Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163532

ABSTRACT

Since the beginning of the HIV epidemic, lasting more than 30 years, the main goal of scientists was to develop effective methods for the prevention and treatment of HIV infection. Modern medicines have reduced the death rate from AIDS by 80%. However, they still have side effects and are very expensive, dictating the need to search for new drugs. Earlier, it was shown that phospholipases A2 (PLA2s) from bee and snake venoms block HIV replication, the effect being independent on catalytic PLA2 activity. However, the antiviral activity of human PLA2s against Lentiviruses depended on catalytic function and was mediated through the destruction of the viral membrane. To clarify the role of phospholipolytic activity in antiviral effects, we analyzed the anti-HIV activity of several snake PLA2s and found that the mechanisms of their antiviral activity were similar to that of mammalian PLA2. Our results indicate that snake PLA2s are capable of inhibiting syncytium formation between chronically HIV-infected cells and healthy CD4-positive cells and block HIV binding to cells. However, only dimeric PLA2s had pronounced virucidal and anti-HIV activity, which depended on their catalytic activity. The ability of snake PLA2s to inactivate the virus may provide an additional barrier to HIV infection. Thus, snake PLA2s might be considered as candidates for lead molecules in anti-HIV drug development.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/cytology , Giant Cells/cytology , HIV-1/physiology , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Snakes/metabolism , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cell Line , Cells, Cultured , Giant Cells/drug effects , Giant Cells/virology , HIV-1/drug effects , Humans , Inhibitory Concentration 50 , Reptilian Proteins/pharmacology , Snakes/classification , Virus Activation/drug effects , Virus Attachment/drug effects
2.
Toxins (Basel) ; 13(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34822548

ABSTRACT

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.


Subject(s)
Blood Proteins/drug effects , Crotalid Venoms/toxicity , Metalloendopeptidases/toxicity , Snake Venoms/toxicity , Animals , Bothrops , Humans , Snake Venoms/enzymology
3.
PLoS Negl Trop Dis ; 15(9): e0009715, 2021 09.
Article in English | MEDLINE | ID: mdl-34478462

ABSTRACT

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/toxicity , Snake Bites/complications , Snake Venoms/toxicity , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , von Willebrand Factor/metabolism , Animals , Blood Platelets/metabolism , Crotalid Venoms/metabolism , Female , Humans , Male , Metalloproteases/metabolism , Metalloproteases/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Wistar , Snake Venoms/enzymology , Snake Venoms/metabolism , Thrombocytopenia/blood , Thrombocytopenia/genetics , von Willebrand Factor/genetics
4.
Int J Biol Macromol ; 185: 494-512, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34197854

ABSTRACT

Snakebite envenoming is the cause of an ongoing health crisis in several regions of the world, particularly in tropical and neotropical countries. This scenario creates an urgent necessity for new practical solutions to address the limitations of current therapies. The current study investigated the isolation, phytochemical characterization, and myotoxicity inhibition mechanism of gallic acid (GA), a myotoxin inhibitor obtained from Anacardium humile. The identification and isolation of GA was achieved by employing analytical chromatographic separation, which exhibited a compound with retention time and nuclear magnetic resonance spectra compatible with GA's commercial standard and data from the literature. GA alone was able to inhibit the myotoxic activity induced by the crude venom of Bothrops jararacussu and its two main myotoxins, BthTX-I and BthTX-II. Circular dichroism (CD), fluorescence spectroscopy (FS), dynamic light scattering (DLS), and interaction studies by molecular docking suggested that GA forms a complex with BthTX-I and II. Surface plasmon resonance (SPR) kinetics assays showed that GA has a high affinity for BthTX-I with a KD of 9.146 × 10-7 M. Taken together, the two-state reaction mode of GA binding to BthTX-I, and CD, FS and DLS assays, suggest that GA is able to induce oligomerization and secondary structure changes for BthTX-I and -II. GA and other tannins have been shown to be effective inhibitors of snake venoms' toxic effects, and herein we demonstrated GA's ability to bind to and inhibit a snake venom PLA2, thus proposing a new mechanism of PLA2 inhibition, and presenting more evidence of GA's potential as an antivenom compound.


