Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Aquat Toxicol ; 235: 105816, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33838495

ABSTRACT

Omics approaches are continuously providing new clues on the mechanisms of action of contaminants in species of environmental relevance, contributing to the emergence of molecular ecotoxicology. Co-expression network approaches represent a suitable methodological framework for studying the rich content of omics datasets. This study aimed to find evidence of key pathways and proteins related to the testicular toxicity in the sentinel crustacean species Gammarus fossarum exposed to endocrine disruptors using a weighted protein co-expression network analysis. From a shotgun proteomics dataset of male gonads of G. fossarum organisms exposed to cadmium (Cd), pyriproxyfen (Pyr) and methoxyfenozide (Met) in laboratory conditions, four distinct modules were identified as significantly correlated to contaminants' exposure. Protein set enrichment analysis identified modules involved in cytoskeleton organization and oxidative stress response associated with the Cd exposure. The module associated with Pyr exposure was associated with endoplasmic reticulum stress (ER) response, and the module correlated with Met exposure was characterized by a significant proportion of amphipod-restricted proteins whose functions are still not characterized. Our results show that co-expression networks are efficient and adapted tools to identify new potential mode of actions from environmental sentinel species, such as G. fossarum, using a proteogenomic approach, even without an annotated genome.


Subject(s)
Amphipoda/physiology , Cadmium/toxicity , Pyridines/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/metabolism , Animals , Ecotoxicology/methods , Endocrine Disruptors/toxicity , Genome , Hydrazines , Juvenile Hormones , Male , Proteomics/methods , Sentinel Species/genetics , Testis/drug effects
2.
Microbiol Res ; 236: 126453, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32155560

ABSTRACT

Sulfate related water quality and trophic status are crucial to operation of water diversion. Though the sulfur geochemistry in the lake sediment have been well studied, the effective indicator of surrounding environment conditions related to sulfur in river-lake systems are still unknown. In this study, Dongping Lake (DPH), Weishan Lake (WSH), and Hanzhuang trunk canal (HZQ) were selected as the typical river-lake systems in the eastern of China. Different spatial variations in sedimentary sulfate, total sulfur, and elemental composition of sediments were investigated in these areas. The relatively high sulfate in surface water and sediments appeared in portions of WSH. The biodiversity of HZQ and WSH surface sediments was much higher than that of DPH. Pseudomonas, Acinetobacter, and Thiobacillus were the dominant genera of the river-lake systems. Among the different genera in distribution, genera such as Malikia, Sulfurovum and Lysinibacillus were significantly negatively correlated with sulfur related environmental factors. While the genera such as Pseudomonas, Vogesella and Acinetobacter were significantly positively correlated with these factors. Compared with connectivity in the largest interaction network, bacteria such as Proteus, Acidobacter and Chlorobacteria were identified as indicatory taxa to infer sulfate related conditions in the river-lake systems.


Subject(s)
Bacteria , Lakes/chemistry , Rivers/chemistry , Sentinel Species , Sulfur/analysis , Bacteria/classification , Bacteria/genetics , Biodiversity , China , Genes, Bacterial , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Lakes/microbiology , Metagenomics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S , Rivers/microbiology , Sentinel Species/classification , Sentinel Species/genetics , Water Pollutants, Chemical/analysis
3.
Sci Rep ; 10(1): 2041, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029757

ABSTRACT

Aquatic oligochaete communities are valuable indicators of the biological quality of sediments in streams and lakes, but identification of specimens to the species level based on morphological features requires solid expertise in taxonomy and is possible only for a fraction of specimens present in a sample. The identification of aquatic oligochaetes using DNA barcodes would facilitate their use in biomonitoring and allow a wider use of this taxonomic group for ecological diagnoses. Previous approaches based on DNA metabarcoding of samples composed of total sediments or pools of specimens have been proposed for assessing the biological quality of ecosystems, but such methods do not provide precise information on species abundance, which limits the value of resulting ecological diagnoses. Here, we tested how a DNA barcoding approach based on high-throughput sequencing of sorted and genetically tagged specimens performed to assess oligochaete species diversity and abundance and the biological quality of sediments in streams and lakes. We applied both molecular and morphological approaches at 13 sites in Swiss streams and at 7 sites in Lake Geneva. We genetically identified 33 or 66 specimens per site. For both approaches, we used the same index calculations. We found that the ecological diagnoses derived from the genetic approach matched well with those of the morphological approach and that the genetic identification of only 33 specimens per site provided enough ecological information for correctly estimating the biological quality of sediments in streams and lakes.


