Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.641
Filter
1.
Curr Biol ; 34(10): R510-R512, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772341

ABSTRACT

The ability to forget fear-inducing situations is essential for adapting to our environment, but the neural mechanisms underlying 'fear forgetting' remain unclear. Novel findings reveal that the activity of the infralimbic cortex - specifically during REM sleep - contributes to the extinction of fear memory.


Subject(s)
Fear , Memory , Sleep, REM , Fear/physiology , Sleep, REM/physiology , Animals , Memory/physiology , Humans , Extinction, Psychological/physiology , Dreams/physiology , Dreams/psychology
2.
Nat Commun ; 15(1): 3906, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724511

ABSTRACT

Sleepwalking and related parasomnias result from incomplete awakenings out of non-rapid eye movement sleep. Behavioral episodes can occur without consciousness or recollection, or in relation to dream-like experiences. To understand what accounts for these differences in consciousness and recall, here we recorded parasomnia episodes with high-density electroencephalography (EEG) and interviewed participants immediately afterward about their experiences. Compared to reports of no experience (19%), reports of conscious experience (56%) were preceded by high-amplitude EEG slow waves in anterior cortical regions and activation of posterior cortical regions, similar to previously described EEG correlates of dreaming. Recall of the content of the experience (56%), compared to no recall (25%), was associated with higher EEG activation in the right medial temporal region before movement onset. Our work suggests that the EEG correlates of parasomnia experiences are similar to those reported for dreams and may thus reflect core physiological processes involved in sleep consciousness.


Subject(s)
Dreams , Electroencephalography , Parasomnias , Humans , Dreams/physiology , Dreams/psychology , Male , Female , Adult , Parasomnias/physiopathology , Young Adult , Consciousness/physiology , Mental Recall/physiology , Sleep, REM/physiology , Middle Aged , Sleep/physiology
3.
Curr Biol ; 34(10): 2247-2255.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38714199

ABSTRACT

Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.


Subject(s)
Extinction, Psychological , Fear , Sleep, REM , Animals , Fear/physiology , Sleep, REM/physiology , Mice , Extinction, Psychological/physiology , Male , Mice, Inbred C57BL , Memory/physiology , Memory Consolidation/physiology , Conditioning, Classical/physiology , Pyramidal Cells/physiology
4.
Alzheimers Res Ther ; 16(1): 102, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725033

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS: Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS: Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION: Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.


Subject(s)
Alzheimer Disease , Polysomnography , Sleep Apnea, Obstructive , Sleep, REM , Humans , Female , Male , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Alzheimer Disease/complications , Middle Aged , Sleep, REM/physiology , Aged , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/genetics , Risk Factors , Verbal Learning/physiology , Apolipoprotein E4/genetics , Memory/physiology , Severity of Illness Index , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/genetics
5.
Sci Rep ; 14(1): 10369, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710748

ABSTRACT

Emotions experienced within sleep mentation (dreaming) affect mental functioning in waking life. There have been attempts at enhancing dream emotions using olfactory stimulation. Odors readily acquire affective value, but to profoundly influence emotional processing, they should bear personal significance for the perceiver rather than be generally pleasant. The main objective of the present sleep laboratory study was to examine whether prolonged nocturnal exposure to self-selected, preferred ambient room odor while asleep influences emotional aspects of sleep mentation and valence of post-sleep core affect. We asked twenty healthy participants (12 males, mean age 25 ± 4 years) to pick a commercially available scented room diffuser cartridge that most readily evoked positively valenced mental associations. In weekly intervals, the participants attended three sessions. After the adaptation visit, they were administered the odor exposure and odorless control condition in a balanced order. Participants were awakened five minutes into the first rapid eye movement (REM) stage that took place after 2:30 a.m. and, if they had been dreaming, they were asked to rate their mental sleep experience for pleasantness, emotional charge, and magnitude of positive and negative emotions and also to evaluate their post-sleep core affect valence. With rs < 0.20, no practically or statistically significant differences existed between exposure and control in any outcome measures. We conclude that in young, healthy participants, the practical value of olfactory stimulation with self-selected preferred scents for enhancement of dream emotions and post-sleep core affect valence is very limited.


