Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Clin Exp Pharmacol Physiol ; 51(6): e13856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621772

ABSTRACT

Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of ß-catenin in cytosol, and the localization of ß-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/ß-catenin signalling pathway.


Subject(s)
Colorectal Neoplasms , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Cell Line, Tumor , beta Catenin/metabolism , Proteomics , Wnt Signaling Pathway , Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Movement
2.
Inflamm Res ; 73(3): 415-432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265688

ABSTRACT

BACKGROUND: Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS: The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS: MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS: MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Mitochondrial Diseases , Sirtuin 3 , Synoviocytes , Animals , Rats , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , Inflammation/metabolism , Mammals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , TOR Serine-Threonine Kinases/metabolism
3.
J Agric Food Chem ; 72(4): 2362-2373, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38236060

ABSTRACT

Ginsenoside Rg1 (Rg1) is the main bioactive ginseng component. This study investigates the effects of Rg1 on cognitive deficits triggered by chronic sleep deprivation stress (CSDS) and explores its underlying mechanisms. Rg1 effectively improved spatial working and recognition memory, as evidenced by various behavioral tests. RNA-sequence analysis revealed differential gene expression in the metabolic pathway. Treatment with Rg1 abrogated reductions in SOD and CAT activity, lowered MDA content, and increased Nrf2 and HO-1 protein levels. Rg1 administration alleviated hippocampal mitochondrial dysfunction by restoring normal ultrastructure and enhancing ATP activities and Mfn2 expression while regulating Drp-1 expression. Rg1 mitigated neuronal apoptosis by reducing the Bax/Bcl-2 ratio and the levels of cleaved caspase-3. Additionally, Rg1 upregulated AMPK and SIRT3 protein expressions. These findings suggest that Rg1 has potential as a robust intervention for cognitive dysfunction associated with sleep deprivation, acting through the modulation of mitochondrial function, oxidative stress, apoptosis, and the AMPK-SIRT3 axis.


Subject(s)
Ginsenosides , Mitochondrial Diseases , Sirtuin 3 , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/genetics , Ginsenosides/chemistry , Hippocampus/metabolism , Apoptosis
4.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 81-91, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37367995

ABSTRACT

PURPOSES: This work aimed to assess the possible role of TRIM25 in regulating hyperglycemia-induced inflammation, senescence, and oxidative stress in retinal microvascular endothelial cells, all of which exert critical roles in the pathological process of diabetic retinopathy. METHODS: The effects of TRIM25 were investigated using streptozotocin-induced diabetic mice, human primary retinal microvascular endothelial cells cultured in high glucose, and adenoviruses for TRIM25 knockdown and overexpression. TRIM25 expression was evaluated by western blot and immunofluorescence staining. Inflammatory cytokines were detected by western blot and quantitative real-time PCR. Cellular senescence level was assessed by detecting senescent marker p21 and senescence-associated-ß-galactosidase activity. The oxidative stress state was accessed by detecting reactive oxygen species and mitochondrial superoxide dismutase. RESULTS: TRIM25 expression is elevated in the endothelial cells of the retinal fibrovascular membrane from diabetic patients compared with that of the macular epiretinal membrane from non-diabetic patients. Moreover, we have also observed a significant increase in TRIM25 expression in diabetic mouse retina and retinal microvascular endothelial cells under hyperglycemia. TRIM25 knockdown suppressed hyperglycemia-induced inflammation, senescence, and oxidative stress in human primary retinal microvascular endothelial cells while TRIM25 overexpression further aggregates those injuries. Further investigation revealed that TRIM25 promoted the inflammatory responses mediated by the TNF-α/NF-κB pathway and TRIM25 knockdown improved cellular senescence by increasing SIRT3. However, TRIM25 knockdown alleviated the oxidative stress independent of both SIRT3 and mitochondrial biogenesis. CONCLUSION: Our study proposed TRIM25 as a potential therapeutic target for the protection of microvascular function during the progression of diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Hyperglycemia , Sirtuin 3 , Animals , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/metabolism , Oxidative Stress , Retina/pathology , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Transcription Factors , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology
5.
Drug Dev Res ; 85(1): e22130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37942840