Subject(s)
Animal Distribution , Environmental Monitoring/methods , Geologic Sediments , Oligochaeta/genetics , Sentinel Species/genetics , Animals , DNA Barcoding, Taxonomic , Lakes , Rivers
4.
Sci Rep ; 9(1): 14064, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31575968

ABSTRACT

Isogenus nubecula is a critically endangered Plecoptera species. Considered extinct in the UK, I. nubecula was recently rediscovered (in one location of the River Dee, Wales), after 22 years of absence. In a similar way to many other species of Perlodidae, I. nubecula could be utilised as a bio-indicator, for assessing water quality and health status of a given freshwater system. However, conventional monitoring of invertebrates via kick-sampling, is invasive and expensive (time consuming). Further, such methods require a high level of taxonomic expertise. Here, we compared the traditional kick-sampling method with the use of eDNA detection using qPCR and ddPCR-analyses. In spring 2018, we sampled eDNA from twelve locations on the River Dee. I. nubecula was detected using kick-sampling in five of these locations, three locations using both eDNA detection and kick-sampling and one location using eDNA detection alone - resulting in a total of six known and distinct populations of this critically endangered species. Interestingly, despite the eDNA assay being validated in vitro and in silico, and results indicating high sensitivity, qPCR analysis of the eDNA samples proved to be ineffective. In contrast, ddPCR analyses resulted in a clear detection of I. nubecula at four locations suggesting that inhibition most likely explains the large discrepancy between the obtained qPCR and ddPCR results. It is therefore important to explore inhibition effects on any new eDNA assay. We also highlight that ddPCR may well be the best option for the detection of aquatic organisms which are either rare or likely to shed low levels of eDNA into their environment.


Subject(s)
DNA/genetics , Endangered Species , Fresh Water/chemistry , Insecta/genetics , Polymerase Chain Reaction/methods , Animals , DNA/analysis , Rivers/chemistry , Sentinel Species/genetics , Wales , Water Quality
5.
Sci Rep ; 9(1): 7862, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133674

ABSTRACT

Next generation sequencing and mass spectrometry technologies have recently expanded the availability of whole transcriptomes and proteomes beyond classical model organisms in molecular biology, even in absence of an annotated genome. However, the fragmented nature of transcriptomic and proteomic data reduces the ability to interpret the data, notably in non-model organisms. Network-based approaches may help extracting important biological information from -omics datasets. The reproductive cycle of the freshwater crustacean Gammarus fossarum.provides an excellent case study to test the relevance of a network analysis in non-model organisms. Here, we illustrated how the use of a co-expression network analysis (based on Weighted Gene Co-expression Network Analysis algorithm, WGCNA) allowed identifying protein modules whose expression profiles described germ cell maturation and embryonic development in the freshwater crustacean Gammarus fossarum. Proteome datasets included testes, ovaries or embryos samples at different maturation or developmental stages, respectively. We identified an embryonic module correlated with mid-developmental stages corresponding to the organogenesis and it was characterized by enrichment in proteins involved in RNA editing and splicing. An ovarian module was enriched in vitellogenin-like proteins and clottable proteins, confirming the diversity of proteins belonging to the large lipid transfer family involved in oocytes maturations in this freshwater amphipod. Moreover, our results found evidence of a fine-tuned regulation between energy production by glycolysis and actin-myosin-dependent events in G. fossarum spermatogenesis. This study illustrates the importance of applying systems biology approaches to emergent animal models to improve the understanding of the molecular mechanisms regulating important physiological events with ecological relevance.


