Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.586
Filter
1.
BMC Pediatr ; 24(1): 311, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711011

ABSTRACT

BACKGROUND: Diarrhea caused by Salmonella and Shigella species are the leading cause of illness especially in developing countries. These infections are considered as the main public health problems in children, including Ethiopia. This study aimed to assess the prevalence, associated factors, and antimicrobial susceptibility patterns of Salmonella and Shigella species in Sheik Hassan Yabere Referral Hospital Jigjiga, Eastern Ethiopia from August 05 to November 15, 2022. METHOD: A cross-sectional study was conducted among 239 under-five children with diarrhea selected through a convenient sampling technique. A structured questionnaire was used to collect associated factors. A stool sample was collected and processed for the identification of Salmonella and Shigella species using MacConkey adar, Xylose Lysine Deoxycholate agar (Oxoid Ltd) and Biochemical tests. The antimicrobial susceptibility pattern of isolates was performed using the Kirby-Bauer disc diffusion technique. The data was entered into Epi-data version 4.6 and exported to the statistical package of social science version 22 for analysis. The association between outcome and independent variables was assessed using bivariate, multivariable, and chi-square and P-value < 0.05 was considered as statistical significance. RESULT: Overall prevalence of Salmonella and Shigella species was 6.3% (95% CI, 5.7-6.9%), of which 3.8% (95 CI, 3.2-4.4%) were Salmonella species and 2.5% (95% CI, 1.95-3%) were Shigella species. Unimproved water source (AOR = 5.08, 95% CI = 1.45, 17.25), open field (AOR = 2.3, 95% CI = 1.3, 5.03), rural residence (AOR = 1.8, 95% CI = 1.4, 7.5), Hand-washing practice (p = 0.001), and raw meat consumption (p = 0.002) were associated with occurrence of Salmonella and Shigella species. Salmonella and Shigella isolates were resistant to Ampicilin (100%). However, Salmonella isolates was sensitive to Norfloxacin (100%). About 22.2% and 16.7% of Salmonella and Shigella isolates were multi-drug resistant, respectively. CONCLUSION: Prevalence of Salmonella and Shigella species were lower than most studies done in Ethiopia. Hand-washing habit, water source type, Open field waste disposal habit, raw meat consumption and rural residence were associated with Salmonellosis and shigellosis. All isolated Salmonella were sensitive to norfloxacin. The evidence from this study underscores the need for improved water, sanitation and hygiene (WASH) system and the imperative to implement drug susceptibility tests for the treatment of Salmonella and Shigella infection.


Subject(s)
Diarrhea , Dysentery, Bacillary , Microbial Sensitivity Tests , Salmonella , Shigella , Humans , Ethiopia/epidemiology , Cross-Sectional Studies , Child, Preschool , Female , Salmonella/isolation & purification , Salmonella/drug effects , Male , Prevalence , Shigella/drug effects , Shigella/isolation & purification , Infant , Diarrhea/microbiology , Diarrhea/epidemiology , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/drug therapy , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Risk Factors , Feces/microbiology , Drug Resistance, Bacterial
2.
Sci Rep ; 14(1): 8816, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627472

ABSTRACT

The diagnostic assays currently used to detect Shigella spp. (Shigella) and enterotoxigenic Escherichia coli (ETEC) are complex or elaborate which make them difficult to apply in resource poor settings where these diseases are endemic. The simple and rapid nucleic acid amplification-based assay "Rapid LAMP-based Diagnostic Test (RLDT)" was evaluated to detect Shigella spp (Shigella) and enterotoxigenic Escherichia coli (ETEC) and determine the epidemiology of these pathogens in Kolkata, India. Stool samples (n = 405) from children under five years old with diarrhea seeking care at the hospitals were tested, and 85(21%) and 68(17%) by RLDT, 91(23%) and 58(14%) by quantitative PCR (qPCR) and 35(9%) and 15(4%) by culture, were positive for Shigella and ETEC, respectively. The RLDT showed almost perfect agreement with qPCR, Kappa 0.96 and 0.89; sensitivity 93% and 98%; specificity 100% and 97% for Shigella and ETEC, respectively. While RLDT detected additional 12% Shigella and 13% ETEC than culture, all culture positives for Shigella and ETEC except one each were also positive by the RLDT, sensitivity 97% and 93% respectively. RLDT is a simple, sensitive, and rapid assay that could be implemented with minimum training in the endemic regions to strengthen the disease surveillance system and rapid outbreak detection.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Shigella , Child , Humans , Child, Preschool , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Rapid Diagnostic Tests , Shigella/genetics , Diarrhea/diagnosis , Diarrhea/epidemiology
3.
BMC Infect Dis ; 24(1): 367, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566010

