Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Eur J Cell Biol ; 103(1): 151381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183814

ABSTRACT

The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.


Subject(s)
Phosphatidylinositol Phosphates , Shigella , Humans , Shigella/physiology , Vacuoles/metabolism , Epithelial Cells/physiology , Shigella flexneri/genetics , HeLa Cells , Sorting Nexins/metabolism
2.
Curr Opin Immunol ; 85: 102399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952487

ABSTRACT

Shigella spp. are major causative agents of bacillary dysentery, a severe enteric disease characterized by destruction and inflammation of the colonic epithelium accompanied by acute diarrhea, fever, and abdominal pain. Although antibiotics have traditionally been effective, the prevalence of multidrug-resistant strains is increasing, stressing the urgent need for a vaccine. The human-specific nature of shigellosis and the absence of a dependable animal model have posed significant obstacles in understanding Shigella pathogenesis and the host immune response, both of which are crucial for the development of an effective vaccine. Efforts have been made over time to develop a physiological model that mimics the pathological features of the human disease with limited success until the recent development of genetically modified mouse models. In this review, we provide an overview of Shigella pathogenesis and chronicle the historical development of various shigellosis models, emphasizing their strengths and weaknesses.


Subject(s)
Dysentery, Bacillary , Shigella , Vaccines , Animals , Mice , Humans , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/prevention & control , Shigella/physiology , Inflammation/complications , Disease Models, Animal
3.
Front Cell Infect Microbiol ; 13: 1171213, 2023.
Article in English | MEDLINE | ID: mdl-37260708

ABSTRACT

Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.


Subject(s)
Dysentery, Bacillary , Shigella , Animals , Humans , Antibodies, Bacterial , Shigella/physiology , Immunoglobulins , Intestinal Mucosa/microbiology , Shigella flexneri
4.
Cell ; 185(13): 2205-2207, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35750030

ABSTRACT

Interferons are potent antimicrobial effectors and thus an attractive target for pathogen interference. In this issue of Cell, Alphonse et al. reveal that the Shigella effectors OspC1 and OspC3 employ a surprising mechanism to block interferon signaling and attenuate antibacterial responses, thus securing their replicative niche.


Subject(s)
Dysentery, Bacillary , Shigella , Dysentery, Bacillary/microbiology , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferons , Shigella/physiology
5.
mBio ; 13(3): e0127022, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35638611

ABSTRACT

The type III secretion system is required for virulence of many pathogenic bacteria. Bacterial effector proteins delivered into target host cells by this system modulate host signaling pathways and processes in a manner that promotes infection. Here, we define the activity of the effector protein OspB of the human pathogen Shigella spp., the etiological agent of shigellosis and bacillary dysentery. Using the yeast Saccharomyces cerevisiae as a model organism, we show that OspB sensitizes cells to inhibition of TORC1, the central regulator of growth and metabolism. In silico analyses reveal that OspB bears structural homology to bacterial cysteine proteases that target mammalian cell processes, and we define a conserved cysteine-histidine catalytic dyad required for OspB function. Using yeast genetic screens, we identify a crucial role for the arginine N-degron pathway in the yeast growth inhibition phenotype and show that inositol hexakisphosphate is an OspB cofactor. We find that a yeast substrate for OspB is the TORC1 component Tco89p, proteolytic cleavage of which generates a C-terminal fragment that is targeted for degradation via the arginine N-degron pathway; processing and degradation of Tco89p is required for the OspB phenotype. In all, we demonstrate that the Shigella T3SS effector OspB is a cysteine protease and decipher its interplay with eukaryotic cell processes. IMPORTANCEShigella spp. are important human pathogens and among the leading causes of diarrheal mortality worldwide, especially in children. Virulence depends on the Shigella type III secretion system (T3SS). Definition of the roles of the bacterial effector proteins secreted by the T3SS is key to understanding Shigella pathogenesis. The effector protein OspB contributes to a range of phenotypes during infection, yet the mechanism of action is unknown. Here, we show that S. flexneri OspB possesses cysteine protease activity in both yeast and mammalian cells, and that enzymatic activity of OspB depends on a conserved cysteine-histidine catalytic dyad. We determine how its protease activity sensitizes cells to TORC1 inhibition in yeast, finding that OspB cleaves a component of yeast TORC1, and that the degradation of the C-terminal cleavage product is responsible for OspB-mediated hypersensitivity to TORC1 inhibitors. Thus, OspB is a cysteine protease that depends on a conserved cysteine-histidine catalytic dyad.


