Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
J Immunol Res ; 2021: 6417658, 2021.
Article in English | MEDLINE | ID: mdl-34840990

ABSTRACT

Enterogenous infection is a major cause of death during traumatic hemorrhagic shock (THS). It has been reported that Toll-like receptor 5 (TLR5) plays an integral role in regulating mucosal immunity and intestinal homeostasis of the microbiota. However, the roles played by TLR5 on intestinal barrier maintenance and commensal bacterial translocation post-THS are poorly understood. In this research, we established THS models in wild-type (WT) and Tlr5-/- (genetically deficient in TLR5 expression) mice. We found that THS promoted bacterial translocation, while TLR5 deficiency played a protective role in preventing commensal bacteria dissemination after THS. Furthermore, intestinal microbiota analysis uncovered that TLR5 deficiency enhanced the mucosal biological barrier by decreasing RegIIIγ-mediated bactericidal activity against G+ anaerobic bacteria. We then sorted small intestinal TLR5+ lamina propria dendritic cells (LPDCs) and analyzed TH1 differentiation in the intestinal lamina propria and a coculture system consisting of LPDCs and naïve T cells. Although TLR5 deficiency attenuated the regulation of TH1 polarization by LPDCs, it conferred stability to the cells during THS. Moreover, retinoic acid (RA) released from TLR5+ LPDCs could play a key role in modulating TH1 polarization. We also found that gavage administration of RA alleviated bacterial translocation in THS-treated WT mice. In summary, we documented that TLR5 signaling plays a pivotal role in regulating RegIIIγ-induced killing of G+ anaerobic bacteria, and LPDCs mediated TH1 differentiation via RA. These processes prevent intestinal bacterial translocation and enterogenous infection after THS, suggesting that therapeutically targeting LPDCs or gut microbiota can interfere with bacterial translocation after THS.


Subject(s)
Dendritic Cells/immunology , Intestines/immunology , Mucous Membrane/pathology , Shock, Hemorrhagic/immunology , Th1 Cells/immunology , Toll-Like Receptor 5/genetics , Wounds and Injuries/immunology , Animals , Cell Differentiation , Humans , Immunity, Mucosal , Intestines/microbiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Shock, Hemorrhagic/microbiology , Symbiosis , Tretinoin/metabolism , Wounds and Injuries/microbiology
2.
Inflammation ; 44(6): 2543-2553, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34533673

ABSTRACT

Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α-induced protein 8-like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.


Subject(s)
Autonomic Nerve Block , Autophagy , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Lymph/metabolism , Lymphocyte Activation , Shock, Hemorrhagic/therapy , Spleen/immunology , Stellate Ganglion , Animals , Autophagy-Related Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mesentery , Phenotype , Rats, Wistar , Shock, Hemorrhagic/immunology , Shock, Hemorrhagic/metabolism , Shock, Hemorrhagic/pathology , Spleen/metabolism
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209943

ABSTRACT

Severe or major burns induce a pathophysiological, immune, and inflammatory response that can persist for a long time and affect morbidity and mortality. Severe burns are followed by a "hypermetabolic response", an inflammatory process that can be extensive and become uncontrolled, leading to a generalized catabolic state and delayed healing. Catabolism causes the upregulation of inflammatory cells and innate immune markers in various organs, which may lead to multiorgan failure and death. Burns activate immune cells and cytokine production regulated by damage-associated molecular patterns (DAMPs). Trauma has similar injury-related immune responses, whereby DAMPs are massively released in musculoskeletal injuries and elicit widespread systemic inflammation. Hemorrhagic shock is the main cause of death in trauma. It is hypovolemic, and the consequence of volume loss and the speed of blood loss manifest immediately after injury. In burns, the shock becomes evident within the first 24 h and is hypovolemic-distributive due to the severely compromised regulation of tissue perfusion and oxygen delivery caused by capillary leakage, whereby fluids shift from the intravascular to the interstitial space. In this review, we compare the pathophysiological responses to burns and trauma including their associated clinical patterns.


Subject(s)
Alarmins/metabolism , Burns/immunology , Shock, Hemorrhagic/immunology , Cytokines/metabolism , Gene Expression Regulation , Humans , Mitochondria/metabolism
4.
J Trauma Acute Care Surg ; 91(4): 700-707, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34238858

ABSTRACT

BACKGROUND: Inflammatory lipid mediators in mesenteric lymph (ML), including arachidonic acid (AA), are considered to play an important role in the pathogenesis of multiple-organ dysfunction after hemorrhagic shock. A previous study suggested that vagus nerve stimulation (VNS) could relieve shock-induced gut injury and abrogate ML toxicity, resulting in the prevention of multiple-organ dysfunction. However, the detailed mechanism of VNS in lymph toxicity remains unclear. The study aimed to investigate the relationship between VNS and inflammatory lipid mediators in ML. METHODS: Male Sprague-Dawley rats underwent laparotomy and superior mesenteric artery obstruction (SMAO) for 60 minutes to induce intestinal ischemia followed by reperfusion and observation. The ML duct was cannulated, and ML samples were obtained both before and after SMAO. The distal ileum was removed at the end of the observation period. In one group of animals, VNS was performed from 10 minutes before 10 minutes after SMAO (5 V, 0.5 Hz). Liquid chromatography-electrospray ionization-tandem mass spectrometry analysis of AA was performed for each ML sample. The biological activity of ML was examined using a monocyte nuclear factor κ-light-chain-enhancer of activated B cells activation assay. Western blotting of phospholipase A2 group IIA (PLA2-IIA) was also performed for ML and ileum samples. RESULTS: Vagus nerve stimulation relieved the SMAO-induced histological gut injury. The concentration of AA and level of nuclear factor κ-light-chain-enhancer of activated B cells activation in ML increased significantly after SMAO, whereas VNS prevented these responses. Western blotting showed PLA2-IIA expression in the ML and ileum after SMAO; however, the appearance of PLA2-IIA band was remarkably decreased in the samples from VNS-treated animals. CONCLUSION: The results suggested that VNS could relieve gut injury induced by SMAO and decrease the production of AA in ML by altering PLA2-IIA expression in the gut and ML.


