Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.447
Filter
1.
Sci Rep ; 14(1): 10788, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734783

ABSTRACT

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.


Subject(s)
Cerebral Palsy , Magnetoencephalography , Sensorimotor Cortex , Humans , Adult , Male , Female , Cerebral Palsy/physiopathology , Sensorimotor Cortex/physiopathology , Sensorimotor Cortex/physiology , Young Adult , Psychomotor Performance/physiology , Adaptation, Physiological , Case-Control Studies
2.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764119

ABSTRACT

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Subject(s)
Acupuncture Points , Electroacupuncture , Mice, Inbred C57BL , Neurons , Animals , Male , Mice , Neurons/metabolism , Sensorimotor Cortex/metabolism , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Motor Cortex/metabolism , Somatosensory Cortex/metabolism
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652551

ABSTRACT

Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.


Subject(s)
Acupuncture Therapy , Electroencephalography , Motor Cortex , Humans , Acupuncture Therapy/methods , Electroencephalography/methods , Motor Cortex/physiology , Male , Adult , Female , Somatosensory Cortex/physiology , Young Adult , Sensorimotor Cortex/physiology , Brain Mapping/methods
4.
PLoS One ; 19(4): e0300575, 2024.
Article in English | MEDLINE | ID: mdl-38578743

ABSTRACT

Human cingulate sulcus visual area (CSv) was first identified as an area that responds selectively to visual stimulation indicative of self-motion. It was later shown that the area is also sensitive to vestibular stimulation as well as to bodily motion compatible with locomotion. Understanding the anatomical connections of CSv will shed light on how CSv interacts with other parts of the brain to perform information processing related to self-motion and navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685-3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the structural connectivity of CSv, and demonstrated connections between CSv and the motor and sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed to complement this work by investigating the relationship between CSv and adjacent major white matter tracts, and to map CSv's structural connectivity onto known white matter tracts. By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e. streamlines) from the whole-brain tractography that terminate near CSv. We then assessed to which white matter tracts those streamlines may belong based on previously established anatomical prescriptions. We found that a significant number of CSv streamlines can be categorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and the cingulum. Given current thinking about the functions of these white matter tracts, our results support the proposition that CSv provides an interface between sensory and motor systems in the context of self-motion.


Subject(s)
Sensorimotor Cortex , White Matter , Humans , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Brain Mapping
5.
Neuron ; 112(9): 1384-1386, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614104

ABSTRACT

In a recent issue of Cell, Vargas and colleagues1 demonstrate that task-driven neural network models are superior at predicting proprioceptive activity in the primate cuneate nucleus and sensorimotor cortex compared with other models. This provides valuable insights for better understanding the proprioceptive pathway.


Subject(s)
Neural Networks, Computer , Proprioception , Proprioception/physiology , Animals , Humans , Models, Neurological , Sensorimotor Cortex/physiology
6.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664387

ABSTRACT

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Subject(s)
Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
7.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679481

ABSTRACT

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.


Subject(s)
Electroencephalography , Humans , Male , Female , Adult , Young Adult , Electroencephalography/methods , Attention/physiology , Visual Cortex/physiology , Alpha Rhythm/physiology , Sensorimotor Cortex/physiology , Visual Perception/physiology , Photic Stimulation/methods
8.
PLoS Comput Biol ; 20(4): e1011562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630803

ABSTRACT

The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.