Subject(s)
Cysteine Proteases , Dysentery, Bacillary , Shigella , Animals , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine/metabolism , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Histidine/metabolism , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1 , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Shigella/physiology , Shigella flexneri/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
6.
Int J Nanomedicine ; 16: 4545-4557, 2021.
Article in English | MEDLINE | ID: mdl-34267512

ABSTRACT

BACKGROUND: Shigella infection has always been a global burden, and it particularly threatens children between the ages of 1 and 5 years. Economically underdeveloped countries are dominated by Shigella flexneri infection. The most effective method to treat Shigella is antibiotics, but with the abuse of antibiotics and the prevalence of multidrug resistance, we urgently need a relatively safe non-antibiotic treatment to replace it. Ultrasmall Au nanoclusters (NCs) have special physical and chemical properties and can better interact with and be internalized by bacteria to disrupt the metabolic balance. The purpose of this study was to explore whether Au NCs may be a substitute for antibiotics to treat Shigella infections. METHODS: Au NCs and Shigella Sf301, R2448, and RII-1 were cocultured in vitro to evaluate the bactericidal ability of Au NCs. The degree of damage and mode of action of Au NCs in Shigella were clearly observed in images of scanning electron microscopy (SEM). In vivo experiments were conducted to observe the changes in body weight, clinical disease activity index (DAI) and colon (including length and histopathological sections) of mice treated with Au NCs. The effect of Au NCs was analysed by measuring the content of lipocalin-2 (LCN2) and Shigella in faeces. Next, the changes in Shigella biofilm activity, the release of reactive oxygen species (ROS), the changes in metabolism-related and membrane-related genes, and the effect of Au NCs on the body weight of mice were determined to further analyse the mechanism of action and effect. RESULTS: Au NCs (100 µM) interfered with oxidative metabolism genes, induced a substantial increase in ROS levels, interacted with the cell membrane to destroy it, significantly killed Shigella, and effectively alleviated the intestinal damage caused by Shigella in mice. The activity of the biofilm formed by Shigella was reduced. CONCLUSION: The effective antibacterial effect and good safety suggest that Au NCs represent a good potential alternative to antibiotics to treat Shigella infections.


Subject(s)
Colitis/metabolism , Colitis/microbiology , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Shigella/physiology , Animals , Colitis/drug therapy , Gold/therapeutic use , Humans , Mice , Reactive Oxygen Species/metabolism , Shigella/drug effects
7.
Infect Immun ; 89(6)2021 05 17.
Article in English | MEDLINE | ID: mdl-33649051

ABSTRACT

Shigella is a leading cause of moderate-to-severe diarrhea globally and the causative agent of shigellosis and bacillary dysentery. Associated with 80 to 165 million cases of diarrhea and >13% of diarrheal deaths, in many regions, Shigella exposure is ubiquitous while infection is heterogenous. To characterize host-genetic susceptibility to Shigella-associated diarrhea, we performed two independent genome-wide association studies (GWAS) including Bangladeshi infants from the PROVIDE and CBC birth cohorts in Dhaka, Bangladesh. Cases were infants with Shigella-associated diarrhea (n = 143) and controls were infants with no Shigella-associated diarrhea in the first 13 months of life (n = 446). Shigella-associated diarrhea was identified via quantitative PCR (qPCR) threshold cycle (CT ) distributions for the ipaH gene, carried by all four Shigella species and enteroinvasive Escherichia coli Host GWAS were performed under an additive genetic model. A joint analysis identified protective loci on chromosomes 11 (rs582240, within the KRT18P59 pseudogene; P = 6.40 × 10-8; odds ratio [OR], 0.43) and 8 (rs12550437, within the lincRNA RP11-115J16.1; P = 1.49 × 10-7; OR, 0.48). Conditional analyses identified two previously suggestive loci, a protective locus on chromosome 7 (rs10266841, within the 3' untranslated region [UTR] of CYTH3; Pconditional = 1.48 × 10-7; OR, 0.44) and a risk-associated locus on chromosome 10 (rs2801847, an intronic variant within MPP7; Pconditional = 8.37 × 10-8; OR, 5.51). These loci have all been indirectly linked to bacterial type 3 secretion system (T3SS) activity, its components, and bacterial effectors delivered into host cells. Host genetic factors that may affect bacterial T3SS activity and are associated with the host response to Shigella-associated diarrhea may provide insight into vaccine and drug development efforts for Shigella-associated diarrheal disease.