Subject(s)
Dreams , Emotions , Odorants , Humans , Male , Adult , Female , Dreams/physiology , Dreams/psychology , Young Adult , Emotions/physiology , Sleep/physiology , Smell/physiology , Sleep, REM/physiology , Wakefulness/physiology
6.
Brain Res ; 1834: 148915, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582414

ABSTRACT

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Subject(s)
Bestrophins , Ganglia, Spinal , Hyperalgesia , Sleep Deprivation , Spinal Cord , Animals , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Hyperalgesia/metabolism , Male , Female , Rats , Ganglia, Spinal/metabolism , Spinal Cord/metabolism , Bestrophins/metabolism , Chloride Channels/metabolism , Sleep, REM/physiology , Rats, Wistar , Anoctamin-1 , Calcium Channels, L-Type
7.
Behav Pharmacol ; 35(4): 239-252, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567447

ABSTRACT

Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors including hyperlocomotion. On the other hand, crocin (one of the main compounds of Crocus sativus L. or Saffron) may be beneficial in the improvement of mental and cognitive dysfunctions. Also, crocin can restore the deleterious effects of SD on mental and cognitive processes. In this study, we investigated the effect of REM SD on female rats' behaviors including depression- and anxiety-like behaviors, locomotion, pain perception, and obsessive-compulsive-like behavior, and also, the potential effect of crocin on REM SD effects. We used female rats because evidence on the role of REM SD in modulating psychological and behavioral functions of female (but not male) rats is limited. REM SD was induced for 14 days (6h/day), and crocin (25, 50, and 75 mg/kg) was injected intraperitoneally. Open field test, forced swim test, hot plate test, and marble burying test were used to assess rats' behaviors. The results showed REM SD-induced manic-like behavior (hyperlocomotion). Also, REM SD rats showed decreased anxiety- and depression-like behavior, pain subthreshold (the duration it takes for the rat to feel pain), and showed obsessive compulsive-like behavior. However, crocin at all doses partially or fully reversed REM SD-induced behavioral changes. In conclusion, our results suggested the possible comorbidity of OCD and REM SD-induced manic-like behavior in female rats or the potential role of REM SD in the etiology of OCD, although more studies are needed. In contrast, crocin can be a possible therapeutic choice for decreasing manic-like behaviors.


Subject(s)
Carotenoids , Crocus , Sleep Deprivation , Animals , Female , Rats , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Carotenoids/pharmacology , Obsessive-Compulsive Disorder/drug therapy , Anxiety/drug therapy , Behavior, Animal/drug effects , Mania/drug therapy , Depression/drug therapy , Rats, Wistar , Disease Models, Animal , Bipolar Disorder/drug therapy , Sleep, REM/drug effects , Dose-Response Relationship, Drug
8.
Sleep Med ; 117: 162-168, 2024 May.
Article in English | MEDLINE | ID: mdl-38547593

ABSTRACT

BACKGROUND AND OBJECTIVE: Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS: This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS: The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher ß power during REM sleep, higher ß and σ power during phasic REM sleep, and higher ß, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with ß power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION: The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (ß) wave power in REM sleep.


Subject(s)
REM Sleep Behavior Disorder , Sleep Initiation and Maintenance Disorders , Humans , Sleep, REM , Sleep Initiation and Maintenance Disorders/complications , Polysomnography , Arousal , REM Sleep Behavior Disorder/complications
9.
Psychopharmacology (Berl) ; 241(6): 1213-1225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427059

ABSTRACT

RATIONALE: Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES: In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS: bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS: Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION: Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.


Subject(s)
Orexins , Prepulse Inhibition , Rats, Wistar , Sleep Deprivation , Animals , Orexins/pharmacology , Orexins/administration & dosage , Orexins/metabolism , Male , Sleep Deprivation/physiopathology , Rats , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Sleep, REM/drug effects , Sensory Gating/drug effects , Age Factors , Disease Models, Animal
10.
Ann Otol Rhinol Laryngol ; 133(6): 590-597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450648