Subject(s)
Electroencephalography , Feedback, Sensory , Postural Balance , Humans , Postural Balance/physiology , Feedback, Sensory/physiology , Male , Young Adult , Adult , Female , Muscle, Skeletal/physiology , Sensorimotor Cortex/physiology , Cerebral Cortex/physiology , Computational Biology , Electromyography
9.
Sci Rep ; 14(1): 7294, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538663

ABSTRACT

Stress-related overeating can lead to excessive weight gain, increasing the risk of metabolic and cardiovascular disease. Mindfulness meditation has been demonstrated to reduce stress and increase interoceptive awareness and could, therefore, be an effective intervention for stress-related overeating behavior. To investigate the effects of mindfulness meditation on stress-eating behavior, meditation-naïve individuals with a tendency to stress-eat (N = 66) participated in either a 31-day, web-based mindfulness meditation training or a health training condition. Behavioral and resting-state fMRI data were acquired before and after the intervention. Mindfulness meditation training, in comparison to health training, was found to significantly increase mindfulness while simultaneously reducing stress- and emotional-eating tendencies as well as food cravings. These behavioral results were accompanied by functional connectivity changes between the hypothalamus, reward regions, and several areas of the default mode network in addition to changes observed between the insula and somatosensory areas. Additional changes between seed regions (i.e., hypothalamus and insula) and brain areas attributed to emotion regulation, awareness, attention, and sensory integration were observed. Notably, these changes in functional connectivity correlated with behavioral changes, thereby providing insight into the underlying neural mechanisms of the effects of mindfulness on stress-eating.Clinical trial on the ISRCTN registry: trial ID ISRCTN12901054.


Subject(s)
Meditation , Mindfulness , Sensorimotor Cortex , Humans , Attention , Hyperphagia , Magnetic Resonance Imaging , Meditation/psychology , Mindfulness/methods
10.
J Neural Eng ; 21(2)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537271

ABSTRACT

Objective.Neuromuscular electrical stimulation (NMES) is widely used for motor function rehabilitation in stroke survivors. Compared with the conventional motor point (MP) stimulation, the stimulation at the proximal segment of the peripheral nerve (PN) bundles has been demonstrated to have multiple advantages. However, it is not known yet whether the PN stimulation can increase the cortical activation level, which is crucial for motor function rehabilitation.Approach.The current stimuli were delivered transcutaneously at the muscle belly of the finger flexors and the proximal segment of the median and ulnar nerves, respectively for the MP and PN stimulation. The stimulation intensity was determined to elicit the same contraction levels between the two stimulation methods in 18 healthy individuals and a stroke patient. The functional near-infrared spectroscopy and the electromyogram were recorded to compare the activation pattern of the sensorimotor regions and the target muscles.Main Results.For the healthy subjects, the PN stimulation induced significantly increased concentration of the oxygenated hemoglobin in the contralateral sensorimotor areas, and enhanced the functional connectivity between brain regions compared with the MP stimulation. Meanwhile, the compound action potentials had a smaller amplitude and the H-reflex became stronger under the PN stimulation, indicating that more sensory axons were activated in the PN stimulation. For the stroke patient, the PN stimulation can elicit finger forces and induce activation of both the contralateral and ipsilateral motor cortex.Conclusions. Compared with the MP stimulation, the PN stimulation can induce more cortical activation in the contralateral sensorimotor areas possibly via involving more activities in the central pathway.Significance.This study demonstrated the potential of the PN stimulation to facilitate functional recovery via increasing the cortical activation level, which may help to improve the outcome of the NMES-based rehabilitation for motor function recovery after stroke.


Subject(s)
Sensorimotor Cortex , Stroke , Humans , Muscle, Skeletal/physiology , Electric Stimulation/methods , Electromyography
12.
Hum Brain Mapp ; 45(4): e26647, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488448

ABSTRACT

Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.


Subject(s)
Parkinson Disease , Sensorimotor Cortex , Humans , Female , Middle Aged , Aged , Magnetic Resonance Imaging , Executive Function , Brain Mapping
13.
Nat Commun ; 15(1): 2355, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491089

ABSTRACT

Handedness develops early in life, but the structural and functional brain connectivity patterns associated with it remains unknown. Here we investigate associations between handedness and the asymmetry of brain connectivity in 9- to 10-years old children from the Adolescent Brain Cognitive Development (ABCD) study. Compared to right-handers, left-handers had increased global functional connectivity density in the left-hand motor area and decreased it in the right-hand motor area. A connectivity-based index of handedness provided a sharper differentiation between right- and left-handers. The laterality of hand-motor connectivity varied as a function of handedness in unimodal sensorimotor cortices, heteromodal areas, and cerebellum (P < 0.001) and reproduced across all regions of interest in Discovery and Replication subsamples. Here we show a strong association between handedness and the laterality of the functional connectivity patterns in the absence of differences in structural connectivity, brain morphometrics, and cortical myelin between left, right, and mixed handed children.