Subject(s)
Diarrhea/etiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Shigella , Alleles , Bangladesh/epidemiology , Chromosome Mapping , Diarrhea/epidemiology , Diarrhea/microbiology , Host-Pathogen Interactions/genetics , Humans , Infant , Odds Ratio , Public Health Surveillance , Shigella/physiology , Type III Secretion Systems
8.
Curr Opin Microbiol ; 59: 1-7, 2021 02.
Article in English | MEDLINE | ID: mdl-32784063

ABSTRACT

In response to bacterial infection, epithelial cells undergo several types of cell death, including apoptosis, necrosis, pyroptosis, and necroptosis, which serve to expel the infected cells and activate the innate and acquired immune responses. Shigella initially invades macrophages and subsequently surrounding enterocytes; the pathogen executes macrophage cell death but prevents epithelial cell death in order to maintain its foothold for replication. To this end, Shigella delivers versatile effector proteins via the type III secretion system (T3SS), allowing it to efficiently colonize the intestinal epithelium. In this article, we review insights into the mechanisms underlying circumvention of the host cell death by Shigella, as an example of bacterial fine-tuning of host cell death pathways.


Subject(s)
Dysentery, Bacillary , Host-Pathogen Interactions , Shigella , Cell Death , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Humans , Microbial Viability , Shigella/physiology , Type III Secretion Systems/genetics
9.
Poult Sci ; 99(7): 3402-3410, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32616234

ABSTRACT

Respiratory tract diseases are closely related to atmosphere pollution. Ammonia is one of the harmful pollutants in the atmosphere environment, which has a great threat to human and animal respiratory tract health, but the mechanism of causing diseases is not clear. In this study, broiler lung tissue was used as a model to study the effect of high ammonia on respiratory tract diseases through the relationship between respiratory microflora, NLRP3 inflammasome, and inflammatory factors. For this, we validated the occurrence of lung tissue inflammation under ammonia exposure and detected the lung tissue microbial constituent by 16S rDNA sequencing. Moreover, the relative expression levels of NLRP3 and caspase-1 mRNA and the content of IL-1ß and IL-6 were measured. After 7-D ammonia exposure, the proportion of the phylum Proteobacteria and the genus Escherichia/Shigella in lung tissue was significantly increased, the expression levels of NLRP3 and caspase-1 mRNA were significantly increased, and the content of IL-1ß in lung tissue and serum was higher than that in the control group. In conclusion, high ammonia induced lung tissue inflammation via increasing the proportion of Escherichia/Shigella, activating NLRP3 inflammasome, and promoting IL-1ß release. These findings provided a reference for the prevention and control of respiratory tract diseases in humans and animals caused by ammonia pollution.


