Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.533
Filter
1.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Protozoan Proteins , Serotyping , Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Sheep , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/classification , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology , Swine , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Serotyping/methods , Antibodies, Protozoan/blood , Peptides/immunology , Swine Diseases/parasitology , Swine Diseases/diagnosis , Genotype
2.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734633

ABSTRACT

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Subject(s)
Adipose Tissue , Goat Diseases , Goats , Skin , Trypanosoma , Trypanosomiasis, African , Animals , Goats/parasitology , Trypanosomiasis, African/veterinary , Trypanosomiasis, African/parasitology , Adipose Tissue/parasitology , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Skin/parasitology , Sheep/parasitology , Goat Diseases/parasitology , Cattle , Polymerase Chain Reaction , Sheep Diseases/parasitology , DNA, Protozoan/genetics , Cattle Diseases/parasitology
3.
BMC Vet Res ; 20(1): 207, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760783

ABSTRACT

BACKGROUND: Although ultrasonography (US) has been widely used in the diagnosis of human diseases to monitor the progress of cystic echinococcosis (CE) control, the screening method for hepatic CE in sheep flocks requires adjustment. In this study, we used a US scanner to screen sheep flocks and evaluated the efficacy of dosing dogs once a year with praziquantel for 7 years from 2014 to 2021. METHODS: All sheep in the three flocks were screened using an ultrasound scanner in 2014 and compared with the prevalence of infection in 2021 in Bayinbuluke, Xinjiang, China. Sheep age was determined using incisor teeth. Cyst activity and calcification were determined using US images. The dogs were dewormed with praziquantel once a year to control echinococcosis in the community. RESULTS: Three flocks had 968 sheep in 2014, with 13.22%, 22.62%, 18.7%, 27.27%, 11.88%, and 6.3% of sheep aged 1, 2, 3, 4, 5, and ≥ 6 years old, respectively. US scanning revealed that the overall CE prevalence was 38.43% (372/968), with active cysts and calcified cysts present in 9.40% (91/968) and 29.02% (281/968) of the sheep, respectively. For the young sheep aged 1 and 2 years, the prevalence of active and calcified cysts was: 1.56% and 0.91%, and 10.94% and 18.72%, respectively. Approximately 15.15% and 16.52% of the 4- and 5-year-old sheep, respectively, harbored active cysts. There was no significant difference in the infection rates of sheep between 2014 and 2021 (P > 0.05). CONCLUSIONS: US is a practical tool for the field screening of CE in sheep flocks. One-third of the sheep population in the flocks was 1-2 years old, and these sheep played a very limited role in CE transmission, as most of the cysts were calcified. Old sheep, especially culled aged sheep, play a key role in the transmission of CE. Dosing dogs once a year did not affect echinococcosis control.


Subject(s)
Echinococcosis, Hepatic , Sheep Diseases , Ultrasonography , Animals , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/diagnostic imaging , Sheep , China/epidemiology , Ultrasonography/veterinary , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/epidemiology , Echinococcosis, Hepatic/diagnostic imaging , Prevalence , Dogs , Praziquantel/therapeutic use , Anthelmintics/therapeutic use , Female
4.
Trop Anim Health Prod ; 56(4): 152, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722369

ABSTRACT

Supplementing livestock grazing communal rangelands with leaf-meals from Acacia trees, which are currently considered as problematic invasive alien plants globally, may be a sustainable way of exploiting their desirable nutritional and anthelmintic properties. The current study evaluated worm burdens and growth performance of lambs grazing low-quality communal rangelands supplemented with leaf-meals prepared from the invasive alien plant species; Acacia mearnsii or A. dealbata. Forty, three-month-old ewe lambs weighing an average of 18.9 ± 0.60 kg were randomly allocated to four supplementary diets: (1) rangeland hay only (control), (2) commercial protein supplement plus rangeland hay, (3) A. mearnsii leaf-meal plus rangeland hay and (4) A. dealbata leaf-meal plus rangeland hay. All the supplementary diets were formulated to meet the lambs' minimum maintenance requirements for protein. All the lambs were grazed on communal rangelands daily from 0800 to 1400 after which they were penned to allow them access to their respective supplementary diets until 08:00 the following morning. The respective supplementary diets were offered at the rate of 400 g ewe- 1 day- 1 for 60 days. Lambs fed the commercial protein supplement had the highest dry matter intake followed by those fed the Acacia leaf-meals and the control diet, respectively (P ≤ 0.05). Relative to the other supplementary diets, lambs fed the commercial protein supplement and A. dealbata leaf-meal had higher (P ≤ 0.05) final body weight and average daily gains. Dietary supplementation did not affect lamb faecal worm egg counts over the study period (P > 0.05). There was no association between supplementary diets and lamb FAMACHA© scores (P > 0.05). It was concluded that supplementation of Acacia dealbata versus Acacia mearnsii has the potential to emulate commercial protein in maintaining growth performance of lambs grazing communal rangelands in the dry season.


