Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 576
Filter
1.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172096

ABSTRACT

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Subject(s)
Alphavirus Infections , Alphavirus , Encephalitis Virus, Eastern Equine , Horses , Animals , Mice , Alphavirus/genetics , Encephalitis Virus, Eastern Equine/genetics , Semliki forest virus/genetics , Lipoproteins, LDL
2.
J Med Virol ; 96(1): e29376, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235850

ABSTRACT

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Subject(s)
Semliki forest virus , Sindbis Virus , Mice , Animals , Semliki forest virus/genetics , Sindbis Virus/genetics , Plasmids/genetics , Replicon , Luciferases/genetics , Genetic Vectors
3.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245515

ABSTRACT

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Subject(s)
Alphavirus Infections , Alphavirus , Culicidae , Animals , Humans , Alphavirus/genetics , Virus Internalization , Semliki forest virus/genetics , Semliki forest virus/metabolism , Alphavirus Infections/genetics
4.
Virol Sin ; 38(4): 585-594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390870

ABSTRACT

Alphaviruses, which contain a variety of mosquito-borne pathogens, are important pathogens of emerging/re-emerging infectious diseases and potential biological weapons. Currently, no specific antiviral drugs are available for the treatment of alphaviruses infection. For most highly pathogenic alphaviruses are classified as risk group-3 agents, the requirement of biosafety level 3 (BSL-3) facilities limits the live virus-based antiviral study. To facilitate the antiviral development of alphaviruses, we developed a high throughput screening (HTS) platform based on a recombinant Semliki Forest virus (SFV) which can be manipulated in BSL-2 laboratory. Using the reverse genetics approach, the recombinant SFV and SFV reporter virus expressing eGFP (SFV-eGFP) were successfully rescued. The SFV-eGFP reporter virus exhibited robust eGFP expression and remained relatively stable after four passages in BHK-21 â€‹cells. Using a broad-spectrum alphavirus inhibitor ribavirin, we demonstrated that the SFV-eGFP can be used as an effective tool for antiviral study. The SFV-eGFP reporter virus-based HTS assay in a 96-well format was then established and optimized with a robust Z' score. A section of reference compounds that inhibit highly pathogenic alphaviruses were used to validate that the SFV-eGFP reporter virus-based HTS assay enables rapid screening of potent broad-spectrum inhibitors of alphaviruses. This assay provides a safe and convenient platform for antiviral study of alphaviruses.


Subject(s)
Alphavirus , Animals , Alphavirus/genetics , Semliki forest virus/genetics , Semliki forest virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Genes, Reporter , High-Throughput Screening Assays , Cell Line , Virus Replication
5.
Cell Rep ; 42(5): 112441, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37104090

ABSTRACT

RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.


Subject(s)
Alphavirus Infections , Antiviral Agents , Animals , Mice , RNA Interference , Cell Line , RNA, Small Interfering/genetics , Semliki forest virus/genetics , Sindbis Virus/genetics , Mammals/genetics , Virus Replication
6.
Cancer Lett ; 561: 216139, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37001752

ABSTRACT

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Subject(s)
Neoplasms , Single-Domain Antibodies , Animals , Humans , Mice , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes , Semliki forest virus/genetics , Single-Domain Antibodies/genetics , Programmed Cell Death 1 Receptor/metabolism
7.
Biomaterials ; 279: 121226, 2021 12.
Article in English | MEDLINE | ID: mdl-34736150