Subject(s)
Arachidonic Acid/metabolism , Multiple Organ Failure/prevention & control , Reperfusion Injury/therapy , Shock, Hemorrhagic/complications , Vagus Nerve Stimulation , Animals , Disease Models, Animal , Humans , Lymph/immunology , Lymph/metabolism , Lymphatic Vessels/pathology , Male , Mesentery/pathology , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Shock, Hemorrhagic/immunology
5.
J Trauma Acute Care Surg ; 91(4): 692-699, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34252063

ABSTRACT

BACKGROUND: After severe trauma, the older host experiences more dysfunctional hematopoiesis of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs), and dysfunctional differentiation of circulating myeloid cells into effective innate immune cells. Our main objective was to compare BM HSPC microRNA (miR) responses of old and young mice in a clinically relevant model of severe trauma and shock. METHODS: C57BL/6 adult male mice aged 8 to 12 weeks (young) and 18 to 24 months (old) underwent multiple injuries and hemorrhagic shock (polytrauma [PT]) that engenders the equivalent of major trauma (Injury Severity Score, >15). Pseudomonas pneumonia (PNA) was induced in some young and old adult mice 24 hours after PT. MicroRNA expression patterns were determined from lineage-negative enriched BM HSPCs isolated from PT and PT-PNA mice at 24 and 48 hours postinjury, respectively. Genome-wide expression and pathway analyses were also performed on bronchoalveolar lavage (BAL) leukocytes from both mouse cohorts. RESULTS: MicroRNA expression significantly differed among all experimental conditions (p < 0.05), except for old-naive versus old-injured (PT or PT-PNA) mice, suggesting an inability of old mice to mount a robust early miR response to severe shock and injury. In addition, young adult mice had significantly more leukocytes obtained from their BAL, and there were greater numbers of polymorphonuclear cells compared with old mice (59.8% vs. 2.2%, p = 0.0069). Despite increased gene expression changes, BAL leukocytes from old mice demonstrated a more dysfunctional transcriptomic response to PT-PNA than young adult murine BAL leukocytes, as reflected in predicted upstream functional pathway analysis. CONCLUSION: The miR expression pattern in BM HSPCs after PT (+/-PNA) is dissimilar in old versus young adult mice. In the acute postinjury phase, old adult mice are unable to mount a robust miR HSPC response. Hematopoietic stem and progenitor cell miR expression in old PT mice reflects a diminished functional status and a blunted capacity for terminal differentiation of myeloid cells.


Subject(s)
Bone Marrow/pathology , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Multiple Trauma/complications , Shock, Hemorrhagic/immunology , Age Factors , Aging/blood , Aging/genetics , Aging/immunology , Animals , Bone Marrow/physiology , Cell Differentiation/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/immunology , Hematopoiesis/immunology , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Multiple Trauma/blood , Multiple Trauma/immunology , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/genetics , Shock, Hemorrhagic/pathology
6.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34291735

ABSTRACT

Stimulator of IFN genes (STING) activates TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3) to produce type I IFNs. Extracellular cold-inducible RNA-binding protein (eCIRP) is released from cells during hemorrhagic shock (HS). We hypothesized that eCIRP activates STING to induce inflammation and acute lung injury (ALI) after HS. WT and STING-/- mice underwent controlled hemorrhage by bleeding, followed by fluid resuscitation. Blood and lungs were collected at 4 hours after resuscitation. Serum ALT, AST, LDH, IL-6, and IFN-ß were significantly decreased in STING-/- mice compared with WT mice after HS. In STING-/- mice, the levels of pTBK1 and pIRF3, and expression of TNF-α, IL-6, and IL-1ß mRNAs and proteins in the lungs, were significantly decreased compared with WT HS mice. The 10-day mortality rate in STING-/- mice was significantly reduced. I.v. injection of recombinant mouse CIRP (rmCIRP) in STING-/- mice showed a significant decrease in pTBK1 and pIRF3 and in IFN-α and IFN-ß mRNAs and proteins in the lungs compared with rmCIRP-treated WT mice. Treatment of TLR4-/-, MyD88-/-, and TRIF-/- macrophages with rmCIRP significantly decreased pTBK1 and pIRF3 levels and IFN-α and IFN-ß mRNAs and proteins compared with WT macrophages. HS increases eCIRP levels, which activate STING through TLR4/MyD88/TRIF pathways to exacerbate inflammation.