Subject(s)
Acacia , Animal Feed , Diet , Dietary Supplements , Plant Leaves , Animals , Animal Feed/analysis , Plant Leaves/chemistry , Dietary Supplements/analysis , Female , South Africa , Diet/veterinary , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Sheep/growth & development , Sheep/physiology , Feces , Random Allocation , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena
5.
Comp Immunol Microbiol Infect Dis ; 109: 102184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691874

ABSTRACT

BACKGROUND: Toxoplasma gondii is an apicomplexan protozoan parasite that infects one-third of the population of the world, including humans, animals, birds, and other vertebrates. The present investigation is the first molecular attempt in the Malakand Division of Pakistan to determine the epidemiology and phylogenetic study of Toxoplasma gondii infecting small ruminants. METHODOLOGY: A total of (N = 450) blood samples of sheep were randomly collected during the study period (December 2020 to November 2021), and DNA detection was done using PCR by amplifying ITS-1 genes. SPSS.20 and MEGA-11 software were used for statistical significance and phylogenetic analysis. RESULTS: The overall prevalence of T. gondii infection among sheep was 14.44 % (65/450). A high infection rate was found in more than five-year-olds at 18.33 % (11/60). Sequencing and BLAST analysis of PCR-positive samples confirmed the presence of T. gondii. Randomly, three isolates were sequenced and submitted to GenBank under accession numbers (PP028089-PP028091), respectively. The BLAST analysis of the obtained sequences based on the ITS-1 gene showed 99 % similarities with reported genotypes found in goats of Malakand, Pakistan (PP028089) and dogs of Brazil (MF766454). The study concludes that T. gondii is notably prevalent among the sheep population in the region, emphasizing the significant role of risk factors in disease transmission across animals and potentially to humans. Further research, zoonotic potential analysis, and targeted control measures are warranted to address and manage this parasitic infection effectively.


Subject(s)
DNA, Protozoan , Phylogeny , Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Toxoplasma/genetics , Toxoplasma/isolation & purification , Toxoplasma/classification , Pakistan/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Prevalence , DNA, Protozoan/genetics , Genotype , Polymerase Chain Reaction
6.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
8.
Front Immunol ; 15: 1379798, 2024.
Article in English | MEDLINE | ID: mdl-38756777

ABSTRACT

Introduction: Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored. Methods: Immune cells of the small intestinal Peyer's patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals. Results: Here, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection. Discussion: Considering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host-Cryptosporidium interactions in target species.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Homeostasis , Animals , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium parvum/immunology , Sheep , Cattle , Homeostasis/immunology , Dendritic Cells/immunology , Dendritic Cells/parasitology , Phagocytes/immunology , Phagocytes/parasitology , Animals, Newborn , Sheep Diseases/parasitology , Sheep Diseases/immunology , Peyer's Patches/immunology , Peyer's Patches/parasitology , Macrophages/immunology , Macrophages/parasitology , Intestines/parasitology , Intestines/immunology , Ruminants/parasitology , Ruminants/immunology
9.
Sci Rep ; 14(1): 11218, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755395