ABSTRACT

This study describes an efficient eukaryotic expression system (pJHL204) built into the Salmonella delivery system to enhance the essential efficacy and effectiveness of conventional DNA therapy. The expression system utilizes RNA-dependent RNA polymerase activity (RdRp) of Semiliki Forest Virus attributing to dramatic antigen expression by cytoplasmic mRNA amplification. Functional characterization of the pJHL204 by in vitro and in vivo transfection studies revealed the improved expression of mRNA at least 150 folds than the RdRp mutant plasmid under in vitro conditions. Using green fluorescence protein (GFP) and mCherry as bait proteins this system was extensively characterized for plasmid delivery capacity, antigen expression, and safety using in vivo and in vitro models by employing flow cytometry, fluorescence microscopy, and immunohistochemical staining. Employment of Salmonella as a carrier significantly extends plasmid in vivo survivability and prolongs the effective duration until the elimination of the Salmonella carrier strain in the host. The strategy can be easily adapted for P2A connected multiple antigen delivery in a single vector system due to the significantly high cargo capacity of Salmonella. A mouse challenge study was carried out utilizing P2A connected H1N1 hemagglutinin (HA) and neuraminidase (NA) via the Salmonella carrier strain JOL2500 significantly reduced viral activity and protected mice against the H1N1 challenge and demonstrates potential to redefine in vivo DNA therapy as a reliable and safe system to treat human diseases using useful microbes like Salmonella.


Subject(s)
Genetic Therapy , Influenza A Virus, H1N1 Subtype , Salmonella typhimurium , Semliki forest virus , Animals , Eukaryota , Green Fluorescent Proteins , Mice , RNA-Dependent RNA Polymerase , Salmonella typhimurium/genetics , Semliki forest virus/genetics
8.
Viruses ; 13(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34452382

ABSTRACT

Alphaviruses are small enveloped viruses with positive-sense RNA genomes. During infection, the alphavirus capsid protein (Cp) selectively packages and assembles with the viral genomic RNA to form the nucleocapsid core, a process critical to the production of infectious virus. Prior studies of the alphavirus Semliki Forest virus (SFV) showed that packaging and assembly are promoted by Cp binding to multiple high affinity sites on the genomic RNA. Here, we developed an in vitro Cp binding assay based on fluorescently labeled RNA oligos. We used this assay to explore the RNA sequence and structure requirements for Cp binding to site #1, the top binding site identified on the genomic RNA during all stages of virus assembly. Our results identify a stem-loop structure that promotes specific binding of the SFV Cp to site #1 RNA. This structure is also recognized by the Cps of the related alphaviruses chikungunya virus and Ross River virus.


Subject(s)
Alphavirus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genome, Viral/physiology , Inverted Repeat Sequences/genetics , RNA, Viral/metabolism , Alphavirus/metabolism , Binding Sites , Capsid/metabolism , Cell Line , Chikungunya virus/genetics , Chikungunya virus/metabolism , Genome, Viral/genetics , Inverted Repeat Sequences/physiology , Protein Binding , RNA, Viral/genetics , RNA-Binding Motifs , Ross River virus/genetics , Ross River virus/metabolism , Semliki forest virus/genetics , Semliki forest virus/metabolism , Virus Assembly
9.
J Virol ; 95(20): e0097321, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319778

ABSTRACT

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Subject(s)
Adaptation, Biological/genetics , Alphavirus/genetics , Semliki forest virus/genetics , Cell Line , Chikungunya virus/genetics , Chimera/genetics , Chimera/metabolism , DNA Viruses/genetics , Humans , Mutation/genetics , Polyproteins/metabolism , RNA, Viral/metabolism , Sindbis Virus/genetics , Viral Nonstructural Proteins/genetics , Viral Replication Compartments/metabolism , Virus Replication/genetics
10.
PLoS Pathog ; 17(5): e1009603, 2021 05.
Article in English | MEDLINE | ID: mdl-34019569

ABSTRACT

The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


Subject(s)
Alphavirus Infections/virology , Capsid Proteins/metabolism , Host-Pathogen Interactions , Nonsense Mediated mRNA Decay/genetics , Semliki forest virus/physiology , Capsid Proteins/genetics , HeLa Cells , Humans , Semliki forest virus/genetics , Virus Replication
11.
Eur J Pharm Sci ; 159: 105726, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33482318