Subject(s)
Ammonia/toxicity , Avian Proteins/metabolism , Chickens , Inflammasomes/metabolism , Lung Injury/veterinary , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Poultry Diseases/physiopathology , Animals , Escherichia/physiology , Lung Injury/chemically induced , Lung Injury/physiopathology , Male , Poultry Diseases/chemically induced , Shigella/physiology
10.
mBio ; 11(1)2020 01 21.
Article in English | MEDLINE | ID: mdl-31964739

ABSTRACT

Shigella species cause diarrheal disease globally. Shigellosis is typically characterized by bloody stools and colitis with mucosal damage and is the leading bacterial cause of diarrheal death worldwide. After the pathogen is orally ingested, it invades and replicates within the colonic epithelium through mechanisms that rely on its type III secretion system (T3SS). Currently, oral infection-based small animal models to study the pathogenesis of shigellosis are lacking. Here, we found that orogastric inoculation of infant rabbits with Shigella flexneri resulted in diarrhea and colonic pathology resembling that found in human shigellosis. Fasting animals prior to S. flexneri inoculation increased the frequency of disease. The pathogen colonized the colon, where both luminal and intraepithelial foci were observed. The intraepithelial foci likely arise through S. flexneri spreading from cell to cell. Robust S. flexneri intestinal colonization, invasion of the colonic epithelium, and epithelial sloughing all required the T3SS as well as IcsA, a factor required for bacterial spreading and adhesion in vitro Expression of the proinflammatory chemokine interleukin 8 (IL-8), detected with in situ mRNA labeling, was higher in animals infected with wild-type S. flexneri versus mutant strains deficient in icsA or T3SS, suggesting that epithelial invasion promotes expression of this chemokine. Collectively, our findings suggest that oral infection of infant rabbits offers a useful experimental model for studies of the pathogenesis of shigellosis and for testing of new therapeutics.IMPORTANCEShigella species are the leading bacterial cause of diarrheal death globally. The pathogen causes bacillary dysentery, a bloody diarrheal disease characterized by damage to the colonic mucosa and is usually spread through the fecal-oral route. Small animal models of shigellosis that rely on the oral route of infection are lacking. Here, we found that orogastric inoculation of infant rabbits with S. flexneri led to a diarrheal disease and colonic pathology reminiscent of human shigellosis. Diarrhea, intestinal colonization, and pathology in this model were dependent on the S. flexneri type III secretion system and IcsA, canonical Shigella virulence factors. Thus, oral infection of infant rabbits offers a feasible model to study the pathogenesis of shigellosis and to develop and test new therapeutics.


Subject(s)
Enterobacteriaceae Infections/microbiology , Host-Pathogen Interactions , Shigella/physiology , Animals , Biopsy , Diarrhea/microbiology , Disease Models, Animal , Enterobacteriaceae Infections/pathology , Enterobacteriaceae Infections/transmission , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Rabbits
11.
Environ Health Prev Med ; 24(1): 82, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31883513

ABSTRACT

BACKGROUND: This study aimed to analyse the epidemiological characteristics of bacillary dysentery (BD) caused by Shigella in Chongqing, China, and to establish incidence prediction models based on the correlation between meteorological factors and BD, thus providing a scientific basis for the prevention and control of BD. METHODS: In this study, descriptive methods were employed to investigate the epidemiological distribution of BD. The Boruta algorithm was used to estimate the correlation between meteorological factors and BD incidence. The genetic algorithm (GA) combined with support vector regression (SVR) was used to establish the prediction models for BD incidence. RESULTS: In total, 68,855 cases of BD were included. The incidence declined from 36.312/100,000 to 23.613/100,000, with an obvious seasonal peak from May to October. Males were more predisposed to the infection than females (the ratio was 1.118:1). Children < 5 years old comprised the highest incidence (295.892/100,000) among all age categories, and pre-education children comprised the highest proportion (34,658 cases, 50.335%) among all occupational categories. Eight important meteorological factors, including the highest temperature, average temperature, average air pressure, precipitation and sunshine, were correlated with the monthly incidence of BD. The obtained mean absolute percent error (MAPE), mean squared error (MSE) and squared correlation coefficient (R2) of GA_SVR_MONTH values were 0.087, 0.101 and 0.922, respectively. CONCLUSION: From 2009 to 2016, BD incidence in Chongqing was still high, especially in the main urban areas and among the male and pre-education children populations. Eight meteorological factors, including temperature, air pressure, precipitation and sunshine, were the most important correlative feature sets of BD incidence. Moreover, BD incidence prediction models based on meteorological factors had better prediction accuracies. The findings in this study could provide a panorama of BD in Chongqing and offer a useful approach for predicting the incidence of infectious disease. Furthermore, this information could be used to improve current interventions and public health planning.