ABSTRACT

Cryptosporidium spp. are significant zoonotic intestinal parasites that induce diarrhea and even death across most vertebrates, including humans. Previous studies showed that sheep are important hosts for Cryptosporidium and that its distribution in sheep is influenced by geography, feeding patterns, age, and season. Environmental factors also influence the transmission of Cryptosporidium. Molecular studies of Cryptosporidium in sheep have been conducted in only a few regions of China, and studies into the effect of sheep-housing environments on Cryptosporidium transmission are even rarer. To detect the prevalence of Cryptosporidium in large-scale sheep-housing farms, a total of 1241 fecal samples were collected from sheep, 727 environmental samples were taken from sheep housing, and 30 water samples were collected in six regions of China. To ascertain the existence of the parasite and identify the species of Cryptosporidium spp., we conducted nested PCR amplification of DNA extracted from all samples using the small-subunit (SSU) rRNA gene as a target. For a more in-depth analysis of Cryptosporidium spp. subtypes, C. xiaoi-and C. ubiquitum-positive samples underwent separate nested PCR amplification targeting the 60 kDa glycoprotein (gp60) gene. The amplification of the Cryptosporidium spp. SSU rRNA gene locus from the whole genomic DNA of all samples yielded a positive rate of 1.2% (20/1241) in fecal samples, 0.1% (1/727) in environmental samples, and no positive samples were found in water samples. The prevalence of Cryptosporidium spp. infection in large-scale housed sheep was 1.7%, which was higher than that in free-ranging sheep (0.0%). The highest prevalence of infection was found in weaning lambs (6.8%). Among the different seasons, the peaks were found in the fall and winter. The most prevalent species were C. xiaoi and C. ubiquitum, with the former accounting for the majority of infections. The distribution of C. xiaoi subtypes was diverse, with XXIIIc (n = 1), XXIIId (n = 2), XXIIIe (n = 2), and XXIIIl (n = 4) identified. In contrast, only one subtype, XIIa (n = 9), was found in C. ubiquitum. In this study, C. xiaoi and C. ubiquitum were found to be the predominant species, and Cryptosporidium was found to be present in the environment. These findings provide an important foundation for the comprehensive prevention and management of Cryptosporidium in intensively reared sheep. Furthermore, by elucidating the prevalence of Cryptosporidium in sheep and its potential role in environmental transmission, this study deepens our understanding of the intricate interactions between animal health, environmental contamination, and public health dynamics.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Farms , Feces , Genetic Variation , Sheep Diseases , Animals , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Sheep/parasitology , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/transmission , Prevalence , Feces/parasitology , Phylogeny
10.
Parasitol Res ; 123(5): 210, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743097

ABSTRACT

Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.


Subject(s)
Electron Transport Complex IV , Fasciola , Fascioliasis , Genetic Variation , Goats , Haplotypes , NADH Dehydrogenase , Phylogeny , Population Dynamics , Animals , Sudan/epidemiology , Fasciola/genetics , Fasciola/classification , Fasciola/isolation & purification , Fascioliasis/veterinary , Fascioliasis/parasitology , Fascioliasis/epidemiology , Sheep/parasitology , Goats/parasitology , Cattle , NADH Dehydrogenase/genetics , Electron Transport Complex IV/genetics , Goat Diseases/parasitology , Goat Diseases/epidemiology , Ruminants/parasitology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Sequence Analysis, DNA
11.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726821

ABSTRACT

Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day antiparasitic intervention towards the end of the livestock's time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.


Subject(s)
Goats , Livestock , Animals , India/epidemiology , Goats/parasitology , Livestock/parasitology , Sheep/parasitology , Animal Migration , Goat Diseases/parasitology , Goat Diseases/transmission , Animals, Wild/parasitology , Sheep Diseases/parasitology , Sheep Diseases/transmission , Sheep Diseases/prevention & control , Nematode Infections/transmission , Nematode Infections/veterinary , Nematode Infections/prevention & control , Nematode Infections/parasitology , Nematode Infections/epidemiology , Seasons , Larva/parasitology , Nematoda/pathogenicity
12.
BMC Vet Res ; 20(1): 197, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741097

ABSTRACT

The occurrence of trematodes among ruminants and their snail vectors is a major concern across various agro-ecological regions of Ethiopia. Trematodes pose significant threats to animals, causing considerable economic losses and impacting public health. In this study, we have investigated 784 ruminant fecal samples, and 520 abattoir samples, alongside the collection and identification of snail vectors from various agro-ecological regions. Fecal examinations revealed Fasciola, Paramphistomum and Schistosoma species infected 20.5% (95% CI: 17.6, 23.8), 11.7% (95% CI: 9.6, 14.2), and 6.3% (95% CI: 4.1, 9.1) of the animals, respectively. The overall prevalence of trematodes among ruminants was 28.8% (95% CI: 25.7, 32.1%), with 6.0% (95% CI: 4.3, 7.7) showing mixed infections. Fasciola was more prevalent in Asela (26%) compared to Batu (19%) and Hawassa (11.5%), while a higher proportion of animals in Batu were infected with Paramphistomum. Schistosoma eggs were detected only in Batu (12.5%), but not in other areas. Sheep and cattle exhibited higher infection rates with Fasciola, Paramphistoma, and Schistosoma compared to goats. Significant associations were observed between trematode infections and risk factors including agro-ecology, animal species, body condition score, and deworming practices. About 20.8% and 22.7% of the slaughtered animals harbored Fasciola and Paramphistomum flukes, respectively, with a higher prevalence in Asela and Hawassa abattoirs compared to Batu abattoir. Additionally, a total of 278 snails were collected from the study areas and identified as lymnae natalensis, lymnae trancatula, Biomphalaria pffiferi, Biomphlaria sudanica, and Bulinus globosus. In conclusion, the study highlights the widespread occurrence of trematode infections, emphasizing the need for feasible control measures to mitigate their economic and public health impacts.


