Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.164
Filter
1.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731513

ABSTRACT

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Subject(s)
Aluminum Oxide , Fibroins , Nanoparticles , Ultraviolet Rays , Fibroins/chemistry , Nanoparticles/chemistry , Aluminum Oxide/chemistry , Animals , Bombyx , Hot Temperature , Humans , Silk/chemistry
2.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732243

ABSTRACT

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Subject(s)
Electric Conductivity , Indoles , Ink , Nanotubes, Carbon , Polymers , Silk , Indoles/chemistry , Polymers/chemistry , Silk/chemistry , Nanotubes, Carbon/chemistry , Textiles , Hydrophobic and Hydrophilic Interactions
3.
Methods Mol Biol ; 2800: 147-165, 2024.
Article in English | MEDLINE | ID: mdl-38709483

ABSTRACT

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Fluorescence Resonance Energy Transfer/methods , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Single Molecule Imaging/methods , Animals , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Silk/chemistry
4.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38690985

ABSTRACT

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Subject(s)
Fibroins , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Porosity , Animals , Humans , Fibroins/chemistry , Bombyx , Biocompatible Materials/chemistry , Silk/chemistry
5.
J Mol Model ; 30(5): 156, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693294

ABSTRACT

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Subject(s)
Cellulose , Hydrogen Bonding , Molecular Dynamics Simulation , Silk , Spiders , Cellulose/chemistry , Spiders/chemistry , Animals , Silk/chemistry , Adsorption , Protein Binding , Fibroins/chemistry
6.
BMC Genomics ; 25(1): 472, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745159

ABSTRACT

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Subject(s)
Silk , Animals , Silk/metabolism , Silk/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Transcriptome , Insecta/metabolism , Insecta/genetics , Fibroins/genetics , Fibroins/metabolism , Fibroins/chemistry , Proteomics/methods , Proteome , Gene Expression Profiling
7.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632231

ABSTRACT

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Subject(s)
Fibroins , Silk , Humans , Silk/chemistry , Textiles , Electric Conductivity , Fibroins/chemistry , Touch
8.
Nat Commun ; 15(1): 3485, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664427

ABSTRACT

Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m-3 to 0.53 GPa and 700 MJ m-3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.


Subject(s)
Nanofibers , Polyelectrolytes , Silk , Spiders , Animals , Nanofibers/chemistry , Spiders/chemistry , Silk/chemistry , Polyelectrolytes/chemistry , Tensile Strength , Muscles , Biomimetic Materials/chemistry
9.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38597279

ABSTRACT

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Subject(s)
Electronics , Humans , Animals , Biocompatible Materials/chemistry , Silk/chemistry , Fibroins/chemistry , Wearable Electronic Devices , Optics and Photonics , Bombyx
10.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38587986

ABSTRACT

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Subject(s)
Fibroins , Peptides , Tensile Strength , Fibroins/chemistry , Fibroins/genetics , Peptides/chemistry , Silk/chemistry , Animals , Amino Acid Motifs , Nanofibers/chemistry , Spiders/chemistry
11.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663278

ABSTRACT

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Subject(s)
Glycerol , Magnesium , Wound Healing , Wound Healing/drug effects , Animals , Glycerol/chemistry , Glycerol/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Mice , Silk/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Bandages , Humans , Rats , Nanofibers/chemistry , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Male , Human Umbilical Vein Endothelial Cells , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives
12.
Int J Biol Macromol ; 267(Pt 2): 131608, 2024 May.
Article in English | MEDLINE | ID: mdl-38621558

ABSTRACT

Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.


Subject(s)
Oximes , Silk , Uranium , Uranium/chemistry , Adsorption , Oximes/chemistry , Silk/chemistry , Fibroins/chemistry
13.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527207

ABSTRACT

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Subject(s)
Platinum , Wound Infection , Humans , Platinum/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/chemistry , Bacteria , Hydrogels/pharmacology
14.
Int J Biol Macromol ; 264(Pt 2): 130687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462112

ABSTRACT

Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.


Subject(s)
Bombyx , Fibroins , Animals , Fibroins/pharmacology , Fibroins/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Peptides/pharmacology , Peptides/chemistry , Bombyx/chemistry , Apoptosis , Silk/chemistry
15.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 687-704, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545971

ABSTRACT

Spider silk is a natural fiber known as "biosteel" with the strongest composite performance, such as high tensile strength and toughness. It is also equipped with excellent biocompatibility and shape memory ability, thus shows great potential in many fields such as biomedicine and tissue engineering. Spider silk is composed of macromolecular spidroin with rich structural diversity. The characteristics of the primary structure of natural spidroin, such as the high repeatability of amino acids in the core repetitive region, the high content of specific amino acids, the large molecular weight, and the high GC content of the spidroin gene, have brought great difficulties in heterologous expression. This review discusses focuses on the relationship between the featured motifs of the microcrystalline region in the repetitive unit of spidroin and its structure, as well as the spinning performance and the heterologous expression. The optimization design for the sequence of spidroin combined with heterologous expression strategy has greatly promoted the development of the biosynthesis of spider silk proteins. This review may facilitate the rational design and efficient synthesis of recombinant spidroin.


Subject(s)
Fibroins , Spiders , Animals , Silk/genetics , Silk/chemistry , Fibroins/genetics , Fibroins/chemistry , Arthropod Proteins , Biocompatible Materials , Amino Acids , Spiders/genetics
16.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542528

ABSTRACT

Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms.


