Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
J Microbiol Methods ; 220: 106923, 2024 May.
Article in English | MEDLINE | ID: mdl-38521504

ABSTRACT

BACKGROUND: Infections resulting from surgical procedures and wound closures continue to pose significant challenges in healthcare settings. To address this issue, the investigators have developed antibacterial non-resorbable braided silk sutures using in situ deposited silver nanoparticles (AgNPs) and investigated their efficacy in eradicating Staphylococcus aureus and Streptococcus mutans infections. METHODS: The braided silk sutures were modified through a simple and efficient in situ photoreduction method, resulting in the uniform distribution of AgNPs along the suture surface. The synthesized AgNPs were characterized using scanning electron microscopy (SEM), dynamic light scattering analysis (DLS) and Fourier Transform Infrared Spectroscopy analysis (FTIR) confirming their successful integration onto the silk sutures. The antibacterial activity of the nanoparticle coated sutures were compared and evaluated with non-coated braided silk sutures through in vitro assays against both S. aureus and S. mutans. RESULTS: The surface and cross-sectional analysis of the treated sutures revealed a uniform and homogeneous distribution of silver particles achieved through the photoreduction of silver solution. This observation confirms the successful coating of silver nanoparticles (AgNPs) on the sutures. The antimicrobial studies conducted, demonstrated significant reductions in bacterial colonies when exposed to the silver nanoparticle-coated sutures. Notably, the width of the inhibition zone surrounding the coated sutures remained consistently wide and stable for duration up to 7 days. This sustained and robust inhibitory effect against gram-positive bacteria, specifically S. aureus and S. mutans, serves as strong evidence of the antibacterial efficacy of the coated sutures. CONCLUSION: The coating of silk sutures with AgNPs provided a significant and effective antibacterial capacity to the surgical sutures, with this activity being sustained for a period of 7 days. This suggests that AgNPs-in situ photoreduction deposited sutures have the potential to effectively manage S. aureus and S. mutans infections.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Staphylococcus aureus , Metal Nanoparticles/chemistry , Streptococcus mutans , Cross-Sectional Studies , Sutures/microbiology , Anti-Bacterial Agents/pharmacology , Silk/chemistry , Silk/pharmacology , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
2.
Nanoscale Horiz ; 9(4): 609-619, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38288551

ABSTRACT

Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.


Subject(s)
Anti-Infective Agents , Microgels , Selenium , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Silk/pharmacology , Selenium/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Fungi , Mammals
3.
Int J Biol Macromol ; 260(Pt 2): 129454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237836

ABSTRACT

Persistent bleeding and the absence of alveolar bone stress following tooth loss can hinder socket healing, complicating future dental implant procedures, and potentially leading to neighboring tooth instability. Therefore, developing materials that promote alveolar bone regeneration and possess both hemostatic and osteogenic properties is crucial for preserving the extraction sites. This study introduces a silk-based laponite composite scaffold material with proficient hemostatic and osteogenic functions, and excellent shape-memory properties for efficient extraction- site filling. In vitro studies research demonstrated that the scaffold's inherent negative charge of the scaffold significantly enhanced blood coagulation and thrombin generation. Moreover, its porous structure and slightly rough inner surface promoted blood cell adhesion and, improved the hemostatic performance. Furthermore, the scaffold facilitated stem cell osteogenic differentiation by activating the TRPM7 channel through the released of magnesium ions. In vivo tests using rat models confirmed its effectiveness in promoting coagulation and mandibular regeneration. Thus, this study proposes a promising approach for post-extraction alveolar bone regenerative repair. The composite scaffold material, with its hemostatic and osteogenic capabilities and shape-memory features, can potentially enhance dental implant success and overall oral health.