ABSTRACT

Ischemic stroke is a life-threatening brain disease with the leading cause of disability and mortality worldwide. Heat-shock protein A12A (HSPA12A) is recognized as a neuroprotective target for treating ischemic stroke; however, its regulatory mechanism has been not fully elucidated yet. Human brain microvascular endothelial cells (hBMECs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemic stroke. Gain- and loss-of-function experiments were conducted to explore the regulation of HSAPA12 and PGC-1α. Cell viability, apoptosis, and permeability were assessed by CCK-8, TUNEL, and transendothelial electrical resistance (TEER) assays, respectively. The expression of HSPA12A and corresponding proteins was measured by western blot. Cell immunofluorescence was adopted to evaluate ZO-1 expression. THP-1 cells were applied to adhere hBMECs in vitro to simulate leukocyte adhesion in the brain. HSPA12A was downregulated in OGD/R-treated hBMECs. HSPA12A overexpression significantly suppressed OGD/R-induced cell viability loss and apoptosis in hBMECs. Meanwhile, HSPA12A overexpression attenuated blood-brain barrier (BBB) integrity in OGD/R-induced hBMECs, evidenced by the restored TEER value and the upregulated ZO-1, occludin, and claudin-5. HSPA12A also restricted OGD/R-induced attachment of THP-1 cells to hBMECs, accompanied with downregulating ICAM-1 and VCAM-1. Additionally, OGD/R-caused downregulation of PGC-1α/SIRT3 in hBMECs was partly restored by HSPA12A overexpression. Furthermore, the above effects of HSPA12A on OGD/R-induced hBMECs injury were partly reversed by PGC-1α knockdown. HSPA12A plays a protective role against OGD/R-induced hBMECs injury by upregulating PGC-1α, providing a potential neuroprotective role of HSPA12A in ischemic stroke.


Subject(s)
Brain Diseases , Ischemic Stroke , Sirtuin 3 , Humans , Oxygen/metabolism , Oxygen/pharmacology , Endothelial Cells , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Glucose/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/pharmacology , Brain/metabolism , Brain Diseases/metabolism , Apoptosis , Ischemic Stroke/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/pharmacology
6.
Environ Toxicol ; 39(3): 1471-1480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994397

ABSTRACT

There was a link between exposure to PM2.5 and male infertility. Melatonin has beneficial effects on the male reproductive processes. How PM2.5 caused spermatogenesis disturbance and whether melatonin could prevent PM2.5-induced reproductive toxicity have remained unclear. The results showed that PM2.5 could inhibit the Nrf2-mediated antioxidant pathway and distinctly increase the cell apoptosis in testes. Moreover, PM2.5 also perturbed the process of meiosis by modulating meiosis-associated proteins such as γ-H2AX and Stra8. Mechanistically, PM2.5 inhibited G9a-dependent H3K9 methylation and SIRT3-mediated p53 deacetylation, which consistent with decreased sperm count and motility rate in ApoE-/- mice. Further investigation revealed melatonin effectively alleviated PM2.5-induced meiosis inhibition by preserving H3K9 methylation. Melatonin also alleviated PM2.5-induced apoptosis by regulating SIRT3-mediated p53 deacetylation. Overall, our study revealed PM2.5 resulted in spermatogenesis disorder by perturbing meiosis via G9a-dependent H3K9 di-methylation and causing cell apoptosis via SIRT3/p53 deacetylation pathway and provided promising insights into the protective role of melatonin in air pollution associated with male infertility.


Subject(s)
Infertility, Male , Melatonin , Sirtuin 3 , Humans , Male , Mice , Animals , Melatonin/pharmacology , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Tumor Suppressor Protein p53/metabolism , Semen/metabolism , Spermatogenesis , Methylation , Particulate Matter/toxicity
7.
J Helminthol ; 97: e95, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053397