Subject(s)
Functional Laterality , Sensorimotor Cortex , Adolescent , Child , Humans , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Cerebellum
14.
Biomed Res ; 45(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38325841

ABSTRACT

Epigenetic regulation is involved in post-stroke neuroplasticity. We investigated the effects of intracerebral hemorrhage (ICH) on histone acetylation and gene expression related to neuronal plasticity in the bilateral sensorimotor cortices, which may affect post-stroke sensorimotor function. Wistar rats were randomly divided into the SHAM and ICH groups. We performed ICH surgery stereotaxically based on the microinjection of a collagenase solution in the ICH group. Foot fault and cylinder tests were performed to evaluate motor functions at 4-time points, including pre-ICH surgery. The amount of acetyl histones and the mRNA expression of neurotrophic factors crucial to neuroplasticity in the bilateral sensorimotor cortices were analyzed approximately 2 weeks after ICH surgery. Sensorimotor functions of the ICH group were inferior to those of the SHAM group during 2 weeks post-ICH. ICH increased the acetylation of histone H3 and H4 over the sham level in the ipsilateral and contralateral cortices. ICH increased the mRNA expression of IGF-1, but decreased the expression of BDNF compared with the sham level in the ipsilateral cortex. The present study suggests that histone acetylation levels are enhanced in bilateral sensorimotor cortices after ICH, presenting an altered epigenetic platform for gene expressions related to neuronal plasticity.


Subject(s)
Epigenesis, Genetic , Sensorimotor Cortex , Rats , Animals , Histones/metabolism , Rats, Wistar , Acetylation , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Sensorimotor Cortex/metabolism , RNA, Messenger/metabolism
15.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38342688

ABSTRACT

A conspicuous property of brain development or maturity is coupled with coordinated or synchronized brain structural co-variation. However, there is still a lack of effective approach to map individual structural covariance network. Here, we developed a novel individual structural covariance network method using dynamic time warping algorithm and applied it to delineate developmental trajectories of topological organizations of structural covariance network from childhood to early adulthood with a large sample of 655 individuals from Human Connectome Project-Development dataset. We found that the individual structural covariance network exhibited small-worldness property and the network global topological characteristics including small-worldness, global efficiency, local efficiency, and modularity linearly increase with age while the shortest path length linearly decreases with age. The nodal topological properties including betweenness and degree increased with age in language and emotion regulation related brain areas, while it decreased with age mainly in visual cortex, sensorimotor area, and hippocampus. Moreover, the topological attributes of structural covariance network as features could predict the age of each individual. Taken together, our results demonstrate that dynamic time warping can effectively map individual structural covariance network to uncover the developmental trajectories of network topology, which may facilitate future investigations to establish the links of structural co-variations with respect to cognition and disease vulnerability.