Subject(s)
Dental Implants , Hemostatics , Silicates , Rats , Animals , Osteogenesis , Silk/pharmacology , Hemostatics/pharmacology , Bone Regeneration , Tooth Extraction
4.
Front Endocrinol (Lausanne) ; 14: 1232132, 2023.
Article in English | MEDLINE | ID: mdl-38111708

ABSTRACT

Introduction: The pathogenesis of diabetic nephropathy (DN) is complex, inflammation is the central link among the inducing factors in the existing research, and the gutkidney axis could scientifically explain the reasons for the accumulation of chronic low-grade inflammation. As both a medicine and food, corn silk contains abundant polysaccharides. Historical studies and modern research have both confirmed its intervention effect on diabetes and DN, but the mechanism of action is unclear. Methods: In this study, a DN rat model was generated, and the therapeutic effect of corn silk polysaccharides (CSPs) was evaluated based on behavioral, histopathological and biochemical indicators. We attempted to fully understand the interactions between CSPs, the gut microbiota and the host at the systemic level from a gut microbiota metabolomics perspective to fundamentally elucidate the mechanisms of action that can be used to intervene in DN. Results: Research has found that the metabolic pathways with a strong correlation with CSPs were initially identified as glycerophosphate, fatty acid, bile acid, tyrosine, tryptophan and phenylalanine metabolism and involved Firmicutes, Bacteroides, Lachnospiraceae-NK4A136- group and Dubosiella, suggesting that the effect of CSPs on improving DN is related to changes in metabolite profiles and gut microbiota characteristics. Discussion: CSPs could be harnessed to treat the abnormal metabolism of endogenous substances such as bile acids and uremic toxins caused by changes in gut microbiota, thus alleviating kidney damage caused by inflammation. In view of its natural abundance, corn silk is safe and nontoxic and can be used for the prevention and treatment of diabetes and DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Gastrointestinal Microbiome , Rats , Animals , Diabetic Nephropathies/pathology , Zea mays , Ecosystem , Inflammation , Homeostasis , Polysaccharides/therapeutic use , Polysaccharides/pharmacology , Silk/pharmacology , Silk/therapeutic use
5.
Pestic Biochem Physiol ; 196: 105586, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945223

ABSTRACT

Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.


Subject(s)
Bombyx , Animals , Bombyx/physiology , Silk/genetics , Silk/metabolism , Silk/pharmacology , Apoptosis , Larva/metabolism , Autophagy , Juvenile Hormones/pharmacology , Juvenile Hormones/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
6.
ACS Appl Mater Interfaces ; 15(42): 49035-49050, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823272

ABSTRACT

Bioadhesives have been widely used in hemostasis and tissue repair, but the overmoist and wet nature of wound surface (due to the presence of blood and/or wound exudate) has led to poor wet adhesion of bioadhesives, which interrupts the continuous care of wounds. Here, a thirsty polyphenolic silk granule (Tan@SF-pwd-hydro), which absorbs blood and exudate to self-convert to robust bioadhesives (Tan@SF-gel-hydro) in situ, was facilely developed in this study for enhanced wet adhesion toward hemostasis and tissue repair. Tan@SF-pwd-hydro could shield wounds' wetness and immediately convert itself to Tan@SF-gel-hydro to seal wounds for hemorrhage control and wound healing. The maximum adhesiveness of Tan@SF-gel-hydro over wet pigskin was as high as 59.8 ± 2.1 kPa. Tan@SF-pwd-hydro is a promising transformative dressing for hemostasis and tissue repair since its hemostatic time was approximately half of that of the commercial hemostatic product, CeloxTM, and its healing period was much shorter than that of the commercial bioadhesive product, TegadermTM. This pioneering study utilized adverse wetness over wounds to arouse robust adhesiveness by converting thirsty granules to bioadhesives in situ, creatively turning adversity into opportunities. The facile fabrication approach also offers new perspectives for manufacturing sustainability of biomaterials.


Subject(s)
Hemostatics , Wound Healing , Humans , Hemostasis , Hemostatics/pharmacology , Hemostatics/therapeutic use , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Silk/pharmacology , Tissue Adhesions
7.
Int J Biol Macromol ; 253(Pt 6): 127246, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797862

ABSTRACT

Developing biocompatible, magnetically controlled polymers is a multifunctional solution to many surgical complications. By combining nanoparticle technology with the latest advancements in polymer materials science, we created a multicomponent hybrid system comprised of a robust native spider silk-based matrix; a Mn0.9Zn0.1Fe2O4 nanoparticles coating to provide a controlled thermal trigger for drug release; and liposomes, which act as drug carriers. Fluorescent microscope images show that the dye loaded into the liposomes is released when the system is exposed to an alternating magnetic field due to heating of ferromagnetic nanoparticles, which had a low Curie temperature (40-46°Ð¡). The silk matrix also demonstrated outstanding biocompatibility, creating a favorable environment for human postnatal fibroblast cell adhesion, and paving the way for their directed growth. This paper describes a complex approach to cartilage regeneration by developing a spider silk-based scaffold with anatomical mechanical properties for controlled drug delivery in a multifunctional autologous matrix-induced chondrogenesis.