ABSTRACT

Schistosomiasis is a serious tropical disease. Despite extensive research into the etiology of liver fibrosis, effective therapeutic options remain limited. This study aims to assess the effectiveness of auranofin in treating hepatic granuloma and fibrogenesis produced by Schistosoma (S.) mansoni eggs. Auranofin is a gold complex that contains thioglucose tetraacetate and triethylphosphine. Eighty BALB/c male mice were divided into four groups (n=20/group): negative control (GI), positive control (GII), and early (GIII) and late (GIV) treatment groups with oral auranofin according to beginning of treatment 4th week and 6th week post-infection. Mice were infected subcutaneously in a dose of 60±10 cercariae/mouse. Worm counts, egg loads, and oogram patterns were determined. Biochemical, histological, and immunostaining of interleukin-1ß (IL-1ß), Sirtuin 3 (SIRT3), and smooth muscle actin (SMA) were assessed. GIII showed a significant decrease in the total S. mansoni worm burden and ova/gram in liver tissue (with reduction percent of 63.07% and 78.26%, respectively). Schistosomal oogram patterns, immature and mature ova, also showed a significant decrease. The reduction in granuloma number and size was 40.63% and 48.66%, respectively, in GIII, whereas in GIV, the reduction percent was 76.63% and 67.08%. In addition, the degree of fibrosis was significantly diminished in both treated groups. GIV showed significant reduction in IL-1ß and SMA expression and increase in SIRT3 expression. These findings reveal how auranofin suppresses the development of liver fibrosis. Therefore, it is crucial to take another look at auranofin as a prospective medication for the treatment of S. mansoni egg-induced hepatic granuloma and consequent fibrosis.


Subject(s)
Schistosomiasis mansoni , Sirtuin 3 , Male , Animals , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/pathology , Auranofin/pharmacology , Auranofin/therapeutic use , Prospective Studies , Sirtuin 3/pharmacology , Sirtuin 3/therapeutic use , Ovum/pathology , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Granuloma/drug therapy , Granuloma/pathology
8.
Biol Res ; 56(1): 62, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041171

ABSTRACT

BACKGROUND: Atherosclerosis (AS), a significant contributor to cardiovascular disease (CVD), is steadily rising with the aging of the global population. Pyroptosis and apoptosis, both caspase-mediated cell death mechanisms, play an essential role in the occurrence and progression of AS. The human pineal gland primarily produces melatonin (MT), an indoleamine hormone with powerful anti-oxidative, anti-pyroptotic, and anti-apoptotic properties. This study examined MT's anti-oxidative stress and anti-pyroptotic effects on human THP-1 macrophages treated with nicotine. METHODS: In vitro, THP-1 macrophages were induced by 1 µM nicotine to form a pyroptosis model and performed 30 mM MT for treatment. In vivo, ApoE-/- mice were administered 0.1 mg/mL nicotine solution as drinking water, and 1 mg/mL MT solution was intragastric administrated at 10 mg/kg/day. The changes in pyroptosis, apoptosis, and oxidative stress were detected. RESULTS: MT downregulated pyroptosis, whose changes were paralleled by a reduction in reactive oxygen species (ROS) production, reversal of sirtuin3 (SIRT3), and Forkhead box O3 (FOXO3α) upregulation. MT also inhibited apoptosis, mainly caused by the interaction of caspase-1 and caspase-3 proteins. Vivo studies confirmed that nicotine could accelerate plaque formation. Moreover, mice treated with MT showed a reduction in AS lesion area. CONCLUSIONS: MT alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis. Importantly, our understanding of the inhibitory pathways for macrophage pyroptosis will allow us to identify other novel therapeutic targets that will help treat, prevent, and reduce AS-associated mortality.


Subject(s)
Atherosclerosis , Melatonin , Sirtuin 3 , Mice , Humans , Animals , Melatonin/pharmacology , Pyroptosis , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Nicotine/pharmacology , Apoptosis , Atherosclerosis/drug therapy , Caspases/pharmacology
9.
Kidney Blood Press Res ; 48(1): 738-751, 2023.
Article in English | MEDLINE | ID: mdl-37935137