Subject(s)
Dysentery, Bacillary/epidemiology , Shigella/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , China/epidemiology , Dysentery, Bacillary/microbiology , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Meteorological Concepts , Middle Aged , Models, Theoretical , Young Adult
12.
Microbiologyopen ; 8(12): e932, 2019 12.
Article in English | MEDLINE | ID: mdl-31517452

ABSTRACT

Shigella invasion and dissemination in intestinal epithelial cells relies on a type 3 secretion system (T3SS), which mediates translocation of virulence proteins into host cells. T3SSs are composed of three major parts: an extracellular needle, a basal body, and a cytoplasmic complex. Three categories of proteins are hierarchically secreted: (a) the needle components, (b) the translocator proteins which form a pore (translocon) inside the host cell membrane and (c) the effectors interfering with the host cell signaling pathways. In the absence of host cell contact, the T3SS is maintained in an "off" state by the presence of a tip complex. Secretion is activated by host cell contact which allows the release of a gatekeeper protein called MxiC. In this work, we have investigated the role of Spa33, a component of the cytoplasmic complex, in the regulation of secretion. The spa33 gene encodes a 33-kDa protein and a smaller fragment of 12 kDa (Spa33C ) which are both essential components of the cytoplasmic complex. We have shown that the spa33 gene gives rise to 5 fragments of various sizes. Among them, three are necessary for T3SS. Interestingly, we have shown that Spa33 is implicated in the regulation of secretion. Indeed, the mutation of a single residue in Spa33 induces an effector mutant phenotype, in which MxiC is sequestered. Moreover, we have shown a direct interaction between Spa33 and MxiC.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation , Shigella/physiology , Type III Secretion Systems/physiology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Codon, Initiator , Mutation , Protein Binding , Virulence/genetics
13.
mBio ; 10(4)2019 08 27.
Article in English | MEDLINE | ID: mdl-31455648

ABSTRACT

Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display "moonlighting" adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.


Subject(s)
Actins/metabolism , Bacteria/pathogenicity , Bacterial Physiological Phenomena , Biofilms/growth & development , Bacterial Adhesion , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Listeria/pathogenicity , Listeria/physiology , Shigella/pathogenicity , Shigella/physiology
14.
J Basic Microbiol ; 59(7): 735-743, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30980722

ABSTRACT

Shigella species and Acanthamoeba castellanii share the same ecological niches, and their interaction has been addressed in a limited number of research. However, there are still uncertain aspects and discrepant findings of this interaction. In the present study, the effects of the bacterial growth phase, cocultivation temperature and the type of culture media on the interaction of A. castellanii with Shigella dysenteriae, Shigella sonnei and Shigella flexneri were evaluated. In nutrient-poor page's amoeba saline (PAS) medium, the number of recovered bacteria and the uptake rates were significantly higher in stationary phase cells than logarithmic phase cells. However, no significant differences were observed in the number of recovered bacteria and the uptake rates between logarithmic and stationary phase cells in nutrient-rich peptone-yeast extract-glucose (PYG) medium. While the number of recovered bacteria was significantly higher in nutrient-rich than nutrient-poor media, in all the three Shigella species, the bacterial uptake rates were significantly higher in nutrient-poor than nutrient-rich media at both cocultivation temperatures. In both nutrient-poor and nutrient-rich media and at both cocultivation temperatures, the number of viable Shigella species after 24 h incubation were not influenced by the presence of A. castellanii. Although Shigella species did not proliferate in A. castellanii trophozoites, a considerable number of bacteria were survived in the trophozoites up to 15 days. From the public health perspective, the results of this study are important for further understanding of the nature of the interaction of these organisms and to deal with Shigella species in the environment.


