Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Behav Processes ; 220: 105073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917938

ABSTRACT

Exaggerated sexual traits, such as ornaments and courtship displays, are crucial for mate acquisition in many species and are often subject to directional runaway selection. However, in the face of high predation risk, natural selection can result in a reduction of conspicuous precopulatory displays to avoid detection by potential predators. Sexual selection may then favour increased investment in inconspicuous postcopulatory traits. Here, we investigated the transgenerational effects of predation on precopulatory male courtship and postcopulatory sexual traits (testes size, sperm length) in a dung fly, Sepsis punctum (Sepsidae). Behavioural assays prior to selection document a marked decrease in male courtship displays in the presence of a predator, the Asian Ant Mantis (Odontomantis planiceps). However, after ten generations of experimental evolution, flies exhibited a marked increase in courtship, both in the absence and presence of a predator. Additionally, under sustained predation pressure, male and female body size decreased but male postcopulatory traits were not significantly affected. These results suggest that precopulatory courtship can be under strong sexual selection even in the face of predation pressure. Larger flies were more susceptible to predation, and there could be canalisation of postcopulatory traits that are crucial for fertilisation.


Subject(s)
Biological Evolution , Body Size , Courtship , Diptera , Predatory Behavior , Sexual Behavior, Animal , Animals , Male , Body Size/physiology , Predatory Behavior/physiology , Female , Diptera/physiology , Sexual Behavior, Animal/physiology , Sexual Selection/physiology , Mantodea/physiology
2.
Cells ; 10(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33535413

ABSTRACT

This review documents the history of the two papers written half a century ago that relate to this special issue of Cells. The first, "Sperm competition and its evolutionary consequences in the insects" (Biological Reviews, 1970), stressed that sexual selection continues after ejaculation, resulting in many adaptations (e.g., postcopulatory guarding phases, copulatory plugs, seminal fluid components that modify female reproduction, and optimal ejaculation strategies), an aspect not considered by Darwin in his classic treatise of 1871. Sperm competition has subsequently been studied in many taxa, and post-copulatory sexual selection is now considered an important sequel to Darwinian pre-copulatory sexual selection. The second, "The origin and evolution of gamete dimorphism and the male-female phenomenon" (Journal of Theoretical Biology, 1972) showed how selection, based on gamete competition between individuals, can give rise to anisogamy in an isogamous broadcast spawning ancestor. This theory, which has subsequently been developed in various ways, is argued to form the most powerful explanation of why there are two sexes in most multicellular organisms. Together, the two papers have influenced our general understanding of the evolutionary differentiation of the two forms of gametic cells, and the divergence of sexual strategies between males and females under sexual selection.


Subject(s)
Sexual Selection/physiology , Animals , Female , Insecta , Male
3.
PLoS One ; 16(1): e0244802, 2021.
Article in English | MEDLINE | ID: mdl-33471796

ABSTRACT

In the last decades, climate change has caused an increase in mean temperatures and a reduction in average rainfall in southern Europe, which is expected to reduce resource availability for herbivores. Resource availability can influence animals' physical condition and population growth. However, much less is known on its effects on reproductive performance and sexual selection. In this study, we assessed the impact of three environmental factors related to climate change (rainfall, temperature and vegetation index) on Iberian red deer Cervus elaphus hispanicus reproductive timing and sexual behaviour, and their effects on the opportunity for sexual selection in the population. We measured rutting phenology as rut peak date, the intensity of male rutting activity as roaring rate, and the opportunity for sexual selection from the distribution of females among harem holding males in Doñana Biological Reserve (Southwest Spain), from data of daily observations collected during the rut over a period of 25 years. For this study period, we found a trend for less raining and hence poorer environmental conditions, which associated with delayed rutting season and decreased rutting intensity, but that appeared to favour a higher degree of polygyny and opportunity for sexual selection, all these relationships being modulated by population density and sex ratio. This study highlights how climate change (mainly rainfall reduction in this area) can alter the conditions for mating and the opportunity for sexual selection in a large terrestrial mammal.


Subject(s)
Deer/physiology , Sexual Behavior, Animal/physiology , Sexual Selection/physiology , Animals , Climate Change , Female , Linear Models , Male , Population Density , Rain , Seasons , Temperature
4.
Proc Natl Acad Sci U S A ; 117(44): 27465-27473, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077605

ABSTRACT

Mating plugs are produced by many sexually reproducing animals and are hypothesized to promote male fertilization success under promiscuous mating. However, tests of this hypothesis have been constrained by an inability to discriminate ejaculates of different males in direct competition. Here, we use stable isotope labeling in vivo and proteomics to achieve this in a promiscuous rodent, Myodes glareolus We show that, although the first male's plug is usually dislodged, it can be retained throughout the second male's copulation. Retained plugs did not completely block rival sperm but did significantly limit their numbers. Differences in the number of each male's sperm progressing through the female reproductive tract were also explained by natural variation in the size of mating plugs and reproductive accessory glands from which major plug proteins originate. Relative sperm numbers in turn predicted the relative fertilization success of rival males. Our application of stable isotopes to label ejaculates resolves a longstanding debate by revealing how rodent mating plugs promote fertilization success under competitive conditions. This approach opens new opportunities to reveal cryptic mechanisms of postcopulatory sexual selection among diverse animal taxa.


Subject(s)
Arvicolinae/physiology , Copulation/physiology , Seminal Plasma Proteins/metabolism , Sexual Selection/physiology , Sperm Transport/physiology , Animals , Female , Male , Mating Preference, Animal , Proteomics , Seminal Vesicles/metabolism , Sperm Count , Sperm Motility
5.
J Evol Biol ; 33(3): 297-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31701605

ABSTRACT

Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male-male competition. We predicted that populations subject to increased male-male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male-biased SSD in both species, which was not evident in conspecific populations with female-biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.


Subject(s)
Biological Evolution , Body Size/physiology , Diptera/anatomy & histology , Diptera/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Sexual Selection/physiology , Animals , Female , Male , Multifactorial Inheritance
SELECTION OF CITATIONS
SEARCH DETAIL