Subject(s)
Feces , Snails , Trematode Infections , Animals , Ethiopia/epidemiology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Trematode Infections/parasitology , Feces/parasitology , Prevalence , Snails/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Goats , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle , Trematoda/isolation & purification , Trematoda/classification , Abattoirs , Fasciola/isolation & purification , Paramphistomatidae/isolation & purification , Ruminants/parasitology
13.
Parasit Vectors ; 17(1): 190, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643149

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS: To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS: Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFß1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS: Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.


Subject(s)
Echinococcosis , Echinococcus granulosus , Sheep Diseases , Animals , Sheep , Echinococcus granulosus/genetics , Ubiquitin-Conjugating Enzymes/genetics , Echinococcosis/parasitology , Liver Cirrhosis , Ubiquitins/genetics , Genotype , Sheep Diseases/parasitology
14.
Rev Bras Parasitol Vet ; 33(2): e019923, 2024.
Article in English | MEDLINE | ID: mdl-38656051

ABSTRACT

Oestrus ovis larvae are obligate parasites of vertebrates and cause cavitary myiasis (oestrosis) in sheep and goats. It is also reported as a zoonosis causing ophthalmomyiasis and nasopharyngeal myiasis. Despite being relatively common in Brazil, epidemiological studies on O. ovis are scarce. Considering that the infestation is influenced by the climate and biomes of the studied region, we aimed to investigate the seasonal prevalence of O. ovis among slaughtered sheep in the northern region of the state of Mato Grosso, Brazil. The heads of sheep (n=697) slaughtered at a slaughterhouse in the municipality of Terra Nova do Norte (November 2011 to November 2013) were collected to count, catalog, and identify the larvae found in the upper respiratory tract. Overall, 45.77% (319/697) of the animals were infested with 2,412 recovered larvae, 96.89% (2,337/2,412) of which were identified at the species level as O. ovis. Seasonal variations in prevalence ranged from 41% (spring) to 56% (summer); however, no correlation was observed between prevalence and season, mean humidity, or temperature. In conclusion, parasitism by O. ovis in sheep in the studied area, occurs year-round, considering the occurrence of larvae (L1, L2, and L3) throughout the year, probably because of the area's environmental conditions.


Subject(s)
Diptera , Myiasis , Seasons , Sheep Diseases , Animals , Brazil/epidemiology , Sheep/parasitology , Prevalence , Myiasis/veterinary , Myiasis/epidemiology , Myiasis/parasitology , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Larva
15.
Vet Res ; 55(1): 53, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658996

ABSTRACT

Gene expression for Th1/Th2 cytokines (IL-4 and IFN-É£), regulatory cytokines (TGF-ß and IL-10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica. FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group. Similar results were recorded for FoxP3 gene expression although significant differences among V1 and V2 groups were only significant in the HLN, while FoxP3 gene expression was very similar in the V2 and IC groups both in the liver and HLN. No significant differences for the remaining cytokines were recorded between the V1 and V2 groups, but in the liver the V2 group shows significant increases of IFN-É£ and IL-10 as compared to the uninfected control (UC) group whereas the V1 group did not. The lower expansion of FoxP3 T cells and lower increase of IFN-É£ and IL-10 in the partially protected vaccinated group may be related with lower hepatic lesions and fluke burdens recorded in this group as compared to the other two infected groups. The most relevant change in regulatory cytokine gene expression was the significant increase of TGF-ß in the liver of IC, V1 and V2 groups as compared to the UC group, which could be related to hepatic lesions.