Subject(s)
Liposomes , Silk , Humans , Silk/pharmacology , Cartilage , Drug Delivery Systems , Drug Carriers , Tissue Scaffolds
8.
Am J Dent ; 36(4): 163-171, 2023 08.
Article in English | MEDLINE | ID: mdl-37587025

ABSTRACT

PURPOSE: To present the antibacterial effect of new generation boron-doped carbon quantum dots (B-CQD) and compare the antibacterial effect of silk sericin (SS), hydrolyzed silk peptide (HSP) and SS/HSP coated silver nanoparticle (AgNP) and B-CQDs on titanium alloy (Ti) surfaces. METHODS: SS and HSP were formed on the surface of the Ti alloy (Ti-SS/HSP). Different concentrations of citric acid and boric acid, B-CQDs and AgNP were attached to Ti-SS/HSP surfaces. To characterize all samples, Fourier Transform Infrared (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses were performed. Their antibacterial potential was analyzed against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Pseudomonas aeruginosa (P. aeruginosa) with Mueller-Hinton Test. One-way ANOVA was used to assess any difference between groups. P< 0.05 was considered statistically significant. RESULTS: No antibacterial activity was detected for Ti and SS/HSP. Inhibition holes ranged from 11 mm to 25.7±3.2 mm and 11 mm to 26.3±0.6 mm in the S. aureus and P. aeruginosa cultures respectively, showing that AgNP was the molecule which had the least antibacterial effect regardless of type of bound silk protein on both bacteria, and B-CQD had antibacterial superiority against S. aureus and P. aeruginosa on Ti-SS surfaces. CLINICAL SIGNIFICANCE: The application of boron-doped carbon quantum dots to titanium alloy surfaces is a new approach for the development of a powerful bactericidal method to prevent implant failures.


Subject(s)
Metal Nanoparticles , Quantum Dots , Silk/pharmacology , Boron , Staphylococcus aureus , Titanium/pharmacology , Silver/pharmacology , Alloys , Anti-Bacterial Agents/pharmacology , Carbon
9.
Int J Biol Macromol ; 253(Pt 1): 126602, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37652316

ABSTRACT

Electrospinning is an advanced method used for developing wound dressings. Biopolymer-based electrospun mats have been extensively studied in tissue engineering due to their similarity to the extracellular matrix. In this study, electrospun poly(vinyl alcohol)/chitosan/silk fibroin (PChS) mat demonstrated improved mechanical properties, including tensile strength, strain at break, and Young's modulus, compared to electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/chitosan mats. Similarly, the swelling capability, thermal stability, and hydrophilicity were higher in the PChS mat compared to the other ones. Hence, the PChS mat was selected for further investigation. Ciprofloxacin (CIP) was added to the PChS electrospinning solution at 5 % and 10 % concentration, and deferoxamine (DFO) was immobilized on CIP-loaded mats at 1 and 2 g/L concentration using a polydopamine linker. Evaluating mats with the dimensions of 1 × 1 cm2 showed that those containing 5 % and 10 % CIP exhibited bactericidal activity against Escherichia coli and Staphylococcus aureus. Moreover, Human dermal fibroblast cells were compatible with the fabricated mats, as confirmed by the MTT assay. Finally, drug-loaded mats had a positive effect on wound healing in a scratch test, and mats with 10 % CIP and 2 g/L DFO showed the highest effect on promoting wound healing, indicating potential for use as a wound dressing.