ABSTRACT

INTRODUCTION: Oxidative stress is pivotal in advancing diabetic nephropathy (DN). Salvianolic acid B (SAB), derived from Radix Salviae miltiorrhizae, exhibits renoprotective effects. However, the mechanisms underlying its action in DN are not fully elucidated. This study explores SAB's protective effect on DN, focusing on its antioxidative properties in glomerular mesangial cells. METHODS: The renoprotective effects of various SAB dosages on DN rats were assessed by evaluating kidney tissue pathological alterations through hematoxylin and eosin, periodic acid-Schiff, Masson, TUNEL staining, and kidney function through biochemical detection. Cell counting kit-8 and lactate dehydrogenase cytotoxicity assays were utilized to evaluate the viability of high glucose (HG)-induced HBZY-1 cells treated with various SAB dosages. Oxidative stress and inflammation levels were measured using enzyme-linked immunosorbent assay kits. The Sirtuin 3 (SIRT3)/Forkhead box transcription factor O1 (FOXO1) pathway was examined through Western blot and immunohistochemistry. RESULTS: SAB mitigated kidney histopathological alterations and function and cell apoptosis in DN rats at various dosages. It enhanced the activity of glutathione peroxidase and superoxide dismutase while decreasing reactive oxygen species and malondialdehyde levels both in vivo and in vitro. SAB also suppressed the levels of pro-inflammatory cytokines (IL-1ß, IL-6, MCP-1, and TNF-α) and the expression of collagen IV and fibronectin in HG-induced HBZY-1 cells. Furthermore, SAB activated the SIRT3/FOXO1 signaling pathway. CONCLUSION: Our findings suggest that SAB may alleviate oxidative stress in DN both in vivo and in vitro, potentially through the activation of the SIRT3/FOXO1-mediated signaling pathway. This study provides initial insights into the possible antioxidative and renoprotective effects of SAB, indicating its potential utility as a therapeutic agent for DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Sirtuin 3 , Rats , Animals , Mesangial Cells/metabolism , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Sirtuin 3/therapeutic use , Diabetic Nephropathies/pathology , Glucose/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus/metabolism
10.
J Agric Food Chem ; 71(43): 16032-16042, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862266

ABSTRACT

Skeletal muscle dysfunction caused by obesity is characterized by the decline in mitochondrial content and function. 5-Heptadecylresorcinol (AR-C17) is a specific bioactive component derived from whole wheat and rye, which has been evidenced to improve obesity-associated skeletal muscle dysregulation. However, the mechanism underlying its protective activity requires further exploration. Herein, we found that AR-C17 (5, 10, and 20 µM) intervention reversed PA-induced (0.5 mM) reduction in mitochondrial content, mitochondrial membrane potential, and mitochondrial energy metabolism in C2C12 cells. Meanwhile, AR-C17 evidently alleviated PA-mediated myotube mitochondrial dysfunction via elevating mitochondria autophagy flux and upregulating the expression level of autophagy-related protein, while this effect was abolished by an autophagy inhibitor (3-MA). Further analysis showed that SIRT3-FOXO3A-PINK-Parkin-mediated mitophagy was involved in the modulation of myocyte mitochondrial dysfunction by AR-C17. In addition, AR-C17 administration (30 and 150 mg/kg/day) significantly improved high-fat-diet-induced mitochondrial dysregulation in mice skeletal muscle tissue via SIRT3-dependent mitophagy. Our findings indicate that skeletal muscle cells are responsive to AR-C17, which improves myogenesis and mitophagy in vitro and in vivo.


Subject(s)
Mitophagy , Sirtuin 3 , Mice , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Signal Transduction , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism
11.
Reprod Toxicol ; 122: 108490, 2023 12.
Article in English | MEDLINE | ID: mdl-37863343