Subject(s)
Cytokines , Fasciola hepatica , Fascioliasis , Forkhead Transcription Factors , Sheep Diseases , Animals , Fascioliasis/veterinary , Fascioliasis/prevention & control , Fascioliasis/immunology , Fasciola hepatica/immunology , Sheep , Forkhead Transcription Factors/metabolism , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Sheep Diseases/parasitology , Cytokines/metabolism , Liver/parasitology , Liver/immunology , Vaccines/immunology , Vaccines/administration & dosage , Th1 Cells/immunology , Lymph Nodes/immunology , Female , Th2 Cells/immunology
16.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673969

ABSTRACT

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Goats , Immunoglobulin G , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Sheep , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Sheep Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Goat Diseases/parasitology , Goat Diseases/diagnosis , Goat Diseases/immunology
17.
Open Vet J ; 14(3): 866-878, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682137

ABSTRACT

Background: Cystic echinococcosis (CE), which is triggered by the parasite Echinococcus granulosus, is a global zoonotic disease that is common in rural regions in which there are frequent encounters between dogs and other domestic animals. The disease can have devastating consequences, impacting the health of people and animals and leading to huge financial losses, especially in the agricultural industry. In the Kingdom of Saudi Arabia (KSA) and Egypt, despite the high incidence of disease, few investigations have been conducted into the genetic variation in species of the genus Echinococcus. Aim: This study sought to compare the genetic features of the hydatid cysts carried in sheep in KSA with those found in Egypt. Methods: DNA from the protoscolices was used in a PCR targeting the mitochondrial NADH dehydrogenase 1 (NAD1), cytochrome c oxidase subunit 1 (COX1), and nuclear actin II (ACT II) genes, and the resulting amplification products of 30 KSA and Egyptian isolates were sequenced and compared. Results: Among the sheep in KSA, the overall prevalence of CE was 0.51%. Of the sheep cyst DNA samples, 95%, 100%, and 52% were positive for the Cox1, nad1, and act II genes, respectively. Targeting all three genes, all KSA samples belonged to the E. granulosus genotype (G1), whereas all Egyptian isolates belonged to E. granulosus (G1) and E. canadensis (G6). Conclusion: We conclude that isolates of E. granulosus from the two countries shared a common origin in Arabic North Africa, with sheep and camels as common hosts.


Subject(s)
Echinococcosis , Echinococcus granulosus , Genotype , Sheep Diseases , Animals , Echinococcus granulosus/genetics , Echinococcus granulosus/isolation & purification , Echinococcosis/veterinary , Echinococcosis/epidemiology , Echinococcosis/parasitology , Sheep , Egypt/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Saudi Arabia/epidemiology , Prevalence
18.
Vet Parasitol Reg Stud Reports ; 50: 101015, 2024 05.
Article in English | MEDLINE | ID: mdl-38644039

ABSTRACT

In Benin, livestock breeders frequently use medicinal plants to treat gastrointestinal diseases in small ruminants. The aim of this review is to list the plants traditionally used in this context and to present the scientific findings on the efficacy of these plants. An extensive search was carried out using PubMed, Scopus, ScienceDirect, Biomed Central and Google Scholar databases to collect data, with combinations of relevant french and english keywords such as "ethnobotanical survey", "anthelmintic properties", "medicinal plants", "gastrointestinal parasites", "digestive strongyles", "Haemonchus", "Trichostrongylus", "small ruminants", "sheep", "goats" and "Benin". A total of 45 published articles met the eligibility criteria. This review listed 123 plants used by breeders to treat gastrointestinal ailments in small ruminants. The most commonly used parts are leaves and barks, and the most common forms are decoction, maceration and powder. Scientific studies have demonstrated the anthelmintic properties of 18 plants, including Zanthoxylum zanthoxyloides, Newbouldia laevis, Mitragyna inermis and Combretum glutinosum. The powders or leaf extracts of these plants showed in vivo significant reductions of over 50% in egg excretion, larval establishment, viability and fertility of gastrointestinal strongyles in small ruminants. Extracts of these plants also revealed in vitro inhibitory activity of over 50% on egg hatching, larval migration and motility of gastrointestinal strongyles. This manuscript highlights the traditional use of anthelmintic plants in small ruminants in Benin and provides scientific results supporting the efficacy of these plants.