Subject(s)
Acute Lung Injury/immunology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Shock, Hemorrhagic/immunology , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Disease Progression , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Severity of Illness Index , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/diagnosis , Shock, Hemorrhagic/pathology , Signal Transduction/genetics , Signal Transduction/immunology
7.
Sci Rep ; 11(1): 7508, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33820957

ABSTRACT

The aim is to investigate that 17ß-estradiol (E2)/estrogen receptors (ERs) activation normalizes splenic CD4 + T lymphocytes proliferation and cytokine production through inhibition of endoplasmic reticulum stress (ERS) following hemorrhage. The results showed that hemorrhagic shock (hemorrhage through femoral artery, 38-42 mmHg for 90 min followed by resuscitation of 30 min and subsequent observation period of 180 min) decreased the CD4+ T lymphocytes proliferation and cytokine production after isolation and incubation with Concanavalin A (5 µg/mL) for 48 h, induced the splenic injury with evidences of missed contours of the white pulp, irregular cellular structure, and typical inflammatory cell infiltration, upregulated the expressions of ERS biomarkers 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6). Either E2, ER-α agonist propyl pyrazole triol (PPT) or ERS inhibitor 4-Phenylbutyric acid administration normalized these parameters, while ER-ß agonist diarylpropionitrile administration had no effect. In contrast, administrations of either ERs antagonist ICI 182,780 or G15 abolished the salutary effects of E2. Likewise, ERS inducer tunicamycin induced an adverse effect similarly to that of hemorrhagic shock in sham rats, and aggravated shock-induced effects, also abolished the beneficial effects of E2 and PPT, respectively. Together, the data suggest that E2 produces salutary effects on CD4+ T lymphocytes function, and these effects are mediated by ER-α and GPR30, but not ER-ß, and associated with the attenuation of hemorrhagic shock-induced ERS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Endoplasmic Reticulum Stress/drug effects , Estradiol/pharmacology , Shock, Hemorrhagic/immunology , Spleen/immunology , Activating Transcription Factor 6/metabolism , Animals , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Cytokines/biosynthesis , Heat-Shock Proteins/metabolism , Male , Models, Biological , Rats , Rats, Wistar , Spleen/pathology
8.
Shock ; 56(6): 994-1008, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33710107

ABSTRACT

ABSTRACT: Hemorrhagic shock with tissue trauma (HS/T) leads to the activation of a system-wide immune-inflammatory response that involves all organs and body compartments. Recent advances in single-cell analysis permit the simultaneous assessment of transcriptomic patterns in a large number of cells making it feasible to survey the landscape of immune cell responses across numerous anatomic sites. Here, we used single-cell RNA sequencing of leukocytes from the blood, liver, and spleen to identify the major shifts in gene expression by cell type and compartment in a mouse HS/T model. At 6 h, dramatic changes in gene expression were observed across multiple-cell types and in all compartments in wild-type mice. Monocytes from circulation and liver exhibited a significant upregulation of genes associated with chemotaxis and migration and a simultaneous suppression of genes associated with interferon signaling and antigen presentation. In contrast, liver conventional DC exhibited a unique pattern compared with other myeloid cells that included a pronounced increase in major histocompatibility complex class II (MHCII) gene expression. The dominant pattern across all compartments for B and T cells was a suppression of genes associated with cell activation and signaling after HS/T. Using complement factor 3 (C3) knockout mice we unveiled a role for C3 in the suppression of monocyte Major Histocompatibility Complex class II expression and activation of gene expression associated with migration, phagocytosis and cytokine upregulation, and an unexpected role in promoting interferon-signaling in a subset of B and T cells across all three compartments after HS/T. This transcriptomic landscape study of immune cells provides new insights into the host immune response to trauma, as well as a rich resource for further investigation of trauma-induced immune responses and complement in driving interferon signaling.


Subject(s)
Complement C3/immunology , Immunity, Cellular , Shock, Hemorrhagic/immunology , Transcriptome/immunology , Wounds and Injuries/immunology , Animals , Male , Mice , Mice, Inbred C57BL , Shock, Hemorrhagic/complications , Wounds and Injuries/complications
9.
Stem Cell Reports ; 16(2): 324-336, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33482101

ABSTRACT

Hemorrhagic shock induces an aberrant immune response characterized by simultaneous induction of a proinflammatory state and impaired host defenses. The objective of this study was to evaluate the impact of conditionally immortalized neutrophil progenitors (NPs) on this aberrant immune response. We employed a mouse model of hemorrhagic shock, followed by the adoptive transfer of NPs and subsequent inoculation of Staphylococcus aureus to induce pneumonia. We observed that transplant of NPs decreases the proportion of host neutrophils that express programmed death ligand 1 and intercellular adhesion molecule 1 in the context of prior hemorrhage. Following hemorrhage, NP transplant decreased proinflammatory cytokines in the lungs, increased neutrophil migration into the airspaces, and enhanced bacterial clearance. Further, hemorrhagic shock improved NP engraftment in the bone marrow. These results suggest that NPs hold the potential for use as a cellular therapy in the treatment and prevention of secondary infection following hemorrhagic shock.