ABSTRACT

Improving oocyte competence during chemotherapy is widely known as a contributing factor to increasing the probability of fertility. Additionally, the role of cumulus cells in oocyte quality is of utmost importance. Therefore, this study was designed to simultaneously probe into the relative gene expression of oocytes and cumulus cells as biomarkers of oocyte quality with cyclophosphamide and L-carnitine treatment. A total of 60 adult NMRI mice were divided into four groups: control, L-carnitine (LC), cyclophosphamide (CP), and cyclophosphamide+L-carnitine (CP+LC). The relative mRNA expression levels of oocyte quality genes including growth differentiation factor 9 (Gdf9), hyaluronan synthase 2 (Has2), and mitochondrial sirtuin 3 (Sirt3) in oocytes, and genes involved in bilateral communication between cumulus cells and between the oocyte and its neighboring cumulus cells including connexin 37 (Cx37) and connexin 43 (Cx43) were detected by Real-time-PCR. DCFH-DA staining analyzed the level of intracellular ROS in oocytes. Under the influence of L-carnitine, Gdf9, Has2, Cx43, and Cx37 were significantly up-regulated (p ≤ 0.05). However, cyclophosphamide considerably reduced the expression of all these genes (p ≤ 0.05). The expression of the Sirt3 gene in the CP group increased significantly compared to the other groups (p ≤ 0.05). Analysis of fluorescent images revealed that the level of intracellular ROS in the cyclophosphamide group was significantly increased compared to the other groups (p ≤ 0.05), while it plummeted in the L-carnitine group (p ≤ 0.05). L-carnitine as an antioxidant can reduce the destructive effects of cyclophosphamide and enhance bilateral communications between oocytes and cumulus cells, and it may ultimately lead to an increase in the fertility rate.


Subject(s)
Connexin 43 , Sirtuin 3 , Mice , Animals , Connexin 43/metabolism , Carnitine/pharmacology , Carnitine/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Oocytes , Mice, Inbred Strains , Biomarkers/metabolism , In Vitro Oocyte Maturation Techniques
12.
Inflamm Bowel Dis ; 29(12): 1929-1940, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37335900

ABSTRACT

BACKGROUND: Honokiol (HKL), a natural extract of the bark of the magnolia tree and an activator of the mitochondrial protein sirtuin-3 (SIRT3), has been proposed to possess anti-inflammatory effects. This study investigated the inhibitory effects of HKL on T helper (Th) 17 cell differentiation in colitis. METHODS: Serum and biopsies from 20 participants with ulcerative colitis (UC) and 18 healthy volunteers were collected for the test of serum cytokines, flow cytometry analysis (FACS), and relative messenger RNA (mRNA) levels of T cell subsets, as well as the expression of SIRT3 and phosphorylated signal transducer and activator of transcription/retinoic acid-related orphan nuclear receptor γt (p-STAT3/RORγt) signal pathway in colon tissues. In vitro, naïve clusters of differentiation (CD) 4 + T cells isolated from the mouse spleen differentiated to subsets including Th1, Th2, Th17, and regulatory T (Treg) cells. Peripheral blood monocytes (PBMCs) from healthy volunteers were induced to the polarization of Th17 cells. After HKL treatment, changes in T cell subsets, related cytokines, and transcription factors were measured. The dextran sulfate sodium (DSS)-induced colitis and interleukin (IL)-10-deficient mice were intraperitoneally injected with HKL. These experiments were conducted to study the effect of HKL on the development, cytokines, and expression of signaling pathway proteins in colitis. RESULTS: Patients with UC had higher serum IL-17 and a higher proportion of Th17 differentiation in blood compared with healthy participants; while IL-10 level and the proportion of Treg cells were lower. Higher relative mRNA levels of RORγt and a lower SIRT3 expression in colon tissues were observed. In vitro, HKL had little effect on the differentiation of naïve CD4+ T cells to Th1, Th2, or Treg cells, but it downregulated IL-17 levels and the Th17 cell ratio in CD4+ T cells from the mouse spleen and human PBMCs under Th17 polarization. Even with a STAT3 activator, HKL still significantly inhibited IL-17 levels. In DSS-induced colitis mice and IL-10 deficient mice treated with HKL, the length of the colon, weight loss, disease activity index, and histopathological scores were improved, IL-17 and IL-21 levels, and the proportion of Th17 cells were decreased. Sirtuin-3 expression was increased, whereas STAT3 phosphorylation and RORγt expression were inhibited in the colon tissue of mice after HKL treatment. CONCLUSIONS: Our study demonstrated that HKL could partially protect against colitis by regulating Th17 differentiation through activating SIRT3, leading to inhibition of the STAT3/RORγt signaling pathway. These results provide new insights into the protective effects of HKL against colitis and may facilitate the research of new drugs for inflammatory bowel disease.