Subject(s)
Anacardium/chemistry , Gallic Acid/pharmacology , Myotoxicity/drug therapy , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Snake Venoms/enzymology , Animals , Disease Models, Animal , Gallic Acid/chemistry , Gene Expression Regulation, Enzymologic/drug effects , Male , Mice , Myotoxicity/enzymology , Myotoxicity/etiology , Phospholipase A2 Inhibitors/chemistry , Phospholipases A2/chemistry , Plant Stems/chemistry , Reptilian Proteins/chemistry , Reptilian Proteins/metabolism , Surface Plasmon Resonance
5.
J Chem Ecol ; 47(10-11): 907-914, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34165686

ABSTRACT

The use of venom in predation exerts a corresponding selection pressure for the evolution of venom resistance. One of the mechanisms related to venom resistance in animals (predators or prey of snakes) is the presence of molecules in the blood that can bind venom toxins, and inhibit their pharmacological effects. One such toxin type are venom phospholipase A2s (PLA2s), which have diverse effects including anticoagulant, myotoxic, and neurotoxic activities. BoaγPLI isolated from the blood of Boa constrictor has been previously shown to inhibit venom PLA2s that induced myotoxic and edematogenic activities. Recently, in addition to its previously described and very potent neurotoxic effect, the venoms of American coral snakes (Micrurus species) have been shown to have anticoagulant activity via PLA2 toxins. As coral snakes eat other snakes as a major part of their diet, neonate Boas could be susceptible to predation by this sympatric species. Thus, this work aimed to ascertain if BoaγPLI provided a protective effect against the anticoagulant toxicity of venom from the model species Micrurus laticollaris in addition to its ability shown previously against other toxin types. Using a STA R Max coagulation analyser robot to measure the effect upon clotting time, and TEG5000 thromboelastographers to measure the effect upon clot strength, we evaluated the ability of BoaγPLI to inhibit M. laticollaris venom. Our results indicate that BoaγPLI is efficient at inhibiting the M. laticollaris anticoagulant effect, reducing the time of coagulation (restoring them closer to non-venom control values) and increasing the clot strength (restoring them closer to non-venom control values). These findings demonstrate that endogenous PLA2 inhibitors in the blood of non-venomous snakes are multi-functional and provide broad resistance against a myriad of venom PLA2-driven toxic effects including coagulotoxicity, myotoxicity, and neurotoxicity. This novel form of resistance could be evidence of selective pressures caused by predation from venomous snakes and stresses the need for field-based research aimed to expand our understanding of the evolutionary dynamics of such chemical arms race.


Subject(s)
Boidae , Coral Snakes , Phospholipases A2/toxicity , Reptilian Proteins/toxicity , Snake Venoms/chemistry , Sympatry , Venoms/chemistry , Animals , Phospholipases A2/chemistry , Predatory Behavior , Reptilian Proteins/chemistry , Snake Venoms/analysis , Snake Venoms/enzymology , Venoms/analysis , Venoms/enzymology
6.
Toxins (Basel) ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: mdl-33923919

ABSTRACT

Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein-protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein-protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.


Subject(s)
Phospholipases A2/metabolism , Snake Venoms/enzymology , Amino Acid Motifs , Animals , Binding Sites , Conserved Sequence , Models, Molecular , Phospholipases A2/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity
7.
Toxicol Lett ; 333: 211-221, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32841740

ABSTRACT

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.


Subject(s)
Antivenins/pharmacology , Blood Coagulation/drug effects , Hemorrhage/prevention & control , Metalloproteases/toxicity , Snake Venoms/enzymology , Animals , Bothrops , Female , Hemorrhage/blood , Hemorrhage/chemically induced , Hemorrhage/physiopathology , Humans , Intravital Microscopy , Male , Metalloproteases/chemistry , Mice , Microcirculation/drug effects , Microvessels/diagnostic imaging , Microvessels/drug effects , Microvessels/pathology , Protein Isoforms
8.
Mol Biol Evol ; 37(12): 3563-3575, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32722789

ABSTRACT

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Subject(s)
Evolution, Molecular , Matrix Metalloproteinases/metabolism , Snake Venoms/enzymology , Snakes/metabolism , Animals , Matrix Metalloproteinases/genetics , Phenotype , Proteolysis , Snake Venoms/genetics , Snakes/genetics , Transcriptome
9.
Int J Biol Macromol ; 164: 616-625, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32698062

ABSTRACT

Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.