ABSTRACT

BACKGROUND: Street foods are any foods or drinks prepared or sold by street vendors in an open space. The purpose of this study was to determine the Bacteriological safety and antibiotic resistance patterns of Staphylococcus aureus and Enterobacteriaceae isolated from street foods. METHOD: A laboratory-based cross-sectional study was used from December 2022 to February 2023 on street foods of Addis Ababa, Hawassa, Dire Dawa, and Jimma towns of Ethiopia. 525 street foods and 175 water samples were taken from 175 street food vending stalls. Proportional allocation to the total town population and stratified sampling techniques were used to select vending stalls. Samples were analyzed for the presence of bacteria following the standard microbiological methods used for the isolation, enumeration, and identification of bacteria. Pour plate technique was used to transfer the suspension to MacConkey agar, Mannitol Salt Agar, and Salmonella Shigella Agar. The antibiotic susceptibility test was performed using the Kirby-Bauer disk diffusion method. SPSS software was used to analyze the data. RESULT: Out of 525 food samples, 279 (53%) were contaminated by bacteria. From 175 water samples, 95 (54.3%) were contaminated with Escherichia coli. From both samples in total, eleven bacterial species were isolated. Staphylococcus aureus was the most frequently isolated species. Shigella, Klebsiella, and Salmonella group A have statistically significant with the type of food. Erythromycin (54%), Streptomycin (17%), and Amoxicillin (14%) were the most resistant antibiotics. Least resistance was observed to Ciprofloxacin (5%). CONCLUSION: Street foods of the selected towns were highly contaminated with various antibiotic-resistant organisms. Hence, the relevant authorities ought to ensure the proper handling of street food by enforcing safety measures. Additionally, they should initiate a widespread awareness campaign promoting the prudent use of antibiotics among both street food vendors and the broader population.


Subject(s)
Shigella , Staphylococcal Infections , Humans , Enterobacteriaceae , Staphylococcus aureus , Ethiopia , Cross-Sectional Studies , Agar , Cities , Food Microbiology , Bacteria , Anti-Bacterial Agents/pharmacology , Escherichia coli , Drug Resistance, Microbial , Water
4.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673913

ABSTRACT

Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.


Subject(s)
Dysentery, Bacillary , Shigella Vaccines , Shigella , Humans , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Animals , Shigella/immunology , Shigella/pathogenicity , Vaccines, Subunit/immunology , Vaccine Development , Vaccines, Attenuated/immunology
5.
Microbiologyopen ; 13(3): e1410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682792

ABSTRACT

Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest. This paper reports the identification of three new highly-conserved CSPs (genes), namely YahL, YdjO, and YjfZ, which are exclusive to E. coli/Shigella. Using PCR primers based on highly conserved regions within these CSPs, we have developed quantitative PCR (qPCR) assays for the evaluation of E. coli/Shigella species in water ecosystems. Both in-silico and experimental PCR testing confirmed the absence of sequence match when tested against other bacteria, thereby confirming 100% specificity of the tested CSPs for E. coli/Shigella. The qPCR assays for each of the three CSPs provided reliable quantification for all tested enterohaemorrhagic and environmental E. coli strains, a requirement for water testing. For recreational water samples, CSP-based quantification showed a high correlation (r > 7, p < 0.01) with conventional viable E. coli enumeration. This indicates that novel CSP-based qPCR assays for E. coli can serve as robust tools for monitoring water ecosystems and other critical areas, including food monitoring.