Subject(s)
Chitosan , Nanofibers , Humans , Ciprofloxacin/pharmacology , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Deferoxamine/pharmacology , Silk/pharmacology , Polyvinyl Alcohol/pharmacology , Wound Healing
10.
J Sci Food Agric ; 103(15): 7673-7682, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37431698

ABSTRACT

BACKGROUND: Cold storage has been widely used to maintain the quality of vegetables, but whether eating cold-stored vegetables affects health remains unknown. RESULTS: This study used silkworms as an animal model to evaluate the effects of nutrient changes in cold-stored mulberry leaves (CSML) on health. Compared with fresh mulberry leaves (FML), CSML contained lower vitamin C, soluble sugars and proteins, and higher H2 O2 , suggesting decreased antioxidant ability and nutrition. The CSML did not obviously affect larval survival rate, body weight or dry matter rate, cocoon shape, weight and size, or final rates of cluster and cocooning relative to the FML, suggesting CSML did not alter overall growth and development. However, the CSML increased the initial rates of cluster and cocooning and upregulated BmRpd3, suggesting CSML shortened larval lifespan and enhanced senescence. CSML upregulated BmNOX4, downregulated BmCAT, BmSOD and BmGSH-Px and increased H2 O2 in silkworms, suggesting CSML caused oxidative stress. CSML upregulated ecdysone biosynthesis and inactivation genes and elevated ecdysone concentration in silkworms, suggesting that CSML affected hormone homeostasis. CSML upregulated apoptosis-related genes, downregulated sericin and silk fibroin genes and decreased sericin content rate in silkworms, suggesting oxidative stress and protein deficiency. CONCLUSION: Cold storage reduced nutrition and antioxidant capability of mulberry leaves. CSML did not influence growth and development of silkworm larva, but affected health by causing oxidative stress and reducing protein synthesis. The findings show that the ingredient changes in CSML had negative effects on health of silkworms. © 2023 Society of Chemical Industry.


Subject(s)
Bombyx , Morus , Sericins , Animals , Bombyx/genetics , Bombyx/chemistry , Silk/metabolism , Silk/pharmacology , Morus/chemistry , Larva , Antioxidants/metabolism , Ecdysone/metabolism , Ecdysone/pharmacology , Fluorometholone/metabolism , Fluorometholone/pharmacology
11.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298428

ABSTRACT

In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 µg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 µg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.


Subject(s)
Escherichia coli O157 , Metal Nanoparticles , Sericins , Gold/pharmacology , Gold/chemistry , Monophenol Monooxygenase , Sericins/pharmacology , Sericins/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Bacteria , Silk/pharmacology , Microbial Sensitivity Tests
12.
Acta Biomater ; 164: 159-174, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37121370

ABSTRACT

A three-dimensional (3D) artificial skin model offers diverse platforms for skin transplantation, disease mechanisms, and biomaterial testing for skin tissue. However, implementing physiological complexes such as the neurovascular system with living cells in this stratified structure is extremely difficult. In this study, full-thickness skin models were fabricated from methacrylated silk fibroin (Silk-GMA) and gelatin (Gel-GMA) seeded with keratinocytes, fibroblasts, and vascular endothelial cells representing the epidermis and dermis layers through a digital light processing (DLP) 3D printer. Printability, mechanical properties, and cell viability of the skin hydrogels fabricated with different concentrations of Silk-GMA and Gel-GMA were analyzed to find the optimal concentrations for the 3D printing of the artificial skin model. After the skin model was DLP-3D printed using Gel-GMA 15% + Silk-GMA 5% bioink, cultured, and air-lifted for four weeks, well-proliferated keratinocytes and fibroblasts were observed in histological analysis, and increased expressions of Cytokeratin 13, Phalloidin, and CD31 were noted in immunofluorescence staining. Furthermore, full-thickness skin wound models were 3D-printed to evaluate the wound-healing capabilities of the skin hydrogel. When the epidermal growth factor (EGF) was applied, enhanced wound healing in the epidermis and dermis layer with the proliferation of keratinocytes and fibroblasts was observed. Also, the semi-quantitative reverse transcription-polymerase chain reaction revealed increased expression of Cytokeratin 13, fibroblast growth factor, and CD31 in the EGF-treated group relative to the control group. The DLP 3D-printed artificial skin model was mechanically stable and biocompatible for more than four weeks, demonstrating the potential for application in skin tissue engineering. STATEMENT OF SIGNIFICANCE: A full-thickness artificial skin model was 3D-printed in this study with a digital light processing technique using silk fibroin and gelatin, which mimics the structural and cellular compositions of the human skin. The 3D-printed skin hydrogel ensured the viability of the cells in the skin layers that proliferated well after air-lifting cultivation, shown in the histological analysis and immunofluorescence stainings. Furthermore, full-thickness skin wound models were 3D-printed to evaluate the wound healing capabilities of the skin hydrogel, which demonstrated enhanced wound healing in the epidermis and dermis layer with the application of epidermal growth factor on the wound compared to the control. The bioengineered hydrogel expands the applicability of artificial skin models for skin substitutes, wound models, and drug testing.


