Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.419
Filter
1.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749343

ABSTRACT

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Subject(s)
Nucleotidyltransferases , Small Molecule Libraries , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Animals , Structure-Activity Relationship , Protein Binding , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , DNA-Directed DNA Polymerase/metabolism , Mice , Translesion DNA Synthesis
2.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38624086

ABSTRACT

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , G-Quadruplexes , Mitochondria , Humans , G-Quadruplexes/drug effects , Ligands , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Mice , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Xenograft Model Antitumor Assays , HCT116 Cells , DNA, Mitochondrial/metabolism
3.
Eur J Med Chem ; 271: 116414, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38677061

ABSTRACT

Sclerostin is a secreted glycoprotein that expresses predominantly in osteocytes and inhibits bone formation by antagonizing the Wnt/ß-catenin signaling pathway, and the loop3 region of sclerostin has recently discovered as a novel therapeutic target for bone anabolic treatment without increasing cardiovascular risk. Herein, we used a structural based virtual screening to search for small molecular inhibitors selectively targeting sclerostin loop3. A novel natural product hit ZINC4228235 (THFA) was identified as the sclerostin loop3-selective inhibitor with a Kd value of 42.43 nM against sclerostin loop3. The simplification and derivation of THFA using molecular modeling-guided modification allowed the discovery of an effective and loop3-selective small molecular inhibitor, compound (4-(3-acetamidoprop-1-yn-1-yl)benzoyl)glycine (AACA), with improved binding affinity (Kd = 15.4 nM) compared to the hit THFA. Further in-vitro experiment revealed that compound AACA could attenuate the suppressive effect of transfected sclerostin on Wnt signaling and bone formation. These results make AACA as a potential candidate for development of anti-osteoporosis agents without increasing cardiovascular risk.


Subject(s)
Drug Design , Osteoporosis , Osteoporosis/drug therapy , Humans , Structure-Activity Relationship , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Animals , Mice , Drug Discovery , Drug Evaluation, Preclinical , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Models, Molecular , Osteogenesis/drug effects
4.
Chem Soc Rev ; 53(10): 4838-4861, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38596888

ABSTRACT

Targeted protein degraders such as PROTACs and molecular glues are a rapidly emerging therapeutic modality within industry and academia. Degraders possess unique mechanisms of action that lead to the removal of specific proteins by co-opting the cell's natural degradation mechanisms via induced proximity. Their optimisation thus far has often been largely empirical, requiring the synthesis and screening of a large number of analogues. In addition, the synthesis and development of degraders is often challenging, leading to lengthy optimisation campaigns to deliver candidate-quality compounds. This review highlights how the synthesis of degraders has evolved in recent years, in particular focusing on means of applying high-throughput chemistry and screening approaches to expedite these timelines, which we anticipate to be valuable in shaping the future of degrader optimisation campaigns.


Subject(s)
Combinatorial Chemistry Techniques , High-Throughput Screening Assays , Proteins/chemistry , Proteins/metabolism , Proteolysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis
5.
Bioorg Chem ; 147: 107316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583246

ABSTRACT

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Subject(s)
ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Proteolysis/drug effects , Molecular Structure , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Endopeptidases
6.
Bioorg Chem ; 147: 107376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640722

ABSTRACT

The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Indazoles , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Drug Discovery , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Mice, Inbred C57BL , Hep G2 Cells , Cell Survival/drug effects
7.
Eur J Med Chem ; 271: 116404, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38631262

ABSTRACT

Hearing loss (HL) is a health burden that seriously affects the quality of life of cancer patients receiving platinum-based chemotherapy, and few FDA-approved treatment specifically targets this condition. The main mechanisms that contribute to cisplatin-induced hearing loss are oxidative stress and subsequent cell death, including ferroptosis revealed by us as a new mechanism recently. In this study, we employed the frontier molecular orbital (FMO) theory approach as a convenient prediction method for the glutathione peroxidase (GPx)-like activity of isoselenazolones and discovered new isoselenazolones with great GPx-like activity. Notably, compound 19 exhibited significant protective effects against cisplatin-induced hair cell (HC) damage in vitro and in vivo and effectively reverses cisplatin-induced hearing loss through oral administration. Further investigations revealed that this compound effectively alleviated hair cell oxidative stress, apoptosis and ferroptosis. This research highlights the potential of GPx mimics as a therapeutic strategy against cisplatin-induced hearing loss. The application of quantum chemistry (QC) calculations in the study of GPx mimics sheds light on the development of new, innovative treatments for hearing loss.