Subject(s)
Escherichia coli , Water Microbiology , Water Quality , Escherichia coli/genetics , Escherichia coli/classification , Escherichia coli Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Shigella/genetics , Shigella/classification , Shigella/isolation & purification , Conserved Sequence , Environmental Monitoring/methods , Polymerase Chain Reaction/methods , Feces/microbiology
6.
Cell Rep ; 43(4): 114034, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568808

ABSTRACT

Escape from the bacterial-containing vacuole (BCV) is a key step of Shigella host cell invasion. Rab GTPases subverted to in situ-formed macropinosomes in the vicinity of the BCV have been shown to promote its rupture. The involvement of the BCV itself has remained unclear. We demonstrate that Rab35 is non-canonically entrapped at the BCV. Stimulated emission depletion imaging localizes Rab35 directly on the BCV membranes before vacuolar rupture. The bacterial effector IcsB, a lysine Nε-fatty acylase, is a key regulator of Rab35-BCV recruitment, and we show post-translational acylation of Rab35 by IcsB in its polybasic region. While Rab35 and IcsB are dispensable for the first step of BCV breakage, they are needed for the unwrapping of damaged BCV remnants from Shigella. This provides a framework for understanding Shigella invasion implicating re-localization of a Rab GTPase via its bacteria-dependent post-translational modification to support the mechanical unpeeling of the BCV.


Subject(s)
Bacterial Proteins , Protein Processing, Post-Translational , Shigella , Vacuoles , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , Humans , Shigella/metabolism , Bacterial Proteins/metabolism , Vacuoles/metabolism , Vacuoles/microbiology , HeLa Cells
7.
Front Immunol ; 15: 1374293, 2024.
Article in English | MEDLINE | ID: mdl-38680489

ABSTRACT

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Subject(s)
Antibodies, Bacterial , Bacterial Adhesion , Dysentery, Bacillary , Humans , Bacterial Adhesion/immunology , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/diagnosis , Antibodies, Bacterial/immunology , Host-Pathogen Interactions/immunology , Shigella/immunology , Shigella/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/immunology , Shigella sonnei/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , HeLa Cells
8.
Biomed Res Int ; 2024: 5554208, 2024.
Article in English | MEDLINE | ID: mdl-38595330

ABSTRACT

Shigella stands as a major contributor to bacterial dysentery worldwide scale, particularly in developing countries with inadequate sanitation and hygiene. The emergence of multidrug-resistant strains exacerbates the challenge of treating Shigella infections, particularly in regions where access to healthcare and alternative antibiotics is limited. Therefore, investigations on how bacteria evade antibiotics and eventually develop resistance could open new avenues for research to develop novel therapeutics. The aim of this study was to analyze whole genome sequence (WGS) of human pathogenic Shigella spp. to elucidate the antibiotic resistance genes (ARGs) and their mechanism of resistance, gene-drug interactions, protein-protein interactions, and functional pathways to screen potential therapeutic candidate(s). We comprehensively analyzed 45 WGS of Shigella, including S. flexneri (n = 17), S. dysenteriae (n = 14), S. boydii (n = 11), and S. sonnei (n = 13), through different bioinformatics tools. Evolutionary phylogenetic analysis showed three distinct clades among the circulating strains of Shigella worldwide, with less genomic diversity. In this study, 2,146 ARGs were predicted in 45 genomes (average 47.69 ARGs/genome), of which only 91 ARGs were found to be shared across the genomes. Majority of these ARGs conferred their resistance through antibiotic efflux pump (51.0%) followed by antibiotic target alteration (23%) and antibiotic target replacement (18%). We identified 13 hub proteins, of which four proteins (e.g., tolC, acrR, mdtA, and gyrA) were detected as potential hub proteins to be associated with antibiotic efflux pump and target alteration mechanisms. These hub proteins were significantly (p < 0.05) enriched in biological process, molecular function, and cellular components. Therefore, the finding of this study suggests that human pathogenic Shigella strains harbored a wide range of ARGs that confer resistance through antibiotic efflux pumps and antibiotic target modification mechanisms, which must be taken into account to devise and formulate treatment strategy against this pathogen. Moreover, the identified hub proteins could be exploited to design and develop novel therapeutics against MDR pathogens like Shigella.