Subject(s)
Colitis, Ulcerative , Colitis , Sirtuin 3 , Humans , Animals , Mice , Interleukin-17/metabolism , Interleukin-10/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Sirtuin 3/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/pathology , T-Lymphocytes, Regulatory/metabolism , Cytokines/metabolism , Cell Differentiation , RNA, Messenger/metabolism , Dextran Sulfate/adverse effects
13.
J Headache Pain ; 24(1): 65, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37271805

ABSTRACT

Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.


Subject(s)
Migraine Disorders , Neurodegenerative Diseases , Sirtuin 3 , Mice , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Feedback , Neurodegenerative Diseases/metabolism , Nociception , Mitochondria/metabolism , Disease Models, Animal , Headache/metabolism , Migraine Disorders/metabolism
14.
Exp Lung Res ; 49(1): 101-115, 2023.
Article in English | MEDLINE | ID: mdl-37265380

ABSTRACT

Background: Lung ischemia-reperfusion injury (LIRI) remains the major cause of primary lung dysfunction after lung transplantation. Diabetes mellitus (DM) is an independent risk factor for morbidity and mortality following lung transplantation. Mitochondrial dysfunction is recognized as a key mediator in the pathogenesis of diabetic LIRI. Melatonin has been reported to be a safe and potent preserving mitochondrial function agent. This study aimed at investigating the potential therapeutic effect and mechanisms of melatonin on diabetic LIRI. Methods: High-fat-diet-fed streptozotocin-induced type 2 diabetic rats were exposed to melatonin, with or without administration of the SIRT3 short hairpin ribonucleic acid (shRNA) plasmid following a surgical model of ischemia-reperfusion injury of the lung. Lung function, inflammation, oxidative stress, cell apoptosis, and mitochondrial function were examined. Results: The SIRT3 signaling and mitophagy were suppressed following diabetic LIRI. Treatment with melatonin markedly induced mitophagy and restored SIRT3 expression. Melatonin treatment also attenuated subsequent diabetic LIRI by improving lung functional recovery, suppressing inflammation, decreasing oxidative damage, diminishing cell apoptosis, and preserving mitochondrial function. However, either administration of SIRT3 shRNA or an autophagy antagonist 3-methyladenine (3-MA) suppressing mitophagy, and compromised the protective action of melatonin. Conclusion: Data indicated that melatonin attenuates diabetic LIRI through activation of SIRT3 signaling-mediated mitophagy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Melatonin , Reperfusion Injury , Sirtuin 3 , Rats , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Sirtuin 3/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Mitophagy , Reperfusion Injury/drug therapy , Lung/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , RNA, Small Interfering/metabolism , Apoptosis
15.
In Vitro Cell Dev Biol Anim ; 59(4): 264-276, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37173557

ABSTRACT

Resveratrol (Res) is a bioactive dietary component and alleviates apoptosis in multiple cell types. However, its effect and mechanism on lipopolysaccharide (LPS)-induced bovine mammary epithelial cells (BMEC) apoptosis, which commonly happens in dairy cows with mastitis, is unknown. We hypothesized that Res would inhibit LPS-induced apoptosis in BMEC through SIRT3, a NAD + -dependent deacetylase activated by Res. To test the dose-response effect on apoptosis, 0-50 µM Res were incubated with BMEC for 12 h, followed by 250 µg/mL LPS treatment for 12 h. To investigate the role of SIRT3 in Res-mediated alleviation of apoptosis, BMEC were pretreated with 50 µM Res for 12 h, then incubated with si-SIRT3 for 12 h and were finally treated with 250 µg/mL LPS for 12 h. Res dose-dependently promoted the cell viability and protein levels of Bcl-2 (Linear P < 0.001) but decreased protein levels of Bax, Caspase-3 and Bax/Bcl-2 (Linear P < 0.001). TUNEL assays indicated that cellular fluorescence intensity declined with the rising doses of Res. Res also dose-dependently upregulated SIRT3 expression, but LPS had the opposite effect. SIRT3 silencing abolished these results with Res incubation. Mechanically, Res enhanced the nuclear translocation of PGC1α, the transcriptional cofactor for SIRT3. Further molecular docking analysis revealed that Res could directly bind to PGC1α by forming a hydrogen bond with Tyr-722. Overall, our data suggested that Res relieved LPS-induced BMEC apoptosis through the PGC1α-SIRT3 axis, providing a basis for further in vivo investigations of applying Res to relieve mastitis in dairy cows.