Subject(s)
Cisplatin , Glutathione Peroxidase , Hearing Loss , Cisplatin/pharmacology , Glutathione Peroxidase/metabolism , Animals , Hearing Loss/drug therapy , Hearing Loss/chemically induced , Humans , Quantum Theory , Molecular Structure , Mice , Structure-Activity Relationship , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Discovery , Dose-Response Relationship, Drug , Apoptosis/drug effects
8.
Bioorg Chem ; 147: 107321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604018

ABSTRACT

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


Subject(s)
DNA , Drug Discovery , Enzyme Inhibitors , N-Acetylglucosaminyltransferases , Small Molecule Libraries , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , DNA/chemistry , DNA/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Uridine Diphosphate/metabolism , Uridine Diphosphate/chemistry
9.
Bioorg Med Chem Lett ; 105: 129759, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636717

ABSTRACT

Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor. We found that compound 11b strongly inhibited the viability and reduced histone H2A mono-ubiquitination in human osteosarcoma U2OS cells. Therefore, compound 11b is a promising lead compound for the development of H2A histone ubiquitination-inhibiting small molecules.


Subject(s)
Histones , Small Molecule Libraries , Ubiquitination , Humans , Histones/metabolism , Ubiquitination/drug effects , Cell Line, Tumor , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Cell Survival/drug effects , Dose-Response Relationship, Drug
10.
Bioorg Med Chem ; 105: 117718, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38621319

ABSTRACT

Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.


Subject(s)
Proteolysis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Humans , Ligands , Proteolysis/drug effects , Drug Design , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Molecular Structure
11.
Chem Asian J ; 19(9): e202400052, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38436107

ABSTRACT

Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.


Subject(s)
Aminopeptidases , Fluorescent Dyes , Humans , Aminopeptidases/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Probes/chemistry , Optical Imaging , Animals , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Neoplasms/diagnostic imaging
12.
ChemMedChem ; 19(9): e202300705, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38329887

ABSTRACT

Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs. Further, the highly lipoidal blood-brain barrier (BBB) limits the uptake of many therapeutic molecules into the brain and is a complicating factor in the development of new agents to treat neurodegeneration. Considering the highly complex nature of NDDs, the association of multiple risk factors, and the challenges to overcome the BBB junction, medicinal chemists have developed small organic molecule-based novel approaches to target NDDs over the last few decades, such as designing lipophilic molecules and applying prodrug strategies. Attempts have been made to utilize a multitarget approach to modulate different biochemical molecular pathways involved in NDDs, in addition to, medicinal chemists making better decisions in identifying optimized drug candidates for the central nervous system (CNS) by using web-based computational tools. To increase the clinical success of these drug candidates, an in vitro assay modeling the BBB has been utilized by medicinal chemists in the pre-clinical phase as a further screening measure of small organic molecules. Herein, we examine some of the intriguing strategies taken by medicinal chemists to design small organic molecules to combat NDDs, with the intention of increasing our awareness of neurodegenerative therapeutics.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Small Molecule Libraries , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Chemistry, Pharmaceutical , Molecular Structure
13.
Arch Pharm (Weinheim) ; 357(5): e2300636, 2024 May.
Article in English | MEDLINE | ID: mdl-38332463

ABSTRACT

Virtual combinatorial libraries are prevalent in drug discovery due to improvements in the prediction of synthetic reactions that can be performed. This has gone hand in hand with the development of virtual screening capabilities to effectively screen the large chemical spaces spanned by exhaustive enumeration of reaction products. In this study, we generated a small-molecule dipeptide mimic library to target proteins binding small peptides. The library was created based on the general idea of peptide synthesis, that is, amino acid mimics were reacted in silico to form the dipeptide mimics, yielding 2,036,819 unique compounds. After docking calculations, two compounds from the library were synthesized and tested against WD repeat-containing protein 5 (WDR5) and histamine receptors H1-H4 to evaluate whether these molecules are viable in assays. The compounds showed the highest potency at the histamine H3 receptor, with Ki values in the two-digit micromolar range.


Subject(s)
Dipeptides , Small Molecule Libraries , Dipeptides/chemistry , Dipeptides/chemical synthesis , Dipeptides/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Molecular Docking Simulation , Humans , Structure-Activity Relationship , Receptors, Histamine/metabolism , Drug Discovery , Molecular Structure
14.
Org Lett ; 26(5): 1094-1099, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38277138

ABSTRACT

Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.


Subject(s)
DNA , Gene Library , Carboxylic Acids , Small Molecule Libraries/chemical synthesis
15.
Science ; 379(6635): 883, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36862768

ABSTRACT

Small-molecule libraries encoded by peptide tags may accelerate the search for therapeutics.