ABSTRACT

Human glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins. Specifically, the baby hamster kidney cell line (BHK-21) has shown to be an effective system for the expression of high levels of hGDNF, with appropriate post-translational modifications and protein folding. This system, which is based on the electroporation of BHK-21 cells using a Semliki Forest virus (SFV) as expression vector, induces a strong shut-off of host cell protein synthesis that simplify the purification process. However, SFV vector exhibits a temperature-dependent cytopathic effect on host cells, which could limit hGDNF expression. The aim of this study was to improve the expression and purification of hGDNF using a biphasic temperature cultivation protocol that would decrease the cytopathic effect induced by SFV. Here we show that an increase in the temperature from 33°C to 37°C during the "shut-off period", produced a significant improvement in cell survival and hGDNF expression. In consonance, this protocol led to the production of almost 3-fold more hGDNF when compared to the previously described methods. Therefore, a "recovery period" at 37°C before cells are exposed at 33°C is crucial to maintain cell viability and increase hGDNF expression. The protocol described constitutes an efficient and highly scalable method to produce highly pure hGDNF.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Semliki forest virus , Animals , Cell Line , Cricetinae , Dopamine , Genetic Vectors , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Semliki forest virus/genetics
12.
Mol Ther ; 29(2): 611-625, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33160073

ABSTRACT

A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.


Subject(s)
Cancer Vaccines/immunology , Genetic Vectors/genetics , Neoplasms/etiology , Neoplasms/therapy , Papillomavirus Infections/complications , Papillomavirus Vaccines/immunology , Semliki forest virus/genetics , Alphapapillomavirus/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Genetic Vectors/administration & dosage , Humans , Immunization , Neoplasms/prevention & control , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Vaccination
13.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569520

ABSTRACT

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Subject(s)
Calnexin/genetics , Calreticulin/genetics , Host-Pathogen Interactions/genetics , Influenza A virus/genetics , Picornaviridae/genetics , Viral Proteins/genetics , Virology/history , Animals , Calnexin/chemistry , Calnexin/metabolism , Calreticulin/chemistry , Calreticulin/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation , History, 20th Century , History, 21st Century , Humans , Influenza A virus/metabolism , Picornaviridae/metabolism , Protein Folding , Semliki forest virus/genetics , Semliki forest virus/metabolism , Vesiculovirus/genetics , Vesiculovirus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Internalization
14.
Expert Opin Biol Ther ; 20(6): 593-599, 2020 06.
Article in English | MEDLINE | ID: mdl-32050824

ABSTRACT

Introduction: Immunotherapy has been introduced as a modern alternative for the treatment of various cancers, including the stimulation of the immune system by introduction of immunostimulatory molecules. Application of viral and non-viral vectors have provided a substantial contribution to improved delivery and expression of these immunostimulators.Areas covered: Alphavirus vectors, based on Semliki Forest virus, have allowed immunization with self-replicating RNA, recombinant virus particles, and layered DNA/RNA vectors. The attractive features of alphaviruses comprise their broad host range and extreme RNA replication in infected cells resulting in very high recombinant protein expression levels providing enhanced immune responses and an excellent basis for immunotherapy.Expert opinion: Immunization studies in animal tumor models have elicited strong humoral and cellular immune response, have provided prophylactic protection against tumor challenges, and have generated therapeutic efficacy in tumor-bearing animals. Clinical trials have indicated safe use of alphavirus vectors, making them attractive for cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Semliki forest virus/genetics , Adaptive Immunity , Animals , Clinical Trials as Topic , Genetic Vectors/genetics , Genetic Vectors/metabolism , Genetic Vectors/therapeutic use , Humans , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-12/metabolism , Neoplasms/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
15.
J Virol ; 94(3)2020 01 17.
Article in English | MEDLINE | ID: mdl-31694940

ABSTRACT

RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.


Subject(s)
Capsid Proteins/genetics , Capsid Proteins/metabolism , RNA Interference/physiology , Semliki forest virus/genetics , Semliki forest virus/metabolism , Animals , Capsid , Cell Line , Chikungunya virus/physiology , Drosophila , Encephalitis Virus, Western Equine/physiology , HEK293 Cells , Humans , RNA, Small Interfering , RNA, Viral , Sindbis Virus/physiology , Virion , Virus Replication
16.
Mol Ther ; 28(1): 119-128, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31624015

ABSTRACT

Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- over saRNA-encoded replicase to drive expression of the transreplicon is most likely attributable to its higher translational efficiency and lack of interference with cellular translation. Testing the novel taRNA system in mice, we observed that doses of influenza hemagglutinin antigen-encoding RNA as low as 50 ng were sufficient to induce neutralizing antibodies and mount a protective immune response against live virus challenge. These findings, together with a favorable safety profile, a simpler production process, and the universal applicability associated with this bipartite vector system, warrant further exploration of taRNA.