Subject(s)
Antiviral Agents/pharmacology , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Snakes/metabolism , Animals , Dengue Virus/drug effects , Drug Resistance, Viral/drug effects , HIV/drug effects , Hepacivirus/drug effects , Molecular Docking Simulation , Reptilian Proteins/pharmacology , Yellow fever virus/drug effects
10.
Biomolecules ; 10(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532115

ABSTRACT

Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2α. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid droplet synthesis. Additionally, it was shown that the increased availability of arachidonic acid arising from phospholipid hydrolysis promoted abundant eicosanoid synthesis. The inactive form, MT-II, failed to produce any of the effects described above. These studies provide a complete lipidomic characterization of the monocyte response to snake venom group IIA phospholipase A2, and reveal significant connections among lipid droplet biogenesis, cell signaling and biochemical pathways that contribute to initiating the inflammatory response.


Subject(s)
Cytosol/enzymology , Group IV Phospholipases A2/metabolism , Lipid Droplets/metabolism , Lipidomics , Monocytes/metabolism , Snake Venoms/enzymology , Animals , Bothrops , Cells, Cultured , Healthy Volunteers , Humans
11.
Biomolecules ; 10(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380792

ABSTRACT

Antisense oligonucleotides conjugated with boron clusters (B-ASOs) have been described as potential gene expression inhibitors and carriers of boron for boron neutron capture therapy (BNCT), providing a dual-action therapeutic platform. In this study, we tested the nucleolytic stability of DNA oligonucleotides labeled with metallacarborane [(3,3'-iron-1,2,1',2'-dicarbollide)(-1)]ate [Fe(C2B9H11)2] (FESAN) against snake venom phosphodiesterase (svPDE, 3'→5'-exonuclease). Contrary to the previously observed protective effect of carborane (C2B10H12) modifications, the B-ASOs containing a metallacarborane moiety at the 5'-end of the oligonucleotide chain were hydrolyzed faster than their parent nonmodified oligomers. Interestingly, an enhancement in the hydrolysis rate was also observed in the presence of free metallacarborane, and this reaction was dependent on the concentration of the metallacarborane. Microscale thermophoresis (MST) analysis confirmed the high affinity (Kd nM range) of the binding of the metallacarborane to the proteins of crude snake venom and the moderate affinity (Kd µM range) between the metallacarborane and the short single-stranded DNA. We hypothesize that the metallacarborane complex covalently bound to B-ASO holds DNA molecules close to the protein surface, facilitating enzymatic cleavage. The addition of metallacarborane alone to the ASO/svPDE reaction mixture provides the interface to attract freely floating DNA molecules. In both cases, the local DNA concentration around the enzymes increases, giving rise to faster hydrolysis. It was experimentally shown that an allosteric effect, possibly attributable to the observed boost in the 3´â†’5´-exonucleolytic activity of snake venom phosphodiesterase, is much less plausible.


Subject(s)
Boron Compounds/chemistry , DNA, Antisense/analogs & derivatives , Phosphoric Diester Hydrolases/metabolism , Snake Venoms/enzymology , Hydrolysis , Protein Binding , Substrate Specificity
12.
Biochimie ; 174: 171-188, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32302625