ABSTRACT

BACKGROUND: The conventional measure of sleep fragmentation is via polysomnographic evaluation of sleep architecture. Adults with OSA have disruption in their sleep cycles and spend less time in deep sleep stages. However, there is no available evidence to suggest that this is also true for children and published results have been inconclusive. OBJECTIVE: To determine polysomnographic characteristics of sleep architecture in children with OSA and investigate effects relative to OSA severity. METHODS: Overnight polysomnograms (PSG) of children referred for suspected OSA were reviewed. Subjects were classified by apnea hypopnea index (AHI). PSG parameters of sleep architecture were recorded and analyzed according to OSA severity. RESULTS: Two hundred and eleven children were studied (median age of 7.0 years, range 4-10 years) Stage N1 sleep was longer while stage N2 sleep and REM sleep was reduced in the OSA group when compared to those without OSA (6.10 vs 2.9, P < .001; 42.0 vs 49.7, P < .001; 14.0 vs 15.9, P = .05). The arousal index was also higher in the OSA group (12.9 vs 8.2, P < .001). There was a reduction in sleep efficiency and total sleep time and an increase in wake after sleep onset noted in the OSA group (83.90 vs 89.40, P = .003; 368.50 vs 387.25, P = .001; 40.1 ± 35.59 vs 28.66 ± 24.14, P = .007; 29.00 vs 20.50; P = .011). No significant difference was found in N3 sleep stage (33.60 vs 30.60, P = .14). CONCLUSION: We found evidence that children with OSA have a disturbance in their sleep architecture. The changes indicate greater sleep fragmentation and more time spent in lighter stages of sleep. Future research is needed and should focus on more effective methods to measure alterations in sleep architecture.


Subject(s)
Polysomnography , Sleep Apnea, Obstructive , Sleep Stages , Humans , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnosis , Child , Male , Female , Child, Preschool , Sleep Stages/physiology , Severity of Illness Index , Retrospective Studies , Sleep, REM/physiology
11.
Sleep Med ; 117: 25-32, 2024 May.
Article in English | MEDLINE | ID: mdl-38503197

ABSTRACT

OBJECTIVE: The present study assessed the influence of physical training on cardiac autonomic activity in individuals with spinal cord injury (SCI) during different sleep stages. METHODS: Twenty-six volunteers were allocated into three groups: 9 sedentary individuals without SCI (control, CON); 8 sedentary tetraplegic individuals with chronic SCI (SED-SCI); 9 physically trained tetraplegic individuals with chronic SCI (TR-SCI). All participants underwent nocturnal polysomnography to monitor sleep stages: wakefulness, non-rapid eye movement (NREM) sleep (N1, N2, and N3 stages), and REM sleep. The electrocardiography data obtained during this exam were extracted to analyze the heart rate variability (HRV). RESULTS: Sleep stages influenced HRV in the time [RR interval and root mean square of successive RR interval differences (RMSSD)] and frequency [low-frequency (LF) and high-frequency (HF) powers and LF-to-HF ratio] domains (P < 0.05). SED-SCI individuals showed unchanged HRV compared to CON (P > 0.05). When comparing the TR-SCI and SED-SCI groups, no significant differences in HRV were reported in the time domain (P > 0.05). However, in the frequency domain, more accentuated HF power was observed in TR-SCI than in SED-SCI individuals during the N2 and N3 stages and REM sleep (P < 0.05). Moreover, TR-SCI had higher HF power than CON during the N3 stage (P < 0.05). CONCLUSIONS: TR-SCI individuals have greater HF power, indicative of parasympathetic modulation, than sedentary (injured or not injured) individuals during different sleep stages. Therefore, enhanced parasympathetic activity induced by physical training may improve cardiac autonomic modulation during sleep in individuals with chronic SCI.


Subject(s)
Sleep Stages , Spinal Cord Injuries , Humans , Sleep Stages/physiology , Autonomic Nervous System , Sleep/physiology , Spinal Cord Injuries/complications , Sleep, REM/physiology , Heart Rate/physiology
12.
Sleep ; 47(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38447008

ABSTRACT

Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.