Subject(s)
Dysentery, Bacillary , Shigella , Humans , Phylogeny , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Shigella/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/genetics , Dysentery, Bacillary/microbiology , Shigella flexneri
9.
Sci Rep ; 14(1): 6947, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521802

ABSTRACT

Shigellosis remains a common gastrointestinal disease mostly in children < 5 years of age in developing countries. Azithromycin (AZM), a macrolide, is currently the first-line treatment for shigellosis in Bangladesh; ciprofloxacin (CIP) and ceftriaxone (CRO) are also used frequently. We aimed to evaluate the current epidemiology of antimicrobial resistance (AMR) and mechanism(s) of increasing macrolide resistance in Shigella in Bangladesh. A total of 2407 clinical isolates of Shigella from 2009 to 2016 were studied. Over the study period, Shigella sonnei was gradually increasing and become predominant (55%) over Shigella flexneri (36%) by 2016. We used CLSI-guided epidemiological cut-off value (ECV) for AZM in Shigella to set resistance breakpoints (zone-diameter ≤ 15 mm for S. flexneri and ≤ 11 mm for S. sonnei). Between 2009 and 2016, AZM resistance increased from 22% to approximately 60%, CIP resistance increased by 40%, and CRO resistance increased from zero to 15%. The mphA gene was the key macrolide resistance factor in Shigella; a 63MDa conjugative middle-range plasmid was harboring AZM and CRO resistance factors. Our findings show that, especially after 2014, there has been a rapid increase in resistance to the three most effective antibiotics. The rapid spread of macrolide (AZM) resistance genes among Shigella are driven by horizontal gene transfer rather than direct lineage.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Drug Resistance, Bacterial/genetics , Azithromycin/pharmacology , Azithromycin/therapeutic use , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Ceftriaxone/pharmacology , Microbial Sensitivity Tests , Protein Synthesis Inhibitors/pharmacology , Plasmids/genetics
10.
Acta Microbiol Immunol Hung ; 71(1): 69-75, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38345622

ABSTRACT

Diarrheal diseases are of great concern worldwide and are responsible for considerable morbidity and mortality. This study investigated the epidemiology and the antibiotic susceptibility of bacterial enteropathogens among diarrheal patients of all ages in Crete, Greece during 2011-2022. Stool specimens were tested by conventional cultural methods for Salmonella, Shigella, Campylobacter, diarrheagenic Escherichia coli (EPEC, STEC), Yersinia enterocolitica, Aeromonas species and Clostridioides difficile. Antimicrobial susceptibility was determined by the disk diffusion method for Enterobacterales, Campylobacter and Aeromonas, and by the gradient diffusion method for C. difficile. Of the 26,060 stool samples from patients of any age, 1,022 (3.9%) were positive for bacterial enteropathogens. Campylobacter spp. were the most commonly isolated bacteria (56.4%), followed by Salmonella enterica (32.3%), and E. coli (EPEC, STEC) (6.5%). Toxigenic C. difficile was isolated from 341 out of 8,848 diarrheal specimens examined (3.9%). Resistance to ampicillin was observed in 12.4% of Salmonella, 66.7% of Shigella and 34.8% of E. coli (EPEC, STEC) isolates. Resistance to trimethoprim/sulfamethoxazole was observed in 5.8% of Salmonella, 33.3% of Shigella, and 15.1% of E. coli (EPEC, STEC) isolates. High rates of ciprofloxacin resistance (77.3%) were detected among Campylobacter isolates, while resistance to erythromycin was observed in 2.4% of them. All C. difficile isolates were susceptible to vancomycin and metronidazole. Our findings suggest declining trends in prevalence of bacterial enteropathogens, except for Campylobacter spp. and changes in the susceptibility rates to antimicrobials. Continuous surveillance of prevalence and antimicrobial susceptibility of bacterial enteropathogens is mandatory for implementing targeted and effective prevention and infection control measures.


Subject(s)
Anti-Infective Agents , Clostridioides difficile , Shigella , Humans , Greece/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli , Prevalence , Drug Resistance, Bacterial , Feces/microbiology , Bacteria , Diarrhea/epidemiology , Diarrhea/microbiology , Anti-Infective Agents/pharmacology
11.
Future Microbiol ; 19: 377-384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38305237

ABSTRACT

Background: The present study aims to determine the presence of Yersinia spp., Yersinia pestis, Yersinia enterocolitica pathogen, Listeria monocytogenes, Salmonella spp., Shigella spp., Francisella tularensis and Borrelia spp. in brown rats of Tehran, Iran. Methods: PCR was used to detect various bacteria in 100 brown rats, Also, ELISA was used to detect antibodies against the F. tularensis and Borrelia spp. Results: A total of 16% and 13% of fecal samples were positive for Yersinia spp. and Y. enterocolitica pathogen. ELISA results were negative for F. tularensis and Borrelia. No specific antibodies (IgG) were against these bacteria. Conclusion: According to the results of our analysis, rats are significant transmitters and carriers of a variety of illnesses that can spread to both people and other animals.