Subject(s)
Fibroins , Spiders , Animals , Fibroins/chemistry , Proteomics , Tandem Mass Spectrometry , Silk/chemistry , Recombinant Proteins/chemistry , Bacteria , Spiders/genetics
17.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474537

ABSTRACT

Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.


Subject(s)
Silk , Spiders , Repetitive Sequences, Nucleic Acid , Silk/chemistry , Animals
18.
J Microbiol Methods ; 220: 106923, 2024 May.
Article in English | MEDLINE | ID: mdl-38521504

ABSTRACT

BACKGROUND: Infections resulting from surgical procedures and wound closures continue to pose significant challenges in healthcare settings. To address this issue, the investigators have developed antibacterial non-resorbable braided silk sutures using in situ deposited silver nanoparticles (AgNPs) and investigated their efficacy in eradicating Staphylococcus aureus and Streptococcus mutans infections. METHODS: The braided silk sutures were modified through a simple and efficient in situ photoreduction method, resulting in the uniform distribution of AgNPs along the suture surface. The synthesized AgNPs were characterized using scanning electron microscopy (SEM), dynamic light scattering analysis (DLS) and Fourier Transform Infrared Spectroscopy analysis (FTIR) confirming their successful integration onto the silk sutures. The antibacterial activity of the nanoparticle coated sutures were compared and evaluated with non-coated braided silk sutures through in vitro assays against both S. aureus and S. mutans. RESULTS: The surface and cross-sectional analysis of the treated sutures revealed a uniform and homogeneous distribution of silver particles achieved through the photoreduction of silver solution. This observation confirms the successful coating of silver nanoparticles (AgNPs) on the sutures. The antimicrobial studies conducted, demonstrated significant reductions in bacterial colonies when exposed to the silver nanoparticle-coated sutures. Notably, the width of the inhibition zone surrounding the coated sutures remained consistently wide and stable for duration up to 7 days. This sustained and robust inhibitory effect against gram-positive bacteria, specifically S. aureus and S. mutans, serves as strong evidence of the antibacterial efficacy of the coated sutures. CONCLUSION: The coating of silk sutures with AgNPs provided a significant and effective antibacterial capacity to the surgical sutures, with this activity being sustained for a period of 7 days. This suggests that AgNPs-in situ photoreduction deposited sutures have the potential to effectively manage S. aureus and S. mutans infections.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Staphylococcus aureus , Metal Nanoparticles/chemistry , Streptococcus mutans , Cross-Sectional Studies , Sutures/microbiology , Anti-Bacterial Agents/pharmacology , Silk/chemistry , Silk/pharmacology , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
19.
Int J Biol Macromol ; 266(Pt 1): 131140, 2024 May.
Article in English | MEDLINE | ID: mdl-38537864

ABSTRACT

Conventional textile dyeing relies on the use of dyes and pigments, which can cause severe environmental contamination and waste a large amount of water. Structural coloring is one of the effective ways to achieve environmentally friendly coloring of textiles. In this work, three plant polyphenols with the same o-benzenetriol structure (tannic acid (TA), gallic acid (GA), and tea polyphenol (TP)) were selected as raw materials. Three plant polyphenols can quickly form nanofilms at the gas-liquid interface through a Schiff base reaction with polyethyleneimine (PEI) under mildly alkaline conditions, which were deposited to the surface of silk fabric, allowing precise control over the thickness of film by adjusting the time, resulting in various structurally colored silk fabric. This method for creating structural colors is not substrate-specific and enables the quick production of structural colors on various textile substrates. Furthermore, the structural color silk fabric based on plant polyphenol has antibacterial performance. This textile coloring method is simple, cost-effective and environmentally friendly, providing a new approach to eco-friendly textile dyeing.


Subject(s)
Color , Polyphenols , Silk , Textiles , Polyphenols/chemistry , Silk/chemistry , Coloring Agents/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
20.
Sci Rep ; 14(1): 4428, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395958

ABSTRACT

Controlled release of proteins, such as growth factors, from biocompatible silk fibroin (SF) hydrogel is valuable for its use in tissue engineering, drug delivery, and other biological systems. To achieve this, we introduced silk fibroin-mimetic peptides (SFMPs) with the repeating unit (GAGAGS)n. Using green fluorescent protein (GFP) as a model protein, our results showed that SFMPs did not affect the GFP function when conjugated to it. The SFMP-GFP conjugates incorporated into SF hydrogel did not change the gelation time and allowed for controlled release of the GFP. By varying the length of SFMPs, we were able to modulate the release rate, with longer SFMPs resulting in a slower release, both in water at room temperature and PBS at 37 °C. Furthermore, the SF hydrogel with the SFMPs showed greater strength and stiffness. The increased ß-sheet fraction of the SF hydrogel, as revealed by FTIR analysis, explained the gel properties and protein release behavior. Our results suggest that the SFMPs effectively control protein release from SF hydrogel, with the potential to enhance its mechanical stability. The ability to modulate release rates by varying the SFMP length will benefit personalized and controlled protein delivery in various systems.


Subject(s)
Fibroins , Fibroins/chemistry , Hydrogels/chemistry , Delayed-Action Preparations , Peptides , Drug Delivery Systems , Silk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...