Subject(s)
Drug Discovery , Peptides , Small Molecule Libraries , Peptides/chemical synthesis , Peptides/chemistry , Peptides/therapeutic use , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
16.
Science ; 379(6635): 939-945, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36862767

ABSTRACT

Encoding small-molecule information in DNA has been leveraged to accelerate the discovery of ligands for therapeutic targets such as proteins. However, oligonucleotide-based encoding is hampered by inherent limitations of information stability and density. In this study, we establish abiotic peptides for next-generation information storage and apply them for the encoding of diverse small-molecule synthesis. The chemical stability of the peptide-based tag allows the use of palladium-mediated reactions to efficiently synthesize peptide-encoded libraries (PELs) with broad chemical diversity and high purity. We demonstrate the successful de novo discovery of small-molecule protein ligands from PELs by affinity selection against carbonic anhydrase IX and the oncogenic protein targets BRD4(1) and MDM2. Collectively, this work establishes abiotic peptides as carriers of information for the encoding of small-molecule synthesis, leveraged herein for the discovery of protein ligands.


Subject(s)
Drug Discovery , Peptide Library , Peptides , Small Molecule Libraries , Ligands , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Peptides/chemical synthesis , Peptides/chemistry , Transcription Factors/chemistry , Transcription Factors/genetics , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Protein Stability , Carbonic Anhydrase IX
17.
Bioorg Med Chem Lett ; 61: 128625, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35158044

ABSTRACT

The discovery of potent, bioavailable small molecule inhibitors of p53-HDM2 PPI led us to investigate subsequent modifications to address a CYP3A4 time-dependent inhibition liability. On the basis of the crystal structure of HDM2 in complex with 2, further functionalization of the solvent exposed area of the molecule that binds to Phe19 pocket were investigated as a strategy to modulate the molecule liphophilicity. Introduction of 2-oxo-nicotinic amide at Phe19 proved a viable strategy in obtaining inhibitors exempt from CYP3A4 time-dependent inhibition liability.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Phenylalanine/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/chemistry , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
18.
Org Biomol Chem ; 20(9): 1888-1892, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35174383

ABSTRACT

The fluorescence properties of an emissive guanine surrogate, thienoguanine (thGN, 2-aminothieno[3,4-d]pyrimidin-4(3H)-one), were exploited to design two real-time chemosensors of O6-methylguanine-DNA-methyltransferase (MGMT), a key DNA repair enzyme involved in the resistance to DNA-alkylating anti-cancer drugs though direct reversal of O6-alkylated guanine adducts.


Subject(s)
DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Drug Design , Fluorescent Dyes/metabolism , Guanine/metabolism , Small Molecule Libraries/metabolism , Tumor Suppressor Proteins/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Guanine/analogs & derivatives , Guanine/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
19.
J Enzyme Inhib Med Chem ; 37(1): 592-596, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35057692

ABSTRACT

We report for the first time Antibody-Drug-Conjugates (ADCs) containing human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) directed Monoclonal Antibodies (MAbs) linked to low molecular weight inhibitors of the same enzymes by means of hydrophilic peptide spacers. In agreement with the incorporated CA directed MAb fragments, in vitro inhibition data of the obtained ADCs showed sub-nanomolar KI values for the tumour associated CAs IX and XII which were up to 10-fold more potent when compared to the corresponding unconjugated MAbs. In addition, the introduction of the CA inhibitor (CAI) benzenesulfonamide allowed the ADCs to potently inhibit the housekeeping tumoral off-target human CA II isoform. Such results are supporting the definition of an unprecedented reported class of ADCs able to hit simultaneously multiple hCAs physiologically cooperative in maintaining altered cellular metabolic pathways, and therefore ideal for the treatment of chronic diseases such as cancers and inflammation diseases.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Molecular Weight , Neoplasms/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Benzenesulfonamides
20.
ACS Appl Mater Interfaces ; 14(2): 2464-2477, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045602

ABSTRACT

Nanomedicine, constructed from therapeutics, presents an advantage in drug delivery for cancer therapies. However, nanocarrier-based treatment systems have problems such as interbatch variability, multicomponent complexity, poor drug delivery, and carrier-related toxicity. To solve these issues, the natural molecule honokiol (HK), an anticancer agent in a phase I clinical trial (CTR20170822), was used to form a self-assembly nanoparticle (SA) through hydrogen bonding and hydrophobicity. The preparation of SA needs no molecular precursors or excipients in aqueous solution, and 100% drug-loaded SA exhibited superior tumor-targeting ability due to the enhanced permeability and retention (EPR) effect. Moreover, SA significantly enhanced the antitumor immunity relative to free HK, and the mechanism has notable selectivity to the p53 pathway. Furthermore, SA exhibited excellent physiological stability and inappreciable toxicity. Taken together, this supramolecular self-assembly strategy provides a safe and "molecular economy" model for rational design of clinical therapies and is expected to promote targeted therapy of HK, especially in colorectal cancer patients with obvious p53 status.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biocompatible Materials/pharmacology , Biphenyl Compounds/pharmacology , Colorectal Neoplasms/therapy , Immunotherapy , Lignans/pharmacology , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Colorectal Neoplasms/immunology , Female , Humans , Lignans/chemical synthesis , Lignans/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Materials Testing , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Tumor Cells, Cultured , Tumor Suppressor Protein p53/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...