Subject(s)
Cattle Diseases , Mastitis , Sirtuin 3 , Female , Cattle , Animals , Resveratrol/pharmacology , Resveratrol/metabolism , Lipopolysaccharides/toxicity , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , bcl-2-Associated X Protein/metabolism , Mammary Glands, Animal/metabolism , Epithelial Cells/metabolism , Mastitis/metabolism , Apoptosis
16.
Photodermatol Photoimmunol Photomed ; 39(5): 478-486, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37147870

ABSTRACT

PURPOSE: Ultraviolet-induced skin photoaging was involved in DNA oxidative damage. Specnuezhenide, one of the secoiridoids extracted from Ligustri Lucidi Fructus, possesses antioxidant and anti-inflammatory effects. Whether specnuezhenide ameliorates skin photoaging remains unclear. This study aimed to investigate the effect of specnuezhenide on skin photoaging induced by ultraviolet and explore the underlying mechanism. METHODS: Mice were employed to treat with ultraviolet to induce skin photoaging, then administrated 10 and 20 mg/kg of specnuezhenide. Histological analysis, protein expression, network pharmacology, and autodock analysis were conducted. RESULTS: Specnuezhenide ameliorated ultraviolet-induced skin photoaging in mice via the increase in collagen contents, and decrease in epidermal thickness, malondialdehyde content, and ß-galactosidase expression in the skin. Specnuezhenide reduced cutaneous apoptosis and inflammation in mice with skin photoaging. In addition, network pharmacology data indicated that specnuezhenide possessed potential targets on the NOD-like receptor signaling pathway. Validation experiment found that specnuezhenide inhibited the expression of NOD-like receptor family pyrin domain-containing 3, gasdermin D-C1, and Caspase 1. Furthermore, the expression of 8-Oxoguanine DNA glycosylase (OGG1), sirtuin 3 (SIRT3), and superoxide dismutase 2 was increased in specnuezhenide-treated mice with photoaging. CONCLUSION: Specnuezhenide protected against ultraviolet-induced skin photoaging in mice via a probable activation of SIRT3/OGG1 signal.


Subject(s)
Sirtuin 3 , Skin Aging , Mice , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Skin/pathology , Ultraviolet Rays/adverse effects
17.
Nutrition ; 110: 112019, 2023 06.
Article in English | MEDLINE | ID: mdl-37030022

ABSTRACT

OBJECTIVES: No specific therapy is available for metabolic dysfunction-associated fatty liver disease. We investigated nicotinamide riboside (NR) and dietary restriction (DR) effects in liver lipids, inflammation, histology, intestinal permeability, and gut microbiota in a cafeteria diet (CAFD)-induced obesity model. METHODS: Adult male Wistar rats were randomly assigned to standard diet (SD) or CAFD. After 6 wk, they were subdivided into six groups-SD + vehicle (Veh) (distilled water), SD + NR (400 mg/kg), DR + Veh, DR + NR, CAFD + Veh, and CAFD + NR-for 4 wk more until euthanasia. RESULTS: CAFD increased the hepatic content of lipids, triacylglycerols, and total cholesterol and promoted hepatomegaly, steatosis, steatohepatitis, and liver fibrosis. DR intervention successfully delayed the onset of CAFD-induced liver abnormalities except for steatosis and fibrosis. CAFD suppressed Sirt1 expression in the liver and DR increased Sirt3 expression. CAFD did not affect hepatic inflammatory genes but DR enhanced Il10 expression while decreasing Il1ß expression. CAFD reduced Firmicutes and increased Bacteroidetes and Cyanobacteria, with no changes in intestinal permeability. Gut microbiota patterns in animals exposed to DR were similar to those of animals in SD. NR, specifically in CAFD, reduced hepatic triacylglycerols and total cholesterol deposition and collagen fiber accumulation in the liver and limited the colonization of CAFD-induced Cyanobacteria. NR combined with DR decreased the liver's relative weight and Tnfα expression and suppressed Sirt1 and Sirt3 hepatic expression. CONCLUSIONS: This study suggests that NR can be a potential adjuvant to metabolic dysfunction-associated fatty liver disease therapy, encouraging further research in this field.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Rats , Male , Animals , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Rats, Wistar , Obesity/metabolism , Liver/metabolism , Diet , Non-alcoholic Fatty Liver Disease/metabolism , Cholesterol , Lipids , Triglycerides/metabolism , Diet, High-Fat
18.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37021547