ABSTRACT

We investigated the histology of Duvernoy's venom gland and the biochemical and biological activities of Leptodeira annulata snake venom. The venom gland had a lobular organization, with secretory tubules formed by serous epithelial cells surrounding each lobular duct. The latter drained into a common lobular duct and subsequently into a central cistern. In contrast, the supralabial gland was mucous in nature. SDS-PAGE revealed a profile of venom components that differed from pitviper (Bothrops spp.) venoms. RP-HPLC also revealed greater complexity of this venom compared to Bothrops venoms. The venom had no esterase, l-amino acid oxidase or thrombin-like activity, but was proteolytic towards elastin-Congo red, fibrin, fibrinogen, gelatin and hide powder azure. The venom showed strong α-fibrinogenase and fibrinolytic activities and reduced the rate and extent of plasma recalcification. The proteolytic activity was inhibited by EDTA and 1,10-phenanthroline (metalloproteinase inhibitors) but not by AEBSF and PMSF (serine proteinase inhibitors). The venom had phospholipase A2 (PLA2) activity that was inhibited by varespladib. The venom cross-reacted with antivenoms to lancehead (Bothrops spp.), coralsnake (Micrurus spp.) and rattlesnake (Crotalus durissus terrificus) venoms. The venom did not aggregate rat platelets or inhibit collagen-induced aggregation, but partially inhibited thrombin-induced aggregation. The venom was hemorrhagic (inhibited by EDTA) and increased the vascular permeability (inhibited by varespladib) in rat dorsal skin. In gastrocnemius muscle, the venom caused myonecrosis and increased serum creatine kinase concentrations. In conclusion, L. annulata venom has various enzymatic and biological activities, with the local effects being mediated primarily by metalloproteinases and PLA2.


Subject(s)
Colubridae , Snake Venoms , Animals , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , Snake Venoms/chemistry , Snake Venoms/enzymology
13.
Toxins (Basel) ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283690

ABSTRACT

Antibiotics are often administered with antivenom following snakebite envenomings in order to avoid secondary bacterial infections. However, to this date, no studies have evaluated whether antibiotics may have undesirable potentiating effects on snake venom. Herein, we demonstrate that four commonly used antibiotics affect the enzymatic activities of proteolytic snake venom toxins in two different in vitro assays. Similar findings in vivo could have clinical implications for snakebite management and require further examination.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fibrinogen/metabolism , Fibrinolysis/drug effects , Serine Proteases/metabolism , Snake Venoms/enzymology , Ampicillin/pharmacology , Cloxacillin/pharmacology , Kanamycin/pharmacology
14.
Biochem Soc Trans ; 48(2): 719-731, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32267491

ABSTRACT

The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.


Subject(s)
Apoptosis , L-Amino Acid Oxidase/metabolism , Phospholipases A2/metabolism , Snake Venoms/enzymology , Animals , Antineoplastic Agents/pharmacology , Cell Cycle , Cell Death/drug effects , Cell Proliferation , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Ligands , Lipolysis , Neoplasms/drug therapy , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction
15.
Toxicon ; 178: 1-3, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32094098

ABSTRACT

Binding of two P-III snake venom metalloproteinase (SVMPs), one procoagulant and one hemorrhagic, to microvessels was compared in an ex vivo model. The procoagulant SVMP did not bind to the microvasculature, in contrast to the clear localization on microvessels of the hemorrhagic SVMP. Deglycosylation of the procoagulant enzyme did not enable this toxin to bind to microvessels, suggesting that glycosylation is not interfering with binding. These observations suggest that procoagulant SVMPs lack exosites for interaction with microvessels components.


Subject(s)
Abdominal Muscles/physiology , Metalloendopeptidases/metabolism , Snake Venoms/metabolism , Animals , Mice , Snake Venoms/enzymology
16.
Toxins (Basel) ; 12(2)2020 02 20.
Article in English | MEDLINE | ID: mdl-32093386