Subject(s)
Listeria monocytogenes , Shigella , Yersinia enterocolitica , Humans , Animals , Rats , Yersinia enterocolitica/genetics , Iran/epidemiology , Salmonella
12.
Cell Rep ; 43(2): 113789, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38368608

ABSTRACT

Under stress conditions, translationally stalled mRNA and associated proteins undergo liquid-liquid phase separation and condense into cytoplasmic foci called stress granules (SGs). Many viruses hijack SGs for their pathogenesis; however, whether pathogenic bacteria also exploit this pathway remains unknown. Here, we report that members of the OspC family of Shigella flexneri induce SG formation in infected cells. Mechanistically, the OspC effectors target multiple subunits of the host translation initiation factor 3 complex by ADP-riboxanation. The modification of eIF3 leads to translational arrest and thus the formation of SGs. Furthermore, OspC-mediated SGs are beneficial for S. flexneri replication within infected host cells, and bacterial strains unable to induce SGs are attenuated for virulence in a murine model of infection. Our findings reveal a mechanism by which bacterial pathogens induce SG assembly by inactivating host translational machinery and promote bacterial proliferation in host cells.


Subject(s)
Eukaryotic Initiation Factor-3 , Shigella , Animals , Mice , Stress Granules , Cytoplasm , Shigella flexneri
13.
BMC Infect Dis ; 24(1): 191, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350855

ABSTRACT

BACKGROUND: Food borne diseases is a challenging problem nowadays. Salmonella and Shigella species are great concern of food-born outbreaks. Thus, this study was aimed to assess the prevalence, antimicrobial susceptibility test and associated factors of Salmonella and Shigella species in fruit juices and salads. METHODS: A community based cross sectional study design was carried out on 50 juice houses from December to March 2020 in Mekelle. One hundred fifty samples were collected aseptically from the juice houses for laboratory analysis. Information related to risk factors was obtained using a structured questionnaire. In the laboratory, samples were homogenized using peptone water and incubated overnight for enrichment. Then, Salmonella and Shigella species were isolated on Salmonella-Shigella agar and Xylose Lysine Deoxycholate agar. Disc diffusion method was used to perform antimicrobial susceptibility test. Using SPSS (version 22) package, descriptive statistics and Chi square test (χ2) were used to analyze the data, and p < 0.05 was considered as statistically significant. RESULT: The overall prevalence of Salmonella and Shigella species was 41/150 (27.33%; 95% CI: 20.20 - 34.46) with 33 (22%) Salmonella spp. and 8(5.33%) Shigella spp. Antimicrobial susceptibility tests of both Salmonella and Shigella spp.showed high resistance against ampicillin (100%), tetracycline (63.6 and 62.5%, respectively) and amoxicillin-clavulanic acid (100%). Accessibility of fruits to flies and dust had statistical association (p = 0.021) with occurrence of Salmonell a and/or Shigella spp. CONCLUSION: The overall prevalence of Salmonella and Shigella spp. was found to be significant. The resistant rate of isolates against ampicillin, tetracycline and amoxicillin-clavulanic acid was high. Storage sites for fruits should be inaccessible to flies and dust. Therefore, routine monitoring of juice houses should be promoted and regular evaluation of bacterial resistance pattern should be done for selective antimicrobial therapy. Furthermore, consistent training of juice makers on food safety and hygiene should be implemented by the concerned body.


Subject(s)
Anti-Infective Agents , Salads , Shigella , Amoxicillin-Potassium Clavulanate Combination , Ethiopia/epidemiology , Prevalence , Cross-Sectional Studies , Agar , Fruit and Vegetable Juices , Microbial Sensitivity Tests , Salmonella , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ampicillin , Tetracycline , Dust
14.
J Vis Exp ; (204)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38407235