Subject(s)
Anthelmintics , Gastrointestinal Diseases , Goat Diseases , Goats , Plants, Medicinal , Sheep Diseases , Animals , Benin , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Plants, Medicinal/chemistry , Sheep Diseases/drug therapy , Sheep Diseases/parasitology , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/parasitology , Sheep , Goat Diseases/drug therapy , Goat Diseases/parasitology , Phytotherapy/veterinary , Ruminants/parasitology , Medicine, African Traditional
19.
Vet Parasitol ; 328: 110178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569277

ABSTRACT

The control of the sheep blowfly relies on the use of insecticides. There have been several reports of in vitro and in vivo resistance to the most widely-used flystrike control chemical, dicyclanil. A recent report also described in vitro resistance to imidacloprid in a strain collected from a single property over three consecutive seasons that also showed resistance to dicyclanil. The present study aimed to use in vitro assays to examine five field-collected blowfly strains to determine if this co-occurrence of resistance to dicyclanil and imidacloprid was present more widely in field strains and to also measure resistance patterns to the other currently-used flystrike control chemicals. Each of the strains showed significant levels of resistance to both dicyclanil and imidacloprid: resistance factors at the IC50 of 9.1-23.8 for dicyclanil, and 8.7-14.1 for imidacloprid. Resistance factors at the IC95 ranged from 16.5 to 53.7, and 14.6-24.3 for dicyclanil and imidacloprid, respectively. Resistance factors were up to 8.5 for cyromazine at the IC95. Resistance to dicyclanil and imidacloprid was suppressed by co-treatment with the cytochrome P450 inhibitor, aminobenzotriazole, implicating this enzyme system in the observed resistances. We discuss the implications of the co-occurrence of resistance to dicyclanil and imidacloprid on insecticide rotation strategies for blowfly control. We also discuss the roles of insecticide resistance, environmental factors (e.g. rainfall), operational factors (e.g. insecticide application technique) and other animal health issues (e.g. scouring / diarrhoea) that together will impact on the likelihood of flystrike occurring at an earlier time point than expected after insecticide application.


Subject(s)
Diptera , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Animals , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Diptera/drug effects , Sheep , Sheep Diseases/parasitology , Juvenile Hormones , Triazines
20.
Vet Parasitol ; 328: 110177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583271

ABSTRACT

Infection by gastrointestinal nematodes (GIN), particularly Haemonchus contortus, can be detrimental to sheep health and performance. Genetic susceptibility to GIN varies between breeds, with those lacking high levels of natural resistance often requiring frequent anthelmintic treatment when facing parasitic challenge. Genetic technology can serve as a tool to decrease GIN susceptibility via selection for sheep with reduced fecal egg count (FEC) estimated breeding values (EBVs). However, the physiological changes that result from implementation of this strategy are not well described. Additionally, there is a need for comparison of animals from recent selective breeding against breeds with inherent GIN resistance. In this study we administered a challenge of H. contortus to Dorper x White Dorper (DWD; n = 92) lambs that have been genetically selected for either low (DWD-) or high (DWD+) FEC EBVs and Barbados Blackbelly x Mouflon (BBM; n = 19) lambs from a genetically resistant breed backgrounds. Lamb FEC, packed-cell volume (PCV) and serum IgG were measured at intermittent levels over 5 weeks. At day 21 and day 35, the selectively bred DWD- had a lower mean FEC compared to DWD+, but were higher than BBM. Reductions in both PCV and serum IgG from initial day 0 levels were observed in DWD lambs, but not in BBM. Furthermore, from a subset of lambs (n = 24) harvested at day 21, DWD- only tended (p = 0.056) to have lower mean worm counts than DWD+, with BBM having the lowest mean worm count. Differentially expressed genes (DEGs) identified via RNA-sequencing of abomasal tissue at day 21 indicate a more pronounced Th2 immune response and more rapid worm expulsion occurred in iBBM than iDWD- and iDWD+ lambs. However, gene expression in DWD- suggests an association between reduced FEC EBV and gastric acid secretion and the ability to limit worm fecundity. Ultimately, selection of Dorper sheep for low FEC EBV can reduce susceptibility to GIN, but it will likely require multiple generations with this trait as a breeding priority before presenting a similar resistance level to Caribbean breeds.


Subject(s)
Feces , Haemonchiasis , Haemonchus , Parasite Egg Count , Sheep Diseases , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/immunology , Sheep Diseases/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/immunology , Parasite Egg Count/veterinary , Feces/parasitology , Selective Breeding , Male , Female , Genetic Predisposition to Disease , Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...