the beginning of the trial, they presented body weight of 402.5+58.4kg, body condition score of 3.19+0.31, milk yield of 10.4+2.1kg/day, and 141.4+69.3 days in milking. Treatments were: control (standard diet without added selenium), inorganic selenium (standard diet + 0.3mg sodium selenite/kg concentrate - SI0.3), organic selenium 0.3 (standard diet + 0.3mg selenomethionine/kg concentrate - SO0.3), and organic selenium 0.6 (standard diet + 0.6mg selenomethionine/kg concentrate - SO0.6). Total daily amounts of selenium were 2.38, 4.18, 4.18, and 5.98mg/cow, respectively, for control, SI0.3, SO0.3, and SO0.6 treatments. The trial was conducted as a completely randomized design. The number of days in milking and the values for all attributes measured at the end of the adaptation period were used as covariates. Measurements of body weight and condition score, milk yield and composition, and blood composition were performed on days 0, 14, 28, and 42 of the experimental period. No differences were detected among treatments for milk yield and composition, body weight and condition score, physical-chemical characteristics of milk, somatic cells count, and biochemical profile of the blood, except for Se contents of blood of control compared to supplemented. There were no differences caused by selenium sources or levels. Selenium supplementation did not alter neither milk nor blood components.
Subject(s)
Animals , Selenium-Binding Proteins/administration & dosage , Selenium-Binding Proteins/analysis , Selenium-Binding Proteins/adverse effects , Selenomethionine/administration & dosage , Selenomethionine/analysis , Selenomethionine/adverse effects , Cattle , Milk , Infant Nutritional Physiological PhenomenaABSTRACT
The high selenium content of the Brazil nut, Bertholletia excelsa, makes this seed a healthy food qualified as an antiradical protector. The studied nut contained 126 ppm of selenium. Selenium was found to be distributed in the nut protein fractions. The water-extracted fraction, which represented 17.7% of the cake protein, was the richest in selenium with 153 ppm. Analysis by HPLC-MS showed that selenium was linked by a covalent bond to two amino acids to form selenomethionine and selenocystine. The selenomethionine represented a little less than 1% of the total amount of methionine.
Subject(s)
Bertholletia/chemistry , Cystine/analogs & derivatives , Plant Proteins/chemistry , Seeds/chemistry , Selenium/analysis , Chromatography, High Pressure Liquid , Cystine/analysis , Mass Spectrometry , Organoselenium Compounds/analysis , Selenomethionine/analysisABSTRACT
Brazil nuts have been classified as the foodstuffs that contain the highest level of unadulterated selenium, an essential trace element that appears to prevent cancer. To date, characterization of the selenium species in brazil nuts has not yet been investigated. In this work, various sample preparation approaches, including microwave extractions and enzymatic treatments, are examined with the goal of species preservation and subsequent selenium speciation; of these approaches, an enzymatic treatment with Proteinase K proved most effective. High-performance liquid chromatography (HPLC) separation strategies and inductively coupled plasma mass spectrometry (ICP-MS) detection schemes will also be presented. Extracts are evaluated against available standards for the commercially obtainable seleno-amino acids, selenomethionine (SeMet), selenoethionine (SeEt), and selenocystine (SeCys); selenomethionine was demonstrated to be the most abundant of these seleno-amino acids. Further characterization of unidentified selenium-containing peaks is attempted by the employment of several procedures, including electrospray-mass spectrometry (ES-MS). A peptide structure was identified; however, this was considered a tentative proposal due to the large background produced by the extremely complicated brazil nut matrix.