ABSTRACT

The phospholipase A2 (PLA2) inhibitor Varespladib (LY315920) and its orally bioavailable prodrug, methyl-Varespladib (LY333013) inhibit PLA2 activity of a wide variety of snake venoms. In this study, the ability of these two forms of Varespladib to halt or delay lethality of potent neurotoxic snake venoms was tested in a mouse model. The venoms of Notechis scutatus, Crotalus durissus terrificus, Bungarus multicinctus, and Oxyuranus scutellatus, all of which have potent presynaptically acting neurotoxic PLA2s of variable quaternary structure, were used to evaluate simple dosing regimens. A supralethal dose of each venom was injected subcutaneously in mice, followed by the bolus intravenous (LY315920) or oral (LY333013) administration of the inhibitors, immediately and at various time intervals after envenoming. Control mice receiving venom alone died within 3 h of envenoming. Mice injected with O. scutellatus venom and treated with LY315920 or LY333013 survived the 24 h observation period, whereas those receiving C. d. terrificus and B. multicinctus venoms survived at 3 h or 6 h with a single dose of either form of Varespladib, but not at 24 h. In contrast, mice receiving N. scutatus venom and then the inhibitors died within 3 h, similarly to the control animals injected with venom alone. LY315920 was able to reverse the severe paralytic manifestations in mice injected with venoms of O. scutellatus, B. multicinctus, and C. d. terrificus. Overall, results suggest that the two forms of Varespladib are effective in abrogating, or delaying, neurotoxic manifestations induced by some venoms whose neurotoxicity is mainly dependent on presynaptically acting PLA2s. LY315920 is able to reverse paralytic manifestations in severely envenomed mice, but further work is needed to understand the significance of species-specific differences in animal models as they compare to clinical syndromes in human and for potential use in veterinary medicine.


Subject(s)
Acetates/pharmacology , Indoles/pharmacology , Neurotoxicity Syndromes/prevention & control , Phospholipase A2 Inhibitors/pharmacology , Snake Bites/drug therapy , Snake Venoms/toxicity , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Keto Acids , Lethal Dose 50 , Mice , Phospholipases A2/metabolism , Snake Venoms/enzymology , Survival Analysis , Time Factors
17.
Toxins (Basel) ; 12(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31979014

ABSTRACT

The active components of snake venoms encompass a complex and variable mixture of proteins that produce a diverse, but largely stereotypical, range of pharmacologic effects and toxicities. Venom protein diversity and host susceptibilities determine the relative contributions of five main pathologies: neuromuscular dysfunction, inflammation, coagulopathy, cell/organ injury, and disruption of homeostatic mechanisms of normal physiology. In this review, we describe how snakebite is not only a condition mediated directly by venom, but by the amplification of signals dysregulating inflammation, coagulation, neurotransmission, and cell survival. Although venom proteins are diverse, the majority of important pathologic events following envenoming follow from a small group of enzyme-like activities and the actions of small toxic peptides. This review focuses on two of the most important enzymatic activities: snake venom phospholipases (svPLA2) and snake venom metalloproteases (svMP). These two enzyme classes are adept at enabling venom to recruit homologous endogenous signaling systems with sufficient magnitude and duration to produce and amplify cell injury beyond what would be expected from the direct impact of a whole venom dose. This magnification produces many of the most acutely important consequences of envenoming as well as chronic sequelae. Snake venom PLA2s and MPs enzymes recruit prey analogs of similar activity. The transduction mechanisms that recruit endogenous responses include arachidonic acid, intracellular calcium, cytokines, bioactive peptides, and possibly dimerization of venom and prey protein homologs. Despite years of investigation, the precise mechanism of svPLA2-induced neuromuscular paralysis remains incomplete. Based on recent studies, paralysis results from a self-amplifying cycle of endogenous PLA2 activation, arachidonic acid, increases in intracellular Ca2+ and nicotinic receptor deactivation. When prolonged, synaptic suppression supports the degeneration of the synapse. Interaction between endothelium-damaging MPs, sPLA2s and hyaluronidases enhance venom spread, accentuating venom-induced neurotoxicity, inflammation, coagulopathy and tissue injury. Improving snakebite treatment requires new tools to understand direct and indirect effects of envenoming. Homologous PLA2 and MP activities in both venoms and prey/snakebite victim provide molecular targets for non-antibody, small molecule agents for dissecting mechanisms of venom toxicity. Importantly, these tools enable the separation of venom-specific and prey-specific pathological responses to venom.