Subject(s)
Myeloid Progenitor Cells/immunology , Myeloid Progenitor Cells/metabolism , Neutrophils/immunology , Pneumonia/immunology , Shock, Hemorrhagic/immunology , Shock, Hemorrhagic/metabolism , Staphylococcus aureus/immunology , Animals , B7-H1 Antigen/metabolism , Bone Marrow/immunology , Cell Line , Cell Movement , Cell- and Tissue-Based Therapy , Cytokines/metabolism , Disease Models, Animal , Immunity , Intercellular Adhesion Molecule-1/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Neutrophils/transplantation , Pneumonia/microbiology , Shock, Hemorrhagic/complications
10.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33320841

ABSTRACT

Immune dysfunction is an important factor driving mortality and adverse outcomes after trauma but remains poorly understood, especially at the cellular level. To deconvolute the trauma-induced immune response, we applied single-cell RNA sequencing to circulating and bone marrow mononuclear cells in injured mice and circulating mononuclear cells in trauma patients. In mice, the greatest changes in gene expression were seen in monocytes across both compartments. After systemic injury, the gene expression pattern of monocytes markedly deviated from steady state with corresponding changes in critical transcription factors, which can be traced back to myeloid progenitors. These changes were largely recapitulated in the human single-cell analysis. We generalized the major changes in human CD14+ monocytes into 6 signatures, which further defined 2 trauma patient subtypes (SG1 vs. SG2) identified in the whole-blood leukocyte transcriptome in the initial 12 hours after injury. Compared with SG2, SG1 patients exhibited delayed recovery, more severe organ dysfunction, and a higher incidence of infection and noninfectious complications. The 2 patient subtypes were also recapitulated in burn and sepsis patients, revealing a shared pattern of immune response across critical illness. Our data will be broadly useful to further explore the immune response to inflammatory diseases and critical illness.


Subject(s)
Wounds and Injuries/genetics , Wounds and Injuries/immunology , Adult , Animals , Bone Marrow Cells/immunology , Burns/blood , Burns/genetics , Burns/immunology , Case-Control Studies , Disease Models, Animal , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA-Seq , Sepsis/blood , Sepsis/genetics , Sepsis/immunology , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/genetics , Shock, Hemorrhagic/immunology , Single-Cell Analysis , Time Factors , Transcriptome , Wounds and Injuries/classification , Young Adult
11.
J Trauma Acute Care Surg ; 90(2): 257-267, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33214489

ABSTRACT

BACKGROUND: The genomic/cytokine "storm" after severe trauma is well described. However, the differing composition, magnitude and resolution of this response, and its relationship to clinical outcomes remain unclear. METHODS: This is a secondary analysis of a prospective longitudinal cohort study of severely injured trauma patients in hemorrhagic shock. Peripheral blood sampling was performed at 0.5, 1, 4, 7, 14, and 28 days after injury for measurement of circulating immune biomarkers. K-means clustering using overall mean and trajectory slope of selected immunologic biomarkers were used to identify distinct temporal immunologic endotypes. Endotypes were compared with known clinical trajectories defined as early death (<14 days), chronic critical illness (CCI) (ICU length of stay of ≥14 days with persistent organ dysfunction), and rapid recovery (RAP) (ICU length of stay of <14 days with organ recovery). RESULTS: The cohort included 102 subjects enrolled across 2 level 1 trauma centers. We identified three distinct immunologic endotypes (iA, iB, and iC), each with unique associations to clinical trajectory. Endotype iA (n = 47) exhibited a moderate initial proinflammatory response followed by a return to immunologic homeostasis, with a primary clinical trajectory of RAP (n = 44, 93.6%). Endotype iB (n = 44) exhibited an early hyperinflammatory response with persistent inflammation and immunosuppression, with the highest incidence of CCI (n = 10, 22.7%). Endotype iC (n = 11) exhibited a similar hyperinflammatory response, but with rapid return to immunologic homeostasis and a predominant trajectory of RAP (n = 9, 81.8%). Patients with endotype iB had the highest severity/duration of organ dysfunction and highest incidence of nosocomial infections (50%, p = 0.001), and endotype iB was the predominant endotype of patients who developed CCI (10 of 13 patients, 76.9%; p = 0.002). CONCLUSION: We identified three distinct immunologic endotypes after severe injury differing the magnitude and duration of the early response. The clinical trajectory of CCI is characterized by an endotype (iB) defined by persistent alteration in inflammation/immunosuppression and is associated with poor clinical outcomes. LEVEL OF EVIDENCE: Prognostic, level III.