Subject(s)
Connectome , Sensorimotor Cortex , Humans , Adult , Child , Magnetic Resonance Imaging , Brain/physiology , Cognition , Hippocampus , Connectome/methods
16.
Neurol Med Chir (Tokyo) ; 64(3): 101-107, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38267056

ABSTRACT

Phantom limb pain is attributed to abnormal sensorimotor cortical representations. Various feedback treatments have been applied to induce the reorganization of the sensorimotor cortical representations to reduce pain. We developed a training protocol using a brain-computer interface (BCI) to induce plastic changes in the sensorimotor cortical representation of phantom hand movements and demonstrated that BCI training effectively reduces phantom limb pain. By comparing the induced cortical representation and pain, the mechanisms worsening the pain have been attributed to the residual phantom hand representation. Based on our data obtained using neurofeedback training without explicit phantom hand movements and hand-like visual feedback, we suggest a direct relationship between cortical representation and pain. In this review, we summarize the results of our BCI training protocol and discuss the relationship between cortical representation and phantom limb pain. We propose a treatment for phantom limb pain based on real-time neuroimaging to induce appropriate cortical reorganization by monitoring cortical activities.


Subject(s)
Motor Cortex , Phantom Limb , Sensorimotor Cortex , Humans , Phantom Limb/therapy , Hand , Neuroimaging
17.
Clin Neurophysiol ; 159: 1-12, 2024 03.
Article in English | MEDLINE | ID: mdl-38232654

ABSTRACT

OBJECTIVE: The aim of this study was to explore differences in brain activity and connectivity using simultaneous electroencephalography and near-infrared spectroscopy in patients with focal dystonia during handwriting and finger-tapping tasks. METHODS: Patients with idiopathic right upper limb focal dystonia and controls were assessed by simultaneous near-infrared spectroscopy and electroencephalography during the writing and finger-tapping tasks in terms of the mu-alpha, mu-beta, beta and low gamma power and effective connectivity, as well as relative changes in oxyhemoglobin (oxy-Hb) and deoxyhemoglobin using a channel-wise approach with a mixed-effect model. RESULTS: Patients exhibited higher oxy-Hb levels in the right and left motor cortex and supplementary motor area during writing, but lower oxy-Hb levels in the left sensorimotor and bilateral somatosensory area during finger-tapping compared to controls. During writing, patients showed increased low gamma power in the bilateral sensorimotor cortex and less mu-beta and beta attenuation compared to controls. Additionally, patients had reduced connectivity between the supplementary motor area and the left sensorimotor cortex during writing. No differences were observed in terms of effective connectivity in either task. Finally, patients failed to attenuate the mu-alpha, mu-beta, and beta rhythms during the finger-tapping task. CONCLUSIONS: Cortical blood flow and EEG spectral power differ between controls and dystonia patients, depending on the task. Writing increased blood flow and altered connectivity in dystonia patients, and it also decreased slow-band attenuation. Finger-tapping decreased blood flow and slow-band attenuation. SIGNIFICANCE: Simultaneous fNIRS and EEG may show relevant information regarding brain dynamics in movement disorders patients in unconstrained environments.


Subject(s)
Dystonia , Dystonic Disorders , Motor Cortex , Sensorimotor Cortex , Humans , Electroencephalography
18.
Sci Rep ; 14(1): 2344, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38282042

ABSTRACT

The age-related degenerative pathologies of the cervical spinal column that comprise degenerative cervical myelopathy (DCM) cause myelopathy due spinal cord compression. Functional neurological assessment of DCM can potentially reveal the severity and pathological mechanism of DCM. However, functional assessment by conventional MRI remains difficult. This study used resting-state functional MRI (rs-fMRI) to investigate the relationship between functional connectivity (FC) strength and neurophysiological indices and examined the feasibility of functional assessment by FC for DCM. Preoperatively, 34 patients with DCM underwent rs-fMRI scans. Preoperative central motor conduction time (CMCT) reflecting motor functional disability and intraoperative somatosensory evoked potentials (SEP) reflecting sensory functional disability were recorded as electrophysiological indices of severity of the cervical spinal cord impairment. We performed seed-to-voxel FC analysis and correlation analyses between FC strength and the two electrophysiological indices. We found that FC strength between the primary motor cortex and the precuneus correlated significantly positively with CMCT, and that between the lateral part of the sensorimotor cortex and the lateral occipital cortex also showed a significantly positive correlation with SEP amplitudes. These results suggest that we can evaluate neurological and electrophysiological severity in patients with DCM by analyzing FC strengths between certain brain regions.