Subject(s)
Fibroins , Skin, Artificial , Humans , Fibroins/pharmacology , Fibroins/chemistry , Keratin-13 , Epidermal Growth Factor , Gelatin/pharmacology , Endothelial Cells , Tissue Engineering/methods , Silk/pharmacology , Hydrogels/pharmacology , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
13.
Turk J Med Sci ; 53(1): 58-67, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36945964

ABSTRACT

BACKGROUND: People have used many natural materials such as plant leaves, roots, liquids derived from plants, and animal products to treat wounds throughout history. It can be said that the research on wound care in recent years have focused on traditional and natural products again. This study aimed to investigate the effects of sweetgum oil, propolis, silk protein, and Ankaferd Blood Stopper (ABS) on wound healing in an experimental excisional wound model. METHODS: : Including 36 Balb/c inbreed mice in the study were divided equally into four groups. Two circular excisional wounds were created on the dorsal skin of mice under anesthesia using a punch biopsy device. The wounds of the first group of mice were topically dressed with sweetgum oil, the second group mice with propolis, the third group mice with silk protein, and the fourth group mice with ABS daily. Tissue samples were taken from the wounds of mice on the 7th and 14th day of wound formation, and histological examinations were performed. On the 14th day, the wounds created in all mice were healed, and the experiment was terminated. RESULTS: Mice in the silk protein group had faster wound healing. There was no statistical difference between the groups in immunohistochemical examinations. In the ABS group, the findings of the inflammatory process were more prominent. DISCUSSION: In conclusions, propolis, sweetgum oil, silk protein, and ABS positively affect different parameters in wound healing and support wound healing.


Subject(s)
Hemostatics , Propolis , Mice , Animals , Propolis/pharmacology , Propolis/therapeutic use , Wound Healing , Skin/pathology , Hemostatics/pharmacology , Hemostatics/therapeutic use , Silk/pharmacology
14.
Drug Deliv Transl Res ; 13(6): 1828-1841, 2023 06.
Article in English | MEDLINE | ID: mdl-36964440

ABSTRACT

Allergen-specific immunotherapy (SIT) is a desirable way of therapy for various allergic diseases such as food allergy (FA). However, frequent visits for more than 3 years and potential adverse effects often hinder patient compliance. Recently, many researchers started focusing on microneedles (MNs) as a new method for SIT. In this study, we proposed an implantable MNs system produced by a two-step casting process, consisting of OVA (antigen)-loaded silk microneedles and a dissolvable, flexible polyvinyl alcohol (PVA) pedestal. Different from PVA, silk fibroin hydrogel has preferable vaccine release ability in vivo and in vitro. Once MNs are inserted into the skin, the PVA pedestal can dissolve in the interstitial fluid of the excised skin within 5 min and implant the OVA-loaded silk microneedle tips in dermal layer as a sustained antigen depot, thus inducing long-lasting immune response for at least 2 weeks. After receiving 3 doses of MN-based immunotherapy, the immune response in OVA-sensitized mice was successfully suppressed, with no apparent side effects. Compared to conventional subcutaneous immunotherapy (total dose of 150 [Formula: see text]g), MN immunotherapy ameliorated systemic anaphylaxis more effectively even at a lower dose (total dose of 30 [Formula: see text]g), demonstrating the antigen dose-sparing potential of the proposed MNs. Moreover, due to the prolonged release effect of silk-PVA composite MNs, the frequency of immunotherapy can be significantly reduced. To sum up, through prolonged skin exposure to antigen, this implantable designed MN may offer a new therapeutic strategy for FA treatment with significant improvements in efficacy and convenience. Schematic illustration of silk-PVA composite microneedles, consisting of OVA (antigen)-loaded silk microneedles and a dissolvable, flexible PVA pedestal. Once inserted into the skin, the PVA pedestal can dissolve in the interstitial fluid of the excised skin within 5 min. Subsequently, the OVA-loaded silk microneedle tips were implanted in the dermal layer as a sustained antigen depot and induced long-lasting immune response. This MNs-based immunotherapy can significantly modulate the Th1/Th2 imbalance of sensitized mice.