Subject(s)
Cytokine Release Syndrome/immunology , Endophenotypes , Shock, Hemorrhagic/immunology , Wounds, Nonpenetrating/immunology , Biomarkers/blood , Cohort Studies , Cross Infection/immunology , Cross Infection/therapy , Cytokine Release Syndrome/therapy , Follow-Up Studies , Humans , Immunosuppression Therapy , Length of Stay , Longitudinal Studies , Prospective Studies , Shock, Hemorrhagic/therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , Trauma Centers , Treatment Outcome , Wounds, Nonpenetrating/therapy
12.
Blood Coagul Fibrinolysis ; 31(8): 578-582, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32732500

ABSTRACT

: Trauma with hemorrhagic shock causes massive tissue plasminogen activator release, plasmin generation, and hyperfibrinolysis. Tranexamic acid (TXA) has recently been used to treat bleeding in trauma by preventing plasmin generation to limit fibrinolysis. Trauma patients also have increased complement activation that correlates with mortality and organ failure, but the source of activation is not clear, and plasmin has recently been shown to efficiently cleave C3 and C5 to their activated fragments. We hypothesized that trauma patients in hemorrhagic shock with hyperfibrinolysis on thromboelastography (TEG) LY30 would have increased complement activation at early time points, as measured by soluble C5b-9 complex, and TXA would prevent this. Plasma samples were obtained from an unrelated, previously performed IRB-approved prospective randomized study of trauma patients. Three groups were studied with n = 5 patients in each group: patients without hyperfibrinolysis (TEG LY30 < 3%) (who therefore did not get TXA), patients with hyperfibrinolysis (TEG LY30 > 3%) who did not get TXA, and patients with hyperfibrinolysis who were then treated with TXA. We found that patients who did not receive TXA, regardless of fibrinolytic phenotype, had elevated soluble C5b-9 levels at 6 h relative to emergency department levels. In contrast, all five patients with initial TEG LY30 more than 3% and were then treated with TXA had reduced soluble C5b-9 levels at 6 h relative to emergency department levels. There were no differences in PF1 + 2, Bb, or C4d levels between groups, suggesting that coagulation and complement activation pathways may not be primarily responsible for the observed differences.


Subject(s)
Antifibrinolytic Agents/therapeutic use , Complement Activation/drug effects , Fibrinolysis/drug effects , Shock, Hemorrhagic/drug therapy , Tranexamic Acid/therapeutic use , Wounds and Injuries/drug therapy , Adult , Aged , Humans , Male , Middle Aged , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/immunology , Thrombelastography , Wounds and Injuries/blood , Wounds and Injuries/complications , Wounds and Injuries/immunology , Young Adult
13.
J Surg Res ; 256: 220-230, 2020 12.
Article in English | MEDLINE | ID: mdl-32711179

ABSTRACT

BACKGROUND: Immune dysfunction is associated with posthemorrhagic shock mesenteric lymph (PHSML) return. To determine the proliferation and cytokine production capacity of CD4+ T lymphocytes, the effect of PHSML drainage on spleen CD4+ T lymphocytes in a mouse model of hemorrhagic shock was assessed. METHODS: The normal spleen CD4+ T lymphocytes were in vitro incubated with either drained normal mesenteric lymph (NML), PHSML during hypotension (PHSML-H), or PHSML from 0 h to 3 h after resuscitation (PHSML-R) to verify direct proliferation effects of PHSML. RESULTS: Hemorrhagic shock led to reduction of proliferation and mRNA expression of interleukin 2 (IL-2) and IL-2 receptor in CD4+ T lymphocytes and to decrease in IL-2 and interferon γ (IFN-γ) levels in supernatants. In contrast, the interleukin-4 levels were increased. These effects were reversed by PHSML drainage. Moreover, NML incubation promoted CD4+ T lymphocyte proliferation, whereas both PHSML-H and PHSML-R treatment had a biphasic effects on CD4+ T lymphocyte proliferation, exhibiting an enhanced effect at early stages and an inhibitory effect at later stages. Compared with NML, PHSML-H increased IL-2 expression at 12 h, but decreased expression of both IL-2 and IFN-γ at 24 h. By contrast, PHSML-R induced significant increases in IL-2 and IFN-γ levels at 24 h. Interleukin-4 expression in CD4+ T lymphocytes was reduced at 12 h, but augmented at 24 h after incubation with either PHSML-H or PHSML-R. CONCLUSIONS: The results indicate that PHSML has a direct inhibitory effect on CD4+ T lymphocyte proliferation that induces an inflammatory response, which is associated with cellular immune dysfunction.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lymph/immunology , Mesentery/immunology , Shock, Hemorrhagic/complications , Systemic Inflammatory Response Syndrome/immunology , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Humans , Immunity, Cellular , Interferon-gamma/metabolism , Interleukin-2/metabolism , Interleukin-4/metabolism , Lymph/metabolism , Lymphatic Vessels , Lymphocyte Count , Male , Mesentery/metabolism , Mice , Primary Cell Culture , Receptors, Interleukin-2/metabolism , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/immunology , Systemic Inflammatory Response Syndrome/blood
14.
Sci Rep ; 10(1): 8067, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415268

ABSTRACT

This study investigated the association between different ratios of balanced salt based-crystalloid (PLASMA SOLUTION-A [CJ HealthCare, Seoul, Korea]) (the ratios of crystalloid for blood loss, 1:1, 1:2 and 1:3) or balanced salt-based colloid (VOLULYTE 6% [Fresenius Kabi, Germany]) (the ratio of colloid for blood loss, 1:1) to restore blood loss and immune response in rats with haemorrhagic shock. About 50% of total estimated blood volume was removed after anaesthesia. The fluid was administered for resuscitation after exsanguination, according to the type of fluid and the ratios of exsanguinated volume and fluid volume for resuscitation. After sacrifice, expression of immune cells in blood and tissues was evaluated. Histological analyses and syndecan-1 immunohistochemistry assays were performed on tissues. Endothelial damage according to syndecan-1 and cytokine levels in blood was also assessed. Fluid resuscitation with same, two-fold, or three-fold volumes of crystalloid, or same volume of colloid, to treat haemorrhagic shock in rats resulted in a similar increase in blood pressure. The expression of neutrophils in blood decreased significantly after colloid administration, compared to before exsanguination. Syndecan-1 expression increased after exsanguination and fluid resuscitation in all groups, without any significant difference. In conclusion, same volume of balanced salt-based crystalloid for blood loss was enough to restore BP at the choice of fluid for the management of haemorrhagic shock in the rats, compared with different ratios of crystalloid or same volume of colloid, on the aspect of immune response.