Subject(s)
Acanthamoeba castellanii/microbiology , Microbial Interactions , Shigella/physiology , Acanthamoeba castellanii/growth & development , Coculture Techniques , Culture Media/chemistry , Microbial Viability , Nutrients , Shigella/growth & development , Temperature
15.
Trends Microbiol ; 27(5): 426-439, 2019 05.
Article in English | MEDLINE | ID: mdl-30600140

ABSTRACT

Pathogens survive and propagate within host cells through a wide array of complex interactions. Tracking the molecular and cellular events by multidimensional fluorescence microscopy has been a widespread tool for research on intracellular pathogens. Through major advancements in 3D electron microscopy, intracellular pathogens can also be visualized in their cellular environment to an unprecedented level of detail within large volumes. Recently, multidimensional fluorescence microscopy has been correlated with volume electron microscopy, combining molecular and functional information with the overall ultrastructure of infection events. In this review, we provide a short introduction to correlative focused ion beam/scanning electron microscopy (c-FIB/SEM) tomography and illustrate its utility for intracellular pathogen research through a series of studies on Shigella, Salmonella, and Brucella cellular invasion. We conclude by discussing current limitations of and prospects for this approach.


Subject(s)
Cytoplasm/microbiology , Host-Pathogen Interactions , Imaging, Three-Dimensional/methods , Microscopy, Electron, Scanning/methods , Microscopy, Fluorescence/methods , Brucella/physiology , Brucella/ultrastructure , Cytoplasm/ultrastructure , Humans , Salmonella/physiology , Salmonella/ultrastructure , Shigella/physiology , Shigella/ultrastructure
16.
Curr Protoc Microbiol ; 50(1): e57, 2018 08.
Article in English | MEDLINE | ID: mdl-29927109

ABSTRACT

Shigella is an enteroinvasive human pathogen that infects the colonic epithelium and causes Shigellosis, an infectious diarrheal disease. There is no vaccine for the prevention or treatment of Shigellosis and antibiotic-resistant strains of Shigella are increasing, emphasizing the need for a deeper understanding of Shigella pathogenesis in order to design effective antimicrobial therapies. Small animal models do not recapitulate Shigellosis, therefore tissue-cultured cells have served as model systems to study Shigella pathogenesis. Here, protocols to enumerate Shigella invasion, cell-cell spread, and plaque formation in the tissue-cultured cell lines Henle-407 and CoN-841 are described. Additionally, a new method to study Shigella invasion in primary intestinal enteroids is described. These protocols can be used to examine different aspects of Shigella virulence. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Dysentery, Bacillary/microbiology , Shigella/pathogenicity , Tissue Culture Techniques/methods , Animals , Cell Line , Dysentery, Bacillary/pathology , Humans , Intestines/microbiology , Shigella/genetics , Shigella/physiology , Virulence
17.
Epidemiol Infect ; 146(8): 980-984, 2018 06.
Article in English | MEDLINE | ID: mdl-29655379

ABSTRACT

French Guiana, a tropical country, is characterised by a young and multi-ethnic population. Difficulties in accessing safe water sources lead to outbreaks of gastroenteritis. The objectives of this study were (1) to describe the microbiological profile of shigella strains isolated in western French Guiana, including antimicrobial susceptibility and the distribution of strains in terms of species and serotypes and (2) to estimate the incidence of shigellosis in children under 5 years old. A retrospective observational study was conducted of 213 cases of shigellosis diagnosed in the biology department of the hospital centre for western French Guiana between 2000 and 2012 in children under 5 years old. The serogroups (formerly known as species) that predominates in French Guiana was Shigella flexneri. No resistance was observed to fluoroquinolones or to third-generation cephalosporins. The average incidence of shigellosis in children under 5 years old in western French Guiana was estimated at 189.6 cases per 100 000 inhabitants per year. Shigellosis is a public health problem in western French Guiana. These infections suggest the difficulties in accessing safe water sources and the lack of public sanitation. A quadrivalent vaccine containing Shigella sonnei and three serotypes of S. flexneri (S. flexneri 2a, 3a and 6) could provide broad coverage against shigella infections.