ABSTRACT

The human-adapted enteric bacterial pathogen Shigella causes millions of infections each year, creates long-term growth effects among pediatric patients, and is a leading cause of diarrheal deaths worldwide. Infection induces watery or bloody diarrhea as a result of the pathogen transiting the gastrointestinal tract and infecting the epithelial cells lining the colon. With staggering increases in antibiotic resistance and the current lack of approved vaccines, standardized research protocols are critical to studying this formidable pathogen. Here, methodologies are presented to examine the molecular pathogenesis of Shigella using in vitro analyses of bacterial adherence, invasion, and intracellular replication in colonic epithelial cells. Prior to infection analyses, the virulence phenotype of Shigella colonies was verified by the uptake of the Congo red dye on agar plates. Supplemented laboratory media can also be considered during bacterial culturing to mimic in vivo conditions. Bacterial cells are then used in a standardized protocol to infect colonic epithelial cells in tissue culture plates at an established multiplicity of infection with adaptations to analyze each stage of infection. For adherence assays, Shigella cells are incubated with reduced media levels to promote bacterial contact with epithelial cells. For both invasion and intracellular replication assays, gentamicin is applied for various time intervals to eliminate extracellular bacteria and enable assessment of invasion and/or the quantification of intracellular replication rates. All infection protocols enumerate adherent, invaded, and/or intracellular bacteria by serially diluting infected epithelial cell lysates and plating bacterial colony forming units relative to infecting titers on Congo red agar plates. Together, these protocols enable independent characterization and comparisons for each stage of Shigella infection of epithelial cells to study this pathogen successfully.


Subject(s)
Dysentery, Bacillary , Shigella , Humans , Child , Agar , Congo Red , Epithelial Cells , Diarrhea
15.
Front Immunol ; 15: 1340425, 2024.
Article in English | MEDLINE | ID: mdl-38361949

ABSTRACT

Background: Shigellosis mainly affects children under 5 years of age living in low- and middle-income countries, who are the target population for vaccination. There are, however, limited data available to define the appropriate timing for vaccine administration in this age group. Information on antibody responses following natural infection, proxy for exposure, could help guide vaccination strategies. Methods: We undertook a retrospective analysis of antibodies to five of the most prevalent Shigella serotypes among children aged <5 years in Kenya. Serum samples from a cross-sectional serosurvey in three Kenyan sites (Nairobi, Siaya, and Kilifi) were analyzed by standardized ELISA to measure IgG against Shigella sonnei and Shigella flexneri 1b, 2a, 3a, and 6. We identified factors associated with seropositivity to each Shigella serotype, including seropositivity to other Shigella serotypes. Results: A total of 474 samples, one for each participant, were analyzed: Nairobi (n = 169), Siaya (n = 185), and Kilifi (n = 120). The median age of the participants was 13.4 months (IQR 7.0-35.6), and the male:female ratio was 1:1. Geometric mean concentrations (GMCs) for each serotype increased with age, mostly in the second year of life. The overall seroprevalence of IgG antibodies increased with age except for S. flexneri 6 which was high across all age subgroups. In the second year of life, there was a statistically significant increase of antibody GMCs against all five serotypes (p = 0.01-0.0001) and a significant increase of seroprevalence for S. flexneri 2a (p = 0.006), S. flexneri 3a (p = 0.006), and S. sonnei (p = 0.05) compared with the second part of the first year of life. Among all possible pairwise comparisons of antibody seropositivity, there was a significant association between S. flexneri 1b and 2a (OR = 6.75, 95% CI 3-14, p < 0.001) and between S. flexneri 1b and 3a (OR = 23.85, 95% CI 11-54, p < 0.001). Conclusion: Children living in low- and middle-income settings such as Kenya are exposed to Shigella infection starting from the first year of life and acquire serotype-specific antibodies against multiple serotypes. The data from this study suggest that Shigella vaccination should be targeted to infants, ideally at 6 or at least 9 months of age, to ensure children are protected in the second year of life when exposure significantly increases.


Subject(s)
Dysentery, Bacillary , Shigella , Infant , Child , Humans , Male , Female , Child, Preschool , Kenya/epidemiology , Serogroup , Immunoglobulin G , Retrospective Studies , Seroepidemiologic Studies , Cross-Sectional Studies , Vaccination
16.
Nat Commun ; 15(1): 1065, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316786

ABSTRACT

Intracellular bacterial pathogens gain entry to mammalian cells inside a vacuole derived from the host membrane. Some of them escape the bacteria-containing vacuole (BCV) and colonize the cytosol. Bacteria replicating within BCVs coopt the microtubule network to position it within infected cells, whereas the role of microtubules for cyto-invasive pathogens remains obscure. Here, we show that the microtubule motor cytoplasmic dynein-1 and specific activating adaptors are hijacked by the enterobacterium Shigella flexneri. These host proteins were found on infection-associated macropinosomes (IAMs) formed during Shigella internalization. We identified Rab8 and Rab13 as mediators of dynein recruitment and discovered that the Shigella effector protein IpaH7.8 promotes Rab13 retention on moving BCV membrane remnants, thereby facilitating membrane uncoating of the Shigella-containing vacuole. Moreover, the efficient unpeeling of BCV remnants contributes to a successful intercellular spread. Taken together, our work demonstrates how a bacterial pathogen subverts the intracellular transport machinery to secure a cytosolic niche.