Subject(s)
Colloids/pharmacology , Crystalloid Solutions/pharmacology , Fluid Therapy/methods , Isotonic Solutions/pharmacology , Shock, Hemorrhagic/immunology , Animals , Male , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/therapy
15.
J Trauma Acute Care Surg ; 88(6): 809-815, 2020 06.
Article in English | MEDLINE | ID: mdl-32453257

ABSTRACT

BACKGROUND: Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern, which is released into the circulation after hemorrhagic shock (HS). Recently, we discovered that triggering receptor expressed on myeloid cells-1 (TREM-1) serves as a new receptor of eCIRP to exaggerate inflammation. Here, we hypothesize that by inhibiting the interaction between eCIRP and TREM-1 with the use of a novel short peptide derived from human eCIRP known as M3, we can inhibit the inflammatory response and acute lung injury in HS. METHODS: Hemorrhagic shock was induced using C57BL/6 mice by cannulating both femoral arteries. One femoral artery was used for removal of blood while the other was used for continuous monitoring of mean arterial blood pressure. The mean arterial pressure of 25 mm Hg to 30 mm Hg was maintained for 90 minutes, followed by a resuscitation phase of 30 minutes with 1 mL of normal saline. The treatment group was given 10 mg/kg of M3 during the resuscitation phase. Four hours after resuscitation, serum and lungs were collected and analyzed for various injury and inflammatory markers by using colorimetry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS: There was an increase in the serum levels of tissue injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as cytokines (TNF-α and IL-6) when comparing the vehicle group versus the sham group. This increase was significantly inhibited in the M3-treated group. The mRNA expression of proinflammatory cytokines TNF-α, IL-6, and IL-1ß and the chemokines MIP-2 and KC in lungs was significantly increased in the vehicle-treated HS mice, while their expression was significantly decreased in M3-treated HS mice. Finally, M3 treatment significantly decreased the lung injury score compared with vehicle-treated HS mice. CONCLUSION: The novel eCIRP-derived TREM-1 antagonist (M3) can be a potential therapeutic adjunct in the management of hemorrhagic shock.


Subject(s)
Acute Lung Injury/prevention & control , Peptide Fragments/pharmacology , Shock, Hemorrhagic/drug therapy , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Acute Lung Injury/blood , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Alarmins/chemistry , Alarmins/immunology , Animals , Disease Models, Animal , Humans , Inflammation Mediators/blood , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/therapeutic use , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/immunology , Shock, Hemorrhagic/blood , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology
16.
Biomed Res Int ; 2020: 5417201, 2020.
Article in English | MEDLINE | ID: mdl-32258126

ABSTRACT

OBJECTIVES: The primary target is to reveal whether the resuscitation with hypertonic saline (HTS) or hydroxyethyl starch (HES) would have different effects on the myeloid-derived suppressor cell (MDSC) count and monocytic MDSC (M-MDSC)/granulocytic/neutrophilic MDSC (G-MDSC) rate in the peripheral blood, spleen, and bone marrow nucleated cells (BMNC) in a controlled hemorrhagic shock mouse model under secondary Escherichia coli bacterial infection attack, comparing to resuscitation with normal saline (NS) in 72 hours. METHOD: After hemorrhagic shock with bacteremia, which is induced by Escherichia coli bacterial infection attack, comparing to resuscitation with normal saline (NS) in 72 hours. Method. After hemorrhagic shock with bacteremia, which is induced by Escherichia coli 35218 injection, the mice were distributed into control, NS, HTS, and HES groups. The peripheral blood nucleated cells (PBNC), spleen single-cell suspension, and bone marrow nucleated cells were collected. The flow cytometry was used to detect the MDSC, M-MDSC, and G-MDSC. RESULT: In PBNC, after resuscitation with NS, the MDSC was continuously higher, while the rate of M-MDSC/G-MDSC were continuously lower (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05), the M-MDSC/G-MDSC were continuously lower (P < 0.05). In the spleen, resuscitation with HTS, the M-MDSC/G-MDSC were continuously lower (P < 0.05). In BMNC, after resuscitation with HES, the M-MDSC/G-MDSC were lower at 24 and 72 hours (P < 0.05). CONCLUSION: In mouse hemorrhagic shock model with bacterial infection, the resuscitation with NS, HTS, or HES induced difference changes in MDSC and M-MDSC/G-MDSC, which were time-dependent and organ-specific. Resuscitation with crystalloid, like NS or HTS, showed longer effects on the MDSC and M-MDSC/G-MDSC in peripheral blood; while HTS has a longer effect on M-MDSC/G-MDSC in the spleen, HES has a stronger impact on the differentiation regulation of MDSC to G-MDSC in the bone marrow.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/immunology , Hydroxyethyl Starch Derivatives/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Shock, Hemorrhagic/immunology , Animals , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Mice , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells/pathology , Saline Solution, Hypertonic , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/microbiology
17.
Eur J Trauma Emerg Surg ; 46(1): 31-42, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30864051