Subject(s)
Drug Resistance, Bacterial , Dysentery, Bacillary/epidemiology , Shigella/physiology , Anti-Bacterial Agents/pharmacology , Child, Preschool , Dysentery, Bacillary/microbiology , Female , French Guiana/epidemiology , Humans , Incidence , Infant , Infant, Newborn , Male , Prevalence , Retrospective Studies , Seasons , Serogroup , Shigella/classification , Shigella/drug effects
18.
Dis Model Mech ; 11(2)2018 02 26.
Article in English | MEDLINE | ID: mdl-29590642

ABSTRACT

Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.


Subject(s)
Dysentery, Bacillary/microbiology , Shigella/physiology , Zebrafish/microbiology , Animals , Autophagy , Dysentery, Bacillary/immunology , Dysentery, Bacillary/prevention & control , Immunity, Cellular , Inflammasomes/metabolism , Shigella/ultrastructure
19.
mBio ; 9(1)2018 02 13.
Article in English | MEDLINE | ID: mdl-29440574

ABSTRACT

Direct interactions between bacterial and host glycans have been recently reported to be involved in the binding of pathogenic bacteria to host cells. In the case of Shigella, the Gram-negative enteroinvasive bacterium responsible for acute rectocolitis, such interactions contribute to bacterial adherence to epithelial cells. However, the role of glycans in the tropism of Shigella for immune cells whose glycosylation pattern varies depending on their activation state is unknown. We previously reported that Shigella targets activated, but not nonactivated, human CD4+ T lymphocytes. Here, we show that nonactivated CD4+ T lymphocytes can be turned into Shigella-targetable cells upon loading of their plasma membrane with sialylated glycosphingolipids (also termed gangliosides). The Shigella targeting profile of ganglioside-loaded nonactivated T cells is similar to that of activated T cells, with a predominance of injection of effectors from the type III secretion system (T3SS) not resulting in cell invasion. We demonstrate that gangliosides interact with the O-antigen polysaccharide moiety of lipopolysaccharide (LPS), the major bacterial surface antigen, thus promoting Shigella binding to CD4+ T cells. This binding step is critical for the subsequent injection of T3SS effectors, a step which we univocally demonstrate to be dependent on actin polymerization. Altogether, these findings highlight the critical role of glycan-glycan interactions in Shigella pathogenesis.IMPORTANCE Glycosylation of host cell surface varies with species and location in the body, thus contributing to species specificity and tropism of microorganisms. Cross talk by Shigella, the Gram-negative enteroinvasive bacterium responsible for bacillary dysentery, with its exclusively human host has been extensively studied. However, the molecular determinants of the step of binding to host cells are poorly defined. Taking advantage of the observation that human-activated CD4+ T lymphocytes, but not nonactivated cells, are targets of Shigella, we succeeded in rendering the refractory cells susceptible to targeting upon loading of their plasma membrane with sialylated glycosphingolipids (gangliosides) that are abundantly present on activated cells. We show that interactions between the sugar polar part of gangliosides and the polysaccharide moiety of Shigella lipopolysaccharide (LPS) promote bacterial binding, which results in the injection of effectors via the type III secretion system. Whereas LPS interaction with gangliosides was proposed long ago and recently extended to a large variety of glycans, our findings reveal that such glycan-glycan interactions are critical for Shigella pathogenesis by driving selective interactions with host cells, including immune cells.


Subject(s)
Bacterial Adhesion , Epithelial Cells/microbiology , Polysaccharides/metabolism , Shigella/physiology , Viral Tropism , CD4-Positive T-Lymphocytes/microbiology , Cells, Cultured , Gangliosides/metabolism , Humans , Lipopolysaccharides/metabolism
20.
Infect Immun ; 86(4)2018 04.
Article in English | MEDLINE | ID: mdl-29339461

ABSTRACT

The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.


Subject(s)
Bacterial Proteins/immunology , Escherichia coli Proteins/immunology , Escherichia coli/physiology , Host-Pathogen Interactions/immunology , Immunomodulation , Shigella/physiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Nucleus/metabolism , Dysentery, Bacillary/immunology , Dysentery, Bacillary/metabolism , Dysentery, Bacillary/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Humans , NF-kappa B/metabolism , Protein Transport , Signal Transduction , Type III Secretion Systems , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...