Subject(s)
Dynorphins , Neurons , Sleep, REM , Wakefulness , Zona Incerta , Animals , Mice , Dynorphins/metabolism , Dynorphins/physiology , Neurons/physiology , Zona Incerta/physiology , Zona Incerta/physiopathology , Sleep, REM/physiology , Wakefulness/physiology , Male , Orexins/metabolism , Orexins/physiology
13.
Sci Rep ; 14(1): 5637, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454070

ABSTRACT

Physical activity has been found to alter sleep architecture, but these effects have been studied predominantly in the laboratory and the generalizability of these findings to naturalistic environments and longer time intervals, as well as their psychological effects, have not been evaluated. Recent technological advancements in wearable devices have made it possible to capture detailed measures of sleep outside the lab, including timing of specific sleep stages. In the current study, we utilized photoplethysmography coupled with accelerometers and smartphone ambulatory assessment to collect daily measurements of sleep, physical activity and mood in a sample of N = 82 over multi-month data collection intervals. We found a robust inverse relationship between sedentary behavior and physical activity and sleep architecture: both low-intensity and moderate-to-vigorous physical activity were associated with increased NREM sleep and decreased REM sleep, as well as a longer REM latency, while higher levels of sedentary behavior showed the opposite pattern. A decreased REM/NREM ratio and increased REM latency were in turn associated with improved wellbeing, including increased energy, reduced stress and enhanced perceived restfulness of sleep. Our results suggest that physical activity and sleep account for unique variance in a person's mood, suggesting that these effects are at least partially independent.


Subject(s)
Disorders of Excessive Somnolence , Sleep , Humans , Polysomnography , Sleep, REM , Sleep Stages , Exercise
14.
Prog Neurobiol ; 234: 102589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38458483

ABSTRACT

Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.


Subject(s)
Benchmarking , Fractals , Humans , Sleep , Sleep Stages/physiology , Sleep, REM , Electroencephalography
16.
Epilepsia ; 65(4): 995-1005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411987

ABSTRACT

OBJECTIVE: A well-established bidirectional relationship exists between sleep and epilepsy. Patients with epilepsy tend to have less efficient sleep and shorter rapid eye movement (REM) sleep. Seizures are far more likely to arise from sleep transitions and non-REM sleep compared to REM sleep. Delay in REM onset or reduction in REM duration may have reciprocal interactions with seizure occurrence. Greater insight into the relationship between REM sleep and seizure occurrence is essential to our understanding of circadian patterns and predictability of seizure activity. We assessed a cohort of adults undergoing evaluation of drug-resistant epilepsy to examine whether REM sleep prior to or following seizures is delayed in latency or reduced in quantity. METHODS: We used a spectrogram-guided approach to review the video-electroencephalograms of patients' epilepsy monitoring unit admissions for sleep scoring to determine sleep variables. RESULTS: In our cohort of patients, we found group- and individual-level delay of REM latency and reduced REM duration when patients experienced a seizure before the primary sleep period (PSP) of interest or during the PSP of interest. A significant increase in REM latency and decrease in REM quantity were observed on nights where a seizure occurred within 4 h of sleep onset. No change in REM variables was found when investigating seizures that occurred the day after the PSP of interest. Our study is the first to provide insight about a perisleep period, which we defined as 4-h periods before and after the PSP. SIGNIFICANCE: Our results demonstrate a significant relationship between seizures occurring prior to the PSP, during the PSP, and in the 4-h perisleep period and a delay in REM latency. These findings have implications for developing a biomarker of seizure detection as well as longer term seizure risk monitoring.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Adult , Humans , Sleep, REM/physiology , Seizures/diagnosis , Epilepsy/complications , Epilepsy/diagnosis , Sleep/physiology , Drug Resistant Epilepsy/complications , Electroencephalography/methods
17.
CNS Neurosci Ther ; 30(2): e14569, 2024 02.
Article in English | MEDLINE | ID: mdl-38421131

ABSTRACT

AIMS: Although clonazepam (CLO) and melatonin (MLT) are the most frequently used treatments for REM sleep behavior disorder, the polysomnographic features associated with their use are little known. The aim of this study was to evaluate polysomnographic and clinical parameters of patients with idiopathic/isolated REM sleep behavior disorder (iRBD) treated chronically with CLO, sustained-release MLT, alone or in combination, and in a group of drug-free iRBD patients. METHODS: A total of 96 patients were enrolled: 43 drug-free, 21 with CLO (0.5-2 mg), 20 with sustained-release MLT (1-4 mg), and 12 taking a combination of them (same doses). Clinical variables and polysomnography were collected. RESULTS: Although clinical improvement was reported in all groups, MLT impacted sleep architecture more than the other treatments, with significant and large increase in N3 stage, moderate reduction in N2 and REM sleep, and moderate increase in REM latency. CLO moderately increased the percentage of both REM sleep and especially N2, while reducing N1 and wakefulness. Patients treated with both CLO and MLT did not show major changes in sleep architecture. CONCLUSION: These results suggest that the administration of MLT or CLO impacts (positively) on sleep parameters of iRBD patients. However, there is a need to better stratify patients, in order to treat them in a targeted manner, depending on the patient's individual sleep architecture and expected differential effects of these agents.