Subject(s)
Amphipoda/embryology , Amphipoda/physiology , Protein Interaction Maps , Amphipoda/genetics , Animals , Female , Gene Expression Regulation, Developmental , Gonads/physiology , Male , Proteomics/methods , RNA Splicing , Reproduction , Sentinel Species/embryology , Sentinel Species/genetics , Sentinel Species/physiology
6.
Mar Environ Res ; 143: 49-59, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30448238

ABSTRACT

High latitude seas will be among the first marine systems to be impacted by ocean acidification (OA). Previous research studying the effects of OA on the pteropod, Limacina helicina antarctica, has led this species to be identified as a sentinel organism for OA in polar oceans. Here, we present gene expression data on L. h. antarctica, collected in situ during the seasonal transition from early spring to early summer. Our findings suggest that after over-wintering under seasonal sea ice, pteropods progress toward full maturity in the early summer when food becomes increasingly available. This progression is highlighted by a dramatic shift in gene expression that supports the development of cytoskeletal structures, membrane ion transportation, and metabolically important enzymes associated with glycolysis. In addition, we observed signs of defense of genomic integrity and maturation as evidenced by an up-regulation of genes involved in DNA replication, DNA repair, and gametogenesis. These data contribute to a broader understanding of the life-cycle dynamics for L. h. antarctica and provide key insights into the transcriptomic signals of pteropod maturation and growth during this key seasonal transition.


Subject(s)
Gastropoda , Sentinel Species , Transcriptome , Animals , Antarctic Regions , Gastropoda/genetics , Gastropoda/metabolism , Seasons , Sentinel Species/genetics , Sentinel Species/metabolism
7.
Environ Pollut ; 244: 926-937, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30469287

ABSTRACT

Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Ethinyl Estradiol/toxicity , Perciformes/genetics , Sentinel Species/genetics , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , California , Endocrine Disruptors/analysis , Ethinyl Estradiol/analysis , Gene Expression Profiling , Rivers/chemistry , Water Pollutants, Chemical/analysis
8.
Sci Rep ; 8(1): 3793, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491422

ABSTRACT

Taking advantage of a large transcriptomic dataset recently obtained in the sentinel crustacean amphipod Gammarus fossarum, we developed an approach based on sequence similarity and phylogenetic reconstruction to identify key players involved in the endocrine regulation of G. fossarum. Our work identified three genes of interest: the nuclear receptors RXR and E75, and the regulator broad-complex (BR). Their involvement in the regulation of molting and reproduction, along with their sensitivity to chemical contamination were experimentally assessed by studying gene expression during the female reproductive cycle, and after laboratory exposure to model endocrine disrupting compounds (EDCs): pyriproxyfen, tebufenozide and piperonyl butoxide. RXR expression suggested a role of this gene in ecdysis and post-molting processes. E75 presented two expression peaks that suggested a role in vitellogenesis, and molting. BR expression showed no variation during molting/reproductive cycle. After exposure to the three EDCs, a strong inhibition of the inter-molt E75 peak was observed with tebufenozide, and an induction of RXR after exposure to pyriproxyfen and piperonyl butoxide. These results confirm the implication of RXR and E75 in hormonal regulation of female reproductive cycles in G. fossarum and their sensitivity towards EDCs opens the possibility of using them as specific endocrine disruption biomarkers.


Subject(s)
Amphipoda/metabolism , Biomarkers/metabolism , Ecdysone/pharmacology , Endocrine Disruptors/pharmacology , Gene Expression Regulation/drug effects , Sentinel Species/metabolism , Amphipoda/genetics , Animals , Gene Expression Profiling , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Sentinel Species/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Article in English | MEDLINE | ID: mdl-29307377