Subject(s)
Shigella , Vacuoles , Humans , Vacuoles/metabolism , Endosomes/metabolism , Shigella flexneri/metabolism , Microtubules/metabolism , Bacterial Proteins/metabolism , Host-Pathogen Interactions , HeLa Cells
17.
BMC Infect Dis ; 24(1): 237, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388369

ABSTRACT

BACKGROUND: In Kenya, diarrhoeal disease is the third leading cause of child mortality after malaria and pneumonia, accounting for nearly 100 deaths daily. We conducted a cross-sectional study in Mukuru informal settlements to determine the bacteria associated with diarrhea and their ASTs to provide data essential for implementing appropriate intervention measures. METHODS: Diarrheagenic children (≤ 5 years) were purposively recruited from outpatient clinics of Municipal City Council, Mukuru kwa Reuben, Medical Missionaries of Mary, and Mama Lucy Kibaki Hospital, Nairobi. A total of 219 stool samples were collected between May 2021 and August 2021. Stool culture was done on MacConkey and Salmonella Shigella agar, while the recovered bacteria were identified using VITEK®2GNID and polymerase chain reaction (PCR) used for E. coli pathotyping. Antibiotic Susceptibility Testing was done using VITEK®2AST-GN83. RESULTS: At least one bacterial organism was recovered from each of the 213 (97%) participants, with 115 (56%) participants having only one bacterial type isolated, 90 (43%) with two types of bacteria, and 2 (1%) with three types of bacteria recovered. The most predominant bacteria recovered was 85% (93/109) non-pathogenic E.coli and 15% (16/109)of pathogenic E.coli, with 2 (1%) were Enterohemorrhagic E.coli (EHEC), 6 (3%) were Enteroaggregative E.coli (EAEC), and 8 (4%) were Enteropathogenic E.coli (EPEC). Other potentially pathogenic bacteria included Enterobacter sp (27.8%), Klebsiella sp 33(11%), and Citrobacter sp 15(4.7%). Pathogenic isolates such as Salmonella 7 (2%), Proteus mirabilis 16 (6%), Providencia alcalifaciens 1 (0.3%), and Shigella 16 (4.7%) were detected. Isolates such as Pantoea spp 2(0.67%), Raoultella planticola 1(0.33%), and Kluyvera 6(2%) rarely reported but implicated with opportunistic diarrhoeal disease were also recovered. Ampicillin, cefazolin, and sulfamethoxazole-trimethoprim were the least effective antimicrobials at 64%, 57%, and 55% resistance, respectively, while meropenem (99%), amikacin (99%), tazobactam piperacillin (96%), and cefepime (95%) were the most effective. Overall, 33(21%) of all enterics recovered were multidrug-resistant. CONCLUSION: The study documented different bacteria potentially implicated with childhood diarrhea that were not limited to E. coli, Shigella, and Salmonella, as previously observed in Kenya. The strains were resistant to the commonly used antibiotics, thus narrowing the treatment options for diarrheal disease.


Subject(s)
Anti-Infective Agents , Enteropathogenic Escherichia coli , Shigella , Child , Humans , Child, Preschool , Kenya/epidemiology , Cross-Sectional Studies , Diarrhea/drug therapy , Diarrhea/epidemiology , Diarrhea/microbiology , Anti-Infective Agents/pharmacology , Bacteria/genetics , Salmonella
18.
Foodborne Pathog Dis ; 21(5): 279-287, 2024 May.
Article in English | MEDLINE | ID: mdl-38271584