ABSTRACT

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Proteomics , Neoplastic Stem Cells/metabolism , Lipid Metabolism , Homeostasis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use , Cholesterol
19.
Exp Anim ; 72(3): 346-355, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-36858596

ABSTRACT

An increasing number of studies have suggested that oxidative stress and inflammation play momentous roles in acute pulmonary embolism (APE). Honokiol, a bioactive biphenolic phytochemical substance, is known for its strong anti-oxidative and anti-inflammatory effects, and it served as an activator of sirtuin3 (SIRT3) in the present study. The purposes of the study were to explore the effects of honokiol on APE rats and investigate whether the function of honokiol is mediated by SIRT3 activation. In the study, the rats received a right femoral vein injection of dextran gel G-50 particles (12 mg/kg) to establish the APE model and were subsequently administered honokiol and/or a selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP; 5 mg/kg) intraperitoneally. The results showed that SIRT3 activation by honokiol attenuated the loss in lung function, ameliorated the inflammatory response and oxidative damage, and inhibited apoptosis in lung tissues of the rats with APE but that this was reversed by 3-TYP. In addition, we found that the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway might be activated by honokiol but restrained by 3-TYP. These results indicated that honokiol was capable of suppressing the adverse effects of APE and that this was diminished by SIRT3 suppression, implying that activation of SIRT3 might serve as a therapeutic method for APE.


Subject(s)
Hominidae , Pulmonary Embolism , Sirtuin 3 , Rats , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Sirolimus/pharmacology , Signal Transduction , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Pulmonary Embolism/drug therapy , Hominidae/metabolism , Mammals/metabolism
20.
Skin Res Technol ; 29(3): e13303, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36973992

ABSTRACT

BACKGROUND: Skin photoaging is the damage caused by excessive exposure to ultraviolet (UV) irradiation. We investigated the effect of adenosine triphosphate (ATP) supplementation on UVB-induced photoaging in HaCaT cells and its potential molecular mechanism. MATERIALS AND METHODS: The toxicity of ATP on HaCaT cells was examined by the MTT assay. The effects of ATP supplementation on the viability and apoptosis of HaCaT cells were determined by crystal-violet staining and flow cytometry, respectively. Cellular and mitochondrial ROS were stained using fluorescent dyes. Expression of Bax, B-cell lymphoma (Bcl)-2, sirtuin (SIRT)3, and superoxide dismutase (SOD)2 was measured via western blotting. RESULTS: ATP (1, 2 mM) exerted no toxic effect on the normal growth of HaCaT cells. UVB irradiation caused the apoptosis of HaCaT cells, and ATP supplementation inhibited the apoptosis induced by UVB significantly, as verified by expression of Bax and Bcl-2. UVB exposure resulted in accumulation of cellular and mitochondrial reactive oxygen species (ROS), but ATP supplementation suppressed these increases. Expression of SIRT3 and SOD2 was decreased upon exposure to UVB irradiation but, under ATP supplementation, expression of SIRT3 and SOD2 was reversed, which was consistent with the reduction in ROS level observed in ATP-treated HaCaT cells after exposure to UVB irradiation. CONCLUSIONS: ATP supplementation can suppress UVB irradiation-induced photoaging in HaCaT cells via upregulation of expression of SIRT3 and SOD2.


Subject(s)
Sirtuin 3 , Skin Aging , Humans , Up-Regulation , Reactive Oxygen Species , HaCaT Cells/metabolism , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Apoptosis/radiation effects , Keratinocytes/metabolism , Dietary Supplements , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...