Subject(s)
Skin , Vaccines , Mice , Animals , Immunotherapy/methods , Silk/pharmacology , Needles , Drug Delivery Systems/methods , Administration, Cutaneous
15.
Int J Biol Macromol ; 233: 123569, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36758758

ABSTRACT

The future of burn wound treatment lies in developing bioactive dressings for faster and more effective healing and regeneration. Silk fibroin (SF) hydrogels have proven regenerative abilities and are being explored as a burn wound dressing. However, unfavorable gelation conditions limit the processability and clinical application. Herein a white light-responsive photopolymerization technique was adapted for gelation via photooxidation of tyrosine. To render the gel suitable for application to irregular and non-planar burn surfaces, SF gel-incorporated dressing (SFD) was fabricated. The mild gelation conditions using white light afforded the loading of drugs for local delivery. The moisture balance ability of the dressing was confirmed by the favorable measures of swelling capacity (106 ± 1 %) and moisture retention (≈10 h). The in vitro cytocompatibility of the gel was confirmed using HaCaT cells. Finally, in vivo performance of the SFD was tested on a second-degree burn in a rodent model. The gross analysis and histological assessment revealed scarless healing in SFD-treated groups. Overall, the SFD developed in this work is shown to be a promising candidate for advanced burn wound care.


Subject(s)
Burns , Fibroins , Humans , Fibroins/pharmacology , Wound Healing , Burns/drug therapy , Burns/pathology , Hydrogels/pharmacology , Silk/pharmacology
16.
J Biomater Sci Polym Ed ; 34(12): 1643-1659, 2023 08.
Article in English | MEDLINE | ID: mdl-36745185

ABSTRACT

The similar characteristics of biomaterials to the extracellular matrix are essential for efficient tissue repair through dictating cell behaviors. But the scaffold fabrication with complex shapes and controlled alignment have proven to be a difficult task. Herein, a well-designed three-dimensional silk fibroin scaffold is fabricated through ice template technology. The effect of the silk fibroin protein concentration and the freezing temperature on the microstructure and mechanical properties of scaffolds are investigated systematically. Cells behavior mediated by the obtained silk fibroin scaffolds is detected. The results show that the protein concentration plays a vital role in microstructure and scaffold strength. A well-aligned scaffold can be obtained when silk fibroin solution is kept at 12 wt%, which holds the highest mechanical properties. The pore size can be further adjusted in the range of 5-80 µm by changing the freezing temperature from -60 to -196 °C. The well-oriented scaffold with the appropriate pore size of 10-20 µm has the best ability to guide cell alignment. The resulting scaffolds provide an excellent matrix to guide cells behaviors and have a potential application in tissue engineering.


Subject(s)
Fibroins , Fibroins/chemistry , Tissue Scaffolds/chemistry , Cell Proliferation , Tissue Engineering/methods , Biocompatible Materials/pharmacology , Silk/pharmacology
17.
Int J Biol Macromol ; 234: 123659, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796557

ABSTRACT

Repairing extensive bone defects that cannot self-heal has been a clinical challenge. The construction of scaffolds with osteogenic activity through tissue engineering can provide an effective strategy for bone regeneration. This study utilized gelatin, silk fibroin, and Si3N4 as scaffold materials to prepare silicon-functionalized biomacromolecules composite scaffolds using three-dimensional printing (3DP) technology. This system delivered positive outcomes when Si3N4 levels were 1 % (1SNS). The results showed that the scaffold had a porous reticular structure with a pore size of 600-700 µm. The Si3N4 nanoparticles were distributed uniformly in the scaffold. The scaffold could release Si ions for up to 28 days. In vitro experiments showed that the scaffold had good cytocompatibility, promoting the osteogenic differentiation of mesenchymal stem cells (MSCs). In vivo experiments on bone defects in rats showed that the 1SNS group facilitated bone regeneration. Therefore, the composite scaffold system showed potential for application in bone tissue engineering.