Subject(s)
CME-Carbodiimide/analogs & derivatives , Sensorimotor Cortex , Spinal Cord Compression , Spinal Cord Diseases , Humans , Spinal Cord Compression/surgery , Spinal Cord Diseases/diagnostic imaging , Cervical Vertebrae/surgery , Magnetic Resonance Imaging , Sensorimotor Cortex/diagnostic imaging
19.
Neuroimage Clin ; 41: 103562, 2024.
Article in English | MEDLINE | ID: mdl-38215622

ABSTRACT

Non-invasive methods such as Transcranial Magnetic Stimulation (TMS) and magnetoencephalography (MEG) aid in the pre-surgical evaluation of patients with epilepsy or brain tumor to identify sensorimotor cortices. MEG requires sedation in children or patients with developmental delay. However, TMS can be applied to awake patients of all ages with any cognitive abilities. In this study, we compared the efficacy of TMS with MEG (in awake and sedated states) in identifying the hand sensorimotor areas in patients with epilepsy or brain tumors. We identified 153 patients who underwent awake- (n = 98) or sedated-MEG (n = 55), along with awake TMS for hand sensorimotor mapping as part of their pre-surgical evaluation. TMS involved stimulating the precentral gyrus and recording electromyography responses, while MEG identified the somatosensory cortex during median nerve stimulation. Awake-MEG had a success rate of 92.35 % and TMS had 99.49 % (p-value = 0.5517). However, in the sedated-MEG cohort, TMS success rate of 95.61 % was significantly higher compared to MEG's 58.77 % (p-value = 0.0001). Factors affecting mapping success were analyzed. Logistic regression across the entire cohort identified patient sedation as the lone significant predictor, contrary to age, lesion, metal, and number of antiseizure medications (ASMs). A subsequent analysis replaced sedation with anesthetic drug dosage, revealing no significant predictors impacting somatosensory mapping success under sedation. This study yields insights into the utility of TMS and MEG in mapping hand sensorimotor cortices and underscores the importance of considering factors that influence eloquent cortex mapping limitations during sedation.


Subject(s)
Brain Neoplasms , Epilepsy , Sensorimotor Cortex , Child , Humans , Magnetoencephalography/methods , Transcranial Magnetic Stimulation/methods , Wakefulness , Sensorimotor Cortex/physiology , Epilepsy/surgery , Brain Neoplasms/surgery , Brain Mapping/methods
20.
J Neurosci ; 44(12)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38267261

ABSTRACT

Sentence fragments strongly predicting a specific subsequent meaningful word elicit larger preword slow waves, prediction potentials (PPs), than unpredictive contexts. To test the current predictive processing models, 128-channel EEG data were collected from both sexes to examine whether (1) different semantic PPs are elicited in language comprehension and production and (2) whether these PPs originate from the same specific "prediction area(s)" or rather from widely distributed category-specific neuronal circuits reflecting the meaning of the predicted item. Slow waves larger after predictable than unpredictable contexts were present both before subjects heard the sentence-final word in the comprehension experiment and before they pronounced the sentence-final word in the production experiment. Crucially, cortical sources underlying the semantic PP were distributed across several cortical areas and differed between the semantic categories of the expected words. In both production and comprehension, the anticipation of animal words was reflected by sources in posterior visual areas, whereas predictable tool words were preceded by sources in the frontocentral sensorimotor cortex. For both modalities, PP size increased with higher cloze probability, thus further confirming that it reflects semantic prediction, and with shorter latencies with which participants completed sentence fragments. These results sit well with theories viewing distributed semantic category-specific circuits as the mechanistic basis of semantic prediction in the two modalities.


Subject(s)
Semantics , Sensorimotor Cortex , Male , Female , Humans , Comprehension/physiology , Language , Reading , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL
...