Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(9): e0228974, 2020.
Article in English | MEDLINE | ID: mdl-32976488

ABSTRACT

Parental care elevates reproductive success by allocating resources into the upbringing of the offspring. However, it also imposes strong costs for the care-giving parent and can foster sexual dimorphism. Trade-offs between the reproductive system and the immune system may result in differential immunological capacities between the care-providing and the non-care-providing parent. Usually, providing care is restricted to the female sex making it impossible to study a sex-independent influence of parental investment on sexual immune dimorphism. The decoupling of sex-dependent parental investment and their influences on the parental immunological capacity, however, is possible in syngnathids, which evolved the unique male pregnancy on a gradient ranging from a simple carrying of eggs on the trunk (Nerophinae, low paternal investment) to full internal pregnancy (Syngnathus, high paternal investment). In this study, we compared candidate gene expression between females and males of different gravity stages in three species of syngnathids (Syngnathus typhle, Syngnathus rostellatus and Nerophis ophidion) with different male pregnancy intensities to determine how parental investment influences sexual immune dimorphism. While our data failed to detect sexual immune dimorphism in the subset of candidate genes assessed, we show a parental care specific resource-allocation trade-off between investment into pregnancy and immune defense when parental care is provided.


Subject(s)
Fishes/physiology , Gene Expression Regulation, Developmental/immunology , Immune System/physiology , Sex Characteristics , Sex Determination Processes/immunology , Animals , Female , Gene Expression Profiling , Male , Parenting , Sex Determination Processes/genetics
2.
Genetics ; 162(4): 1791-803, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12524349

ABSTRACT

The mangrove killifish Rivulus marmoratus, a neotropical fish in the order Cyprinodontiformes, is the only known obligatorily selfing, synchronous hermaphroditic vertebrate. To shed light on its population structure and the origin of hermaphroditism, major histocompatibility complex (Mhc) class I genes of the killifish from seven different localities in Florida, Belize, and the Bahamas were cloned and sequenced. Thirteen loci and their alleles were identified and classified into eight groups. The loci apparently arose approximately 20 million years ago (MYA) by gene duplications from a single common progenitor in the ancestors of R. marmoratus and its closest relatives. Distinct loci were found to be restricted to different populations and different individuals in the same population. Up to 44% of the fish were heterozygotes at Mhc loci, as compared to near homozygosity at non-Mhc loci. Large genetic distances between some of the Mhc alleles revealed the presence of ancestral allelic lineages. Computer simulation designed to explain these findings indicated that selfing is incomplete in R. marmoratus populations, that Mhc allelic lineages must have diverged before the onset of selfing, and that the hermaphroditism arose in a population containing multiple ancestral Mhc lineages. A model is proposed in which hermaphroditism arose stage-wise by mutations, each of which spread through the entire population and was fixed independently in the emerging clones.


Subject(s)
Fundulidae/genetics , Fundulidae/immunology , Genes, MHC Class I , Hermaphroditic Organisms , Sex Determination Processes/genetics , Sex Determination Processes/immunology , Alleles , Amino Acid Sequence , Animals , Bahamas , Base Sequence , Belize , Cloning, Molecular , Computer Simulation , DNA, Complementary/genetics , Evolution, Molecular , Female , Florida , Haplotypes , Heterozygote , Homozygote , Male , Models, Genetic , Molecular Sequence Data , Mutation , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...