ABSTRACT

The aim of this study was to describe the impact of non-pharmaceutical interventions (NPIs) against SARS-CoV-2 on bacterial gastroenteritis illnesses (BGIs), including Campylobacter spp., Aeromonas spp., Salmonella spp., Shigella spp./enteroinvasive Escherichia coli (EIEC), and Yersinia enterocolitica, in outpatients, inpatients, and emergency departments (ED). Data of patients from a health care area in Madrid (Spain) with diarrhea and positive-real-time polymerase chain reaction (RT-PCR) were collected. The periods analyzed were prepandemic (P0, April 1, 2019 to March 31, 2020), first (P1, April 1, 2020 to March 31, 2021), and second (P2, April 1, 2021 to March 31, 2022) pandemic years. We compared the prevalence, median age, patient profile, and absolute incidence (AI) per 100,000 population during the study periods using Fisher's test (p < 0.05). One thousand eighty-one (13.9%, [95% confidence interval, CI: 13.1-14.6]) of the 7793 patients tested during P0, 777 (13.3%, [95% CI: 12.4-14.2]) of the 5850 tested during P1, and 945 (12.4%, [95% CI: 11.7-13.2]) of the 7606 patients tested were positive for some BGIs. The global prevalence showed a decreasing trend that was statistically significant in P2. During P1, there was an increase in BGIs in the ED with a decrease of median age (p > 0.05). However, during P2, the prevalence for outpatients increased (p < 0.05). The individual prevalence analysis over the three periods remained homogeneous for most of the BGIs (p > 0.05). The AI of most BGIs showed a decreasing trend at P1 and P2 with respect to P0 (p > 0.05). However, Shigella spp./EIEC was the only BGI with a decrease in prevalence, and AI showed statistically significant variation in P1 and P2 (p < 0.05). The prevalence and AI for BGIs mostly showed a slight decrease during the first 2 pandemic years compared with the prepandemic may be explained by the greater impact of foodborne transmission on BGIs. The significant decrease in Shigella spp./EIEC illnesses could explain the mainly person-to-person transmission and the reduction of bacterial load in fomites for NPIs. This retrospective study was approved by the Ethics Committee with the code: HULP PI-5700.


Subject(s)
COVID-19 , Gastroenteritis , SARS-CoV-2 , Humans , Spain/epidemiology , COVID-19/epidemiology , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Gastroenteritis/virology , Prevalence , Female , Adult , Male , Middle Aged , Incidence , Adolescent , Aged , Child, Preschool , Infant , Child , Young Adult , Pandemics , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Diarrhea/epidemiology , Diarrhea/microbiology , Shigella/isolation & purification , Aged, 80 and over
19.
Eur J Cell Biol ; 103(1): 151381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183814

ABSTRACT

The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.


Subject(s)
Phosphatidylinositol Phosphates , Shigella , Humans , Shigella/physiology , Vacuoles/metabolism , Epithelial Cells/physiology , Shigella flexneri/genetics , HeLa Cells , Sorting Nexins/metabolism
20.
Microb Pathog ; 188: 106538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184177

ABSTRACT

Because of uncontrolled use of antibiotics, emergence of multidrug-resistant Shigella species poses a huge potential of zoonotic transfer from poultry sector. With increasing resistance to current antibiotics, there is a critical need to explore antibiotic alternatives. Using a Shigella flexneri reference strain, we isolated a novel fPSFA phage after inducing with mitomycin C. The phage was found to be stable for wide ranges of temperature -20 °C-65 °C and pH 3 to 11. fPSFA shows a latent period that ranges from 20 to 30 min and generation times of 50-60 min. The genome analysis of phage reveals two major contigs of 23788 bp and 23285 bp with 50.16 % and 39.33 % G + C content containing a total of 80 CDS and 2 tRNA genes. The phage belongs to Straboviridae family and lacks any virulence or antimicrobial resistance gene, thus making it a suitable candidate for treatment of drug-resistant infections. To confirm lytic ability of novel phage, we isolated 54 multidrug-resistant Shigella species from thirty-five poultry fecal samples that shows multiple antibiotic resistance index ranging from 0.15 to 0.75 (from 3 Indian states). The fPSFA showed lytic activity against multidrug-resistant Shigella isolates (73.08 %) (MARI≥0.50). The wide host ranges of fPSFA phage demonstrate its potential to be used as a biocontrol agent.


Subject(s)
Bacteriophages , Shigella , Animals , Prophages/genetics , Poultry , Genome, Viral , Bacteriophages/genetics , Genomics , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...