ABSTRACT

AIM: Severely injured patients experience substantial immunological stress upon traumatic insult. Next to the direct local tissue injury also other organs, which are not directly injured such as liver and lung, are frequently affected by a so-called remote organ damage (ROD) after trauma. Thus, we studied the inflammatory response of lung and liver either after isolated femur fracture as example for ROD, or after multiple trauma in a porcine polytrauma model. METHODS: Twenty-four male pigs (Sus scrofa) underwent either isolated standardized femoral fracture (monotrauma, MT, n = 12) or polytrauma (PT, n = 12). PT consisted of a femur fracture, lung contusion, liver laceration, hemorrhagic shock, subsequent resuscitation and surgical fracture fixation. Six animals served as controls (sham). After 72 h inflammatory changes were determined by analyses of the interleukin (IL)-6 gene expression and tissue infiltration of polymorphonuclear leukocyte (PMN, myeloperoxidase staining). ROD in MT, and lung as well as liver damage in PT were assessed histologically by hematoxylin-eosin staining. Expression of phosphorylated p65 NF-κB was evaluated by immunohistology. RESULTS: IL-6 increased in lungs and liver in both groups MT and PT, respectively, compared to sham. Similarly, PMN infiltration of the lungs and liver increased significantly after both MT and PT compared to sham. Histological evaluation demonstrated tissue damage notably in lungs after MT, while tissue damage after PT was found in both lung and liver after PT. p65 NF-κB tended to an increase upon MT, and was significantly enhanced after PT in both tissues. CONCLUSION: Our data indicate that remote organ damage after MT notably in lungs was associated with an enhanced inflammatory response. Severe polytrauma substantially intensifies this response and organ damage in the underlying model.


Subject(s)
Femoral Fractures/immunology , Inflammation/immunology , Liver/injuries , Lung Injury/immunology , Multiple Trauma/immunology , Neutrophil Infiltration , Shock, Hemorrhagic/immunology , Animals , Contusions/immunology , Contusions/pathology , Disease Models, Animal , Femoral Fractures/surgery , Fracture Fixation , Inflammation/pathology , Interleukin-6/genetics , Interleukin-6/immunology , Lacerations/immunology , Lacerations/pathology , Liver/immunology , Liver/pathology , Lung Injury/pathology , Multiple Trauma/pathology , Neutrophils/pathology , Resuscitation , Shock, Hemorrhagic/pathology , Sus scrofa , Swine
18.
J Surg Res ; 247: 453-460, 2020 03.
Article in English | MEDLINE | ID: mdl-31668606

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a frequent complication after severe trauma. Lung-protective ventilation strategies and damage control resuscitation have been proposed for the prevention of ALI; however, there are no clinical or laboratory parameters to predict who is at risk of developing ALI after trauma. In the present study, we explored pulmonary inflammatory markers as a potential predictor of ALI using a porcine model of hemorrhagic shock. MATERIALS AND METHODS: Female swine were randomized to mechanical ventilation with low tidal volume (VT) (6 mL/kg) or high VT (12 mL/kg). After equilibration, animals underwent pressure-controlled hemorrhage (mean arterial pressure [MAP] 35 ± 5 mmHg) for 1 h, followed by resuscitation with fresh whole blood or Hextend. They were maintained at MAP of 50 ± 5 mmHg for 3 h in the postresuscitation phase. Bronchoalveolar lavage fluids were collected hourly and analyzed for inflammatory markers. Lung samples were taken, and porcine neutrophil antibody staining was used to evaluate the presence of neutrophils. ELISA evaluated serum porcine surfactant protein D levels. Sham animals were used as negative controls. RESULTS: Pigs that underwent hemorrhagic shock had higher heart rates, lower cardiac output, lower MAPs, and worse acidosis compared with sham at the early time points (P < 0.05 each). There were no significant differences in central venous pressure or pulmonary capillary wedge pressure between groups. Pulmonary neutrophil infiltration, as defined by neutrophil antibody staining on lung samples, was greater in the shock groups regardless of resuscitation fluid (P < 0.05 each). Bronchoalveolar lavage fluid neutrophil levels were not different between groups. There were no differences in levels of porcine surfactant protein D between groups at any time points, and the levels did not change over time in each respective group. CONCLUSIONS: Our study demonstrates the reproducibility of a porcine model of hemorrhagic shock that is consistent with physiologic changes in humans in hemorrhagic shock. Pulmonary neutrophil infiltration may serve as an early marker for ALI; however, the practicality of this finding has yet to be determined.