Subject(s)
Melatonin , REM Sleep Behavior Disorder , Humans , Clonazepam/therapeutic use , REM Sleep Behavior Disorder/drug therapy , Melatonin/therapeutic use , Delayed-Action Preparations/therapeutic use , Sleep, REM
19.
Neurol Sci ; 45(5): 2347-2351, 2024 May.
Article in English | MEDLINE | ID: mdl-38353846

ABSTRACT

Usually, positive neurological symptoms are considered as the consequence of a mere, afinalistic and abnormal increase in function of specific brain areas. However, according to the Theory of Active Inference, which argues that action and perception constitute a loop that updates expectations according to a Bayesian model, the brain is rather an explorer that formulates hypotheses and tests them to assess the correspondence between internal models and reality. Moreover, the cerebral cortex is characterised by a continuous "conflict" between different brain areas, which constantly attempt to expand in order to acquire more of the limited available computational resources, by means of their dopamine-induced neuroplasticity. Thus, it has recently been suggested that dreams, during rapid eye movement sleep (REMS), protect visual brain areas (deprived of their stimuli during rest) from being conquered by other normally stimulated ones. It is therefore conceivable that positive symptoms also have a functional importance for the brain. We evaluate supporting literature data of a 'defensive' role of positive symptoms and the relevance of dopamine-induced neuroplasticity in the context of neurodegenerative and psychiatric diseases. Furthermore, the possible functional significance of idiopathic REMS-related behavioural disorder as well as phantom limb syndrome is examined. We suggest that positive neurological symptoms are not merely a passive expression of a damage, but active efforts, related to dopamine-induced plasticity, to maintain a correct relationship between the external world and its brain representation, thus preventing healthy cortical areas from ousting injured ones.


Subject(s)
Dopamine , REM Sleep Behavior Disorder , Humans , Bayes Theorem , Brain/physiology , Sleep, REM/physiology
20.
Sleep Med ; 115: 122-130, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359591

ABSTRACT

STUDY OBJECTIVES: to characterize possible differences in the function of the ANS in patients with chronic insomnia compared to a control group, using a wearable device, in order to determine whether those findings allow diagnosing this medical entity. METHODS: Thirty-two patients with chronic insomnia and nineteen patients without any sleep disorder, as a control group, were recruited prospectively. Both groups of patients underwent an in-patient night with simultaneous polysomnography and wearable device recording Empatica E4 a diverse array of physiological signals, including electrodermal activity, temperature, accelerometry, and photoplethysmography, providing a comprehensive resource for in-depth sleep analysis. RESULTS: In polysomnography, patients suffering from insomnia showed a significant decrease in sleep efficiency and total sleep time, prolonged sleep latency, and increased wakefulness after sleep onset. Accelerometry results were statistically significant differences in the three axis (x, y, z) just in stage N3, no differences were observed between both groups in REM sleep. The lowest temperature was reached in REM sleep in both groups. Peripheral temperature did not decrease during the different sleep phases compared to wakefulness in insomnia, unlike in the control group. Heart rate was higher in patients with insomnia than in controls during wakefulness and sleep stage. Heart rate variability was lower in stage N3 and higher in REM sleep compared to wakefulness in both groups. Sweating was significantly higher in patients with insomnia compared to the control group, as indicated by Skin Conductance Variability values and Sudomotor Nerve. CONCLUSIONS: Our study suggests that patients with insomnia have increased sympathetic activity during sleep, showing a higher heart rate. Temperature and sweating significantly influence the different sleep phases.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Autonomic Nervous System , Sleep/physiology , Wakefulness/physiology , Sleep, REM/physiology , Heart Rate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...