Subject(s)
Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/metabolism , Orthomyxoviridae Infections/prevention & control , RNA, Viral/genetics , Semliki forest virus/genetics , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cricetinae , Dogs , Female , Genetic Vectors , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Viral Replicase Complex Proteins/genetics
17.
Mol Ther ; 27(11): 1892-1905, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31563534

ABSTRACT

Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFV-aPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and safe approach for cancer treatment.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Gene Expression , Genetic Vectors/genetics , Neoplasms/genetics , Neoplasms/immunology , RNA Viruses/genetics , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Immunomodulation/drug effects , Immunophenotyping , Injections, Intralesional , Mice , Neoplasms/pathology , Neoplasms/therapy , Recombinant Fusion Proteins/genetics , Semliki forest virus/genetics , Survival Rate , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Burden
18.
J Biotechnol ; 304: 63-69, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31442500

ABSTRACT

The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 µg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 µg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 µg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 µg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.


Subject(s)
Glycoproteins/genetics , Glycoproteins/metabolism , Rabies virus/metabolism , Semliki forest virus/genetics , Animals , Cell Line , Chlorocebus aethiops , Electroporation , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Protein Engineering , Rabies virus/genetics , Transfection , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Antiviral Res ; 168: 156-167, 2019 08.
Article in English | MEDLINE | ID: mdl-31153968

ABSTRACT

Chronic hepatitis B virus (HBV) infections cause more than 800,000 deaths per year and currently approved treatments do not cure the disease. Because a hallmark of acute infection resolution is the presence of functional CD8+ T cells to the virus, activation of the immune system with therapeutic vaccines represents a potential approach for treating chronic hepatitis B. In this study, we evaluated the immunogenicity and efficacy of two attenuated vesiculovirus-based platforms expressing HBV Core antigen, the highly attenuated vesicular stomatitis virus (VSV) N4CT1 and a unique vaccine platform [virus-like vesicles (VLV)] that is based on a Semliki Forest virus replicon expressing the VSV glycoprotein. We found that heterologous prime-boost immunization with VLV and N4CT1 induced Core-specific CD8+ T cell responses in naïve mice. When immunized mice were later challenged with AAV-HBV, functional Core-specific CD8+ T cells were present in the liver, and mice were protected from establishment of persistent infection. In contrast, when mice with pre-established persistent HBV replication received prime-boost immunization, functional Core-specific CD8+ T cells were found in the spleen but not in the liver. These results highlight the importance of investigating the therapeutic value of different HBV antigens alone and in combination using preclinical animal models, and understanding the correlation between anti-HBV efficacy in these models with human infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis B Core Antigens/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B virus/immunology , Hepatitis B/prevention & control , Vesiculovirus/genetics , Animals , Genetic Vectors , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Core Antigens/genetics , Hepatitis B Vaccines/genetics , Hepatitis B Vaccines/immunology , Hepatitis B virus/genetics , Immunization, Secondary , Liver/immunology , Liver/virology , Male , Mice , Mice, Inbred C57BL , Semliki forest virus/genetics , Vaccination , Vaccines, Attenuated , Vaccines, Virus-Like Particle , Vesicular stomatitis Indiana virus/genetics , Virus Replication
20.
Neurosci Bull ; 35(3): 378-388, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30888608

ABSTRACT

Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.


Subject(s)
Genetic Vectors/metabolism , Neurons/cytology , Neurons/metabolism , Semliki forest virus/genetics , Animals , Cells, Cultured , Gene Expression , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry/methods , Male , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Purkinje Cells/cytology , Purkinje Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...