ABSTRACT

The coast of Goa receives anthropogenic stress through its major rivers, which carry mining wastes, including iron and manganese ores from upstream mining sites, and petroleum hydrocarbons from shipping activities. These contaminants show seasonal variation in concentration and may be bioaccumulated by fauna inhabiting these waters. These fauna, including the bivalve molluscs, are particularly at risk due to these insults. In the present study, the use of the backwater clam, Meretrix casta (Chemnitz), as a bioindicator species was evaluated, comparing two sites (Vasco and Palolem) on the Goan coast. DNA damage was assessed in the gill cells using the micronucleus and comet assays; physiological condition was determined from the condition index. These values were tested for correlations with the concentrations of total petroleum hydrocarbons and trace metals in the whole soft tissues and with the physico-chemical parameters of water from these sites. Specimens collected from Vasco showed high incidence of micronuclei and % tail DNA and a low condition index ratio compared to those from Palolem, which correlates with the higher level of pollutants in the bivalves the former site. We believe that M. casta is a suitable species for biomonitoring studies of this type.


Subject(s)
Bivalvia/growth & development , DNA Damage , Sentinel Species/growth & development , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/drug effects , Bivalvia/genetics , Comet Assay , Environmental Monitoring , Hydrocarbons/analysis , Micronucleus Tests , Seasons , Sentinel Species/genetics , Single-Cell Analysis , Trace Elements/analysis
10.
Mar Pollut Bull ; 124(2): 984-992, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28109655

ABSTRACT

To monitor the biological effects of marine pollution, choosing a native fish species and establishing suitable biomarkers are required. In this study, the full-length cDNA of cyp1a1 was cloned from Sebastiscus marmoratus (SM-CYP1A1). Then the dose-response and time-course induction of hepatic CYP1A1 mRNA by the crude oil water-soluble fraction (WSF) were determined. Subsequently, SM-CYP1A1 mRNA was applied to investigate the biological effect of petroleum hydrocarbon pollution in Quanzhou Bay, China. The transcription levels of hepatic CYP1A1 were significantly elevated in fish caged in the polluted sites for 2weeks compared with those of the reference site, which were correlated with the concentrations of petroleum hydrocarbon and polycyclic aromatic hydrocarbon (PAH) in the surface seawaters. The results suggest that S. marmoratus is a potential sentinel organism to monitor marine pollutants and the hepatic CYP1A1 mRNA can serve as a sensitive biomarker to organic xenobiotics in aquatic environments.


Subject(s)
Environmental Exposure , Fishes/genetics , Fishes/metabolism , Petroleum/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Water Pollutants, Chemical/adverse effects , Amino Acid Sequence , Animals , Base Sequence , Bays , China , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Environmental Monitoring , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Profiling/veterinary , Petroleum Pollution , Phylogeny , Sentinel Species/genetics , Sentinel Species/metabolism , Sequence Alignment/veterinary
11.
J Hazard Mater ; 317: 503-542, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27343869

ABSTRACT

Concerns about the impacts on public health and on the natural environment have been raised regarding the full range of operational activities related to uranium mining and the rest of the nuclear fuel cycle (including nuclear accidents), nuclear tests and depleted uranium from military ammunitions. However, the environmental impacts of such activities, as well as their ecotoxicological/toxicological profile, are still poorly studied. Herein, it is discussed if organisms can be used as bioindicators of human health effects, posed by lifetime exposure to radioactively contaminated areas. To do so, information was gathered from several studies performed on vertebrates, invertebrate species and humans, living in these contaminated areas. The retrieved information was compared, to determine which are the most used bioindicators and biomarkers and also the similarities between human and non-human biota responses. The data evaluated are used to support the proposal for an early warning scheme, based on bioindicator species and on the most sensitive and commonly shared biomarkers, to perform a screening evaluation of radioactively contaminated sites. This scheme could be used to support decision-making for a deeper evaluation of risks to human health, making it possible to screen a large number of areas, without disturbing and alarming local populations.


Subject(s)
Environmental Biomarkers/radiation effects , Mining , Nuclear Power Plants , Radiation Monitoring/methods , Sentinel Species , Uranium , Animals , Endpoint Determination , Environmental Biomarkers/genetics , Humans , Risk Assessment , Sentinel Species/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...