Subject(s)
Bioprinting , Osteogenesis , Rats , Animals , Tissue Scaffolds/chemistry , Gelatin/pharmacology , Silk/pharmacology , Silicon/pharmacology , Delayed-Action Preparations/pharmacology , Ink , Tissue Engineering/methods , Bone Regeneration , Cell Differentiation , Printing, Three-Dimensional
18.
ACS Appl Mater Interfaces ; 15(8): 10452-10463, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802477

ABSTRACT

The rapid emergence of drug-resistant bacteria and fungi poses a threat for healthcare worldwide. The development of novel effective small molecule therapeutic strategies in this space has remained challenging. Therefore, one orthogonal approach is to explore biomaterials with physical modes of action that have the potential to generate antimicrobial activity and, in some cases, even prevent antimicrobial resistance. Here, to this effect, we describe an approach for forming silk-based films that contain embedded selenium nanoparticles. We show that these materials exhibit both antibacterial and antifungal properties while crucially also remaining highly biocompatible and noncytotoxic toward mammalian cells. By incorporating the nanoparticles into silk films, the protein scaffold acts in a 2-fold manner; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while also providing a template for bacterial and fungal eradication. A range of hybrid inorganic/organic films were produced and an optimum concentration was found, which allowed for both high bacterial and fungal death while also exhibiting low mammalian cell cytotoxicity. Such films can thus pave the way for next-generation antimicrobial materials for applications such as wound healing and as agents against topical infections, with the added benefit that bacteria and fungi are unlikely to develop antimicrobial resistance to these hybrid materials.


Subject(s)
Anti-Infective Agents , Fibroins , Selenium , Animals , Silk/pharmacology , Antifungal Agents/pharmacology , Selenium/pharmacology , Fibroins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biocompatible Materials/pharmacology , Bacteria , Mammals
19.
Biotechnol Prog ; 39(3): e3331, 2023.
Article in English | MEDLINE | ID: mdl-36751979

ABSTRACT

Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria. However, both in vitro cytotoxicity (MTT) and scratch wound studies have shown that RGO/ZnO NPs and SF/PVA/RGO/ZnO NPs are not only non-toxic to NIH 3T3 fibroblasts, but also can cause cell viability, cell proliferation, and cell migration. Furthermore, improving the synthesized nanofiber's structural properties in the presence of RGO and ZnO NPs has been confirmed by performing tensile strength, contact angle, and biodegradation analyses. Also, in a cell attachment analysis, fibroblast cells had migrated and expanded well in the nanofibrous structures. Moreover, in vivo assay, SF/PVA/RGO/ZnO NPs nanofiber treated rats and has been shown significant healing activity and tissue regeneration compared with other treated groups. Therefore, this study suggests that SF/PVA/RGO/ZnO NPs nanofiber is a hopeful wound dressing for preventing bacteria growth and improving superficial wound repair.


Subject(s)
Fibroins , Nanofibers , Zinc Oxide , Rats , Animals , Fibroins/pharmacology , Fibroins/chemistry , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Nanofibers/therapeutic use , Nanofibers/chemistry , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/pharmacology
20.
ACS Appl Mater Interfaces ; 15(6): 7673-7685, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36735224

ABSTRACT

Peptides can introduce new functions to biomaterials but their immobilization usually relies on inefficient physical adsorption or tedious chemical conjugation. Using the Bombyx mori silk fibroin (SF) membrane (SFm) as a model biomaterial, here, we demonstrate a universal strategy for discovering new peptides that can "stick" to a biomaterial to functionalize it. Specifically, two peptide motifs, one screened by phage display biopanning for binding to the biomaterial (i.e., SF) and another derived from an osteogenic growth factor (i.e., bone morphogenetic protein-2), are fused into a new chimeric peptide that can bind to SFm for more efficient osteogenesis. Theoretical simulations and experimental assays confirm that the chimeric peptide binds to SF with high affinity, facilely achieving its immobilization onto SFm. The peptide enables SFm to effectively induce osteogenic differentiation of human mesenchymal stem cells (MSCs) even without other osteogenic inducers and efficiently stimulate bone regeneration in a subcutaneous rat model in 8 weeks, even without MSC seeding, while not causing inflammatory responses. Since biomaterial-binding peptides can be readily screened using phage display and functional peptides can be generated from growth factors, our work suggests a universal strategy for combining them to seek new peptides for binding and functionalizing biomaterials.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Humans , Rats , Animals , Osteogenesis , Biocompatible Materials/pharmacology , Fibroins/pharmacology , Peptides/pharmacology , Cell Differentiation , Silk/pharmacology , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...