Subject(s)
Acute Lung Injury/diagnosis , Neutrophils/immunology , Shock, Hemorrhagic/complications , Acute Lung Injury/immunology , Acute Lung Injury/physiopathology , Acute Lung Injury/prevention & control , Animals , Blood Transfusion , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cardiac Output/immunology , Disease Models, Animal , Female , Heart Rate/immunology , Humans , Lung/cytology , Lung/immunology , Lung/pathology , Neutrophil Infiltration , Predictive Value of Tests , Prognosis , Pulmonary Surfactant-Associated Protein D/analysis , Pulmonary Surfactant-Associated Protein D/immunology , Pulmonary Surfactant-Associated Protein D/metabolism , Reproducibility of Results , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Resuscitation/methods , Shock, Hemorrhagic/immunology , Shock, Hemorrhagic/therapy , Sus scrofa , Time Factors
19.
Cytometry A ; 95(11): 1167-1177, 2019 11.
Article in English | MEDLINE | ID: mdl-31595661

ABSTRACT

Severe injury and hemorrhagic shock (HS) result in multiple changes to hematopoietic differentiation, which contribute to the development of immunosuppression and multiple organ failure (MOF). Understanding the changes that take place during the acute injury phase may help predict which patients will develop MOF and provide potential targets for therapy. Obtaining bone marrow from humans during the acute injury phase is difficult so published data are largely derived from peripheral blood samples, which infer bone marrow changes that reflect the sustained inflammatory response. This preliminary and opportunistic study investigated leucopoietic changes in rat bone marrow 6 h following traumatic injury and HS. Terminally anesthetized male Porton Wistar rats were allocated randomly to receive a sham operation (cannulation with no injury) or femoral fracture and HS. Bone marrow cells were flushed from rat femurs and immunophenotypically stained with specific antibody panels for lymphoid (CD45R, CD127, CD90, and IgM) or myeloid (CD11b, CD45, and RP-1) lineages. Subsequently, cell populations were fluorescence-activated cell sorted for morphological assessment. Stage-specific cell populations were identified using a limited number of antibodies, and leucopoietic changes were determined 6 h following trauma and HS. Myeloid subpopulations could be identified by varying levels CD11b expression, CD45, and RP-1. Trauma and HS resulted in a significant reduction in total CD11b + myeloid cells including both immature (RP-1(-)) and mature (RP-1+) granulocytes. Multiple B-cell lymphoid subsets were identified. The total percentage of CD90+ subsets remained unchanged following trauma and HS, but there was a reduction in the numbers of maturing CD90(-) cells suggesting movement into the periphery. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Bone Marrow Cells/cytology , Femoral Fractures/immunology , Hematopoietic Stem Cells/cytology , Shock, Hemorrhagic/immunology , Wounds and Injuries/immunology , Animals , Antimicrobial Cationic Peptides/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CD11b Antigen/metabolism , Cell Lineage/immunology , Flow Cytometry , Granulocytes/cytology , Granulocytes/metabolism , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Immunophenotyping , Inflammation/immunology , Inflammation/metabolism , Leukocyte Common Antigens/metabolism , Lymphopoiesis/immunology , Male , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Myeloid Cells/cytology , Myeloid Cells/metabolism , Rats , Rats, Wistar , Shock, Hemorrhagic/metabolism , Thy-1 Antigens/metabolism , Wounds and Injuries/metabolism
20.
PLoS One ; 14(7): e0219211, 2019.
Article in English | MEDLINE | ID: mdl-31276543

ABSTRACT

OBJECTIVE: Asphyxia of newborns is a severe and frequent challenge of the peri- and postnatal period. The purpose of this study was to study early morphological, immunological and structural alterations in lung tissue after asphyxia and hemorrhage (AH). METHODS: 44 neonatal piglets (age 32 hrs) underwent asphyxia and hemorrhage (AH) and were treated according to the international liaison committee of resuscitation (ILCOR) guidelines. For this study, 15 piglets (blood transfusion (RBC) n = 9; NaCl n = 6, mean age 31 hrs) were randomly picked. 4 hours after ROSC (return of spontaneous circulation), lung tissue and blood samples were collected. RESULTS: An elevation of myeloperoxidase (MPO) activity was observed 4 hrs after AH accompanied by an increase of surfactant D after RBC treatment. After AH tight junction proteins Claudin 18 and junctional adhesion molecule 1 (JAM1) were down-regulated, whereas Occludin was increased. Furthermore, after AH and RBC treatment dephosphorylated active form of Connexin 43 was increased. CONCLUSIONS: AH in neonatal pigs is associated with early lung injury, inflammation and alterations of tight junctions (Claudin, Occludin, JAM-1) and gap junctions (Connexin 43) in lung tissue, which contributes to the development of lung edema and impaired function.


Subject(s)
Asphyxia Neonatorum/physiopathology , Lung Injury/physiopathology , Lung/physiopathology , Animals , Animals, Newborn/metabolism , Asphyxia/physiopathology , Asphyxia Neonatorum/metabolism , Cell Adhesion Molecules/metabolism , Claudins/metabolism , Connexin 43/metabolism , Disease Models, Animal , Gap Junctions , Lung Injury/metabolism , Occludin/metabolism , Peroxidase/analysis , Pulmonary Surfactant-Associated Protein D/analysis , Shock, Hemorrhagic/immunology , Shock, Hemorrhagic/metabolism , Swine , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...