Subject(s)
Snake Venoms/toxicity , Animals , Blood Coagulation , Humans , Inflammation/metabolism , Metalloproteases/metabolism , Phospholipases A2, Secretory/metabolism , Reptilian Proteins/metabolism , Signal Transduction , Snake Venoms/chemistry , Snake Venoms/enzymology
18.
Biochem Biophys Res Commun ; 521(2): 402-407, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668920

ABSTRACT

Snake venom metalloproteinases (SVMPs) are key toxins involved in local inflammatory reactions after snakebites. This study aimed to investigate the effect of SVMP domains on the alterations in leukocyte-endothelium interactions in the microcirculation of mouse cremaster muscle. We studied three toxins: BnP1, a PI-toxin isolated from Bothrops neuwiedi venom, which only bears a catalytic domain; Jararhagin (Jar), a PIII-toxin isolated from Bothrops jararaca venom with a catalytic domain, as well as ECD-disintegrin and cysteine-rich domains; and Jar-C, which is produced from the autolysis of Jar and devoid of a catalytic domain. All these toxins induced an increase in the adhesion and migration of leukocytes. By inhibiting the catalytic activity of Jar and BnP1 with 1.10-phenanthroline (oPhe), leukocytes were no longer recruited. Circular dichroism analysis showed structural changes in oPhe-treated Jar, but these changes were not enough to prevent the binding of Jar to collagen, which occurred through the ECD-disintegrin domain. The results showed that the catalytic domain of SVMPs is the principal domain responsible for the induction of leukocyte recruitment and suggest that the other domains could also present inflammatory potential only when devoid of the catalytic domain, as with Jar-C.


Subject(s)
Catalytic Domain/physiology , Leukocytes/pathology , Metalloproteases/pharmacology , Snake Venoms/enzymology , Abdominal Muscles/blood supply , Animals , Bothrops , Cell Adhesion/drug effects , Cell Movement/drug effects , Endothelium/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Metalloproteases/chemistry , Mice , Microcirculation
19.
Chem Biol Interact ; 317: 108903, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31811862

ABSTRACT

The snake venom miotoxin (MT)-III is a group IIA secreted phospholipase A2 (sPLA2) with pro-inflammatory activities. Previous studies have demonstrated that MT-III has the ability to stimulate macrophages to release inflammatory lipid mediators derived from arachidonic acid metabolism. Among them, we highlight prostaglandin (PG)E2 produced by the cyclooxygenase (COX)-2 pathway, through activation of nuclear factor (NF)-κB. However, the mechanisms coordinating this process are not fully understood. This study investigates the regulatory mechanisms exerted by other groups of bioactive eicosanoids derived from 12-lipoxygenase (12-LO), in particular 12-hydroxyeicosatetraenoic (12-HETE), on group IIA sPLA2-induced (i) PGE2 release, (ii) COX-2 expression, and (iii) activation of signaling pathways p38 mitogen-activated protein kinases(p38MAPK), protein C kinase (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-κB. Stimulation of macrophages with group IIA sPLA2 resulted in release of 12-HETE without modification of 12-LO protein levels. Pre-treatment of these cells with baicalein, a 12-LO inhibitor, decreased the sPLA2-induced PGE2 production, significantly reduced COX-2 expression, and inhibited sPLA2-induced ERK; however, it did not affect p38MAPK or PKC phosphorylation. In turn, sPLA2-induced PGE2 release and COX-2 expression, but not NF-κB activation, was attenuated by pre-treating macrophages with PD98059 an inhibitor of ERK1/2. These results suggest that, in macrophages, group IIA sPLA2-induced PGE2 release and COX-2 protein expression are distinctly mediated through 12-HETE followed by ERK1/2 pathway activation, independently of NF-κB activation. These findings highlight an as yet undescribed mechanism by which 12-HETE regulates one of the distinct signaling pathways for snake venom group IIA sPLA2-induced PGE2 release and COX-2 expression in macrophages.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Group II Phospholipases A2/pharmacology , Macrophages, Peritoneal/drug effects , Snake Venoms/enzymology , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics , Animals , Cells, Cultured , Cyclooxygenase 2/genetics , Dinoprostone/genetics , Gene Expression Regulation, Enzymologic/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice
20.
Int J Biol Macromol ; 154: 1517-1527, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31759013

ABSTRACT

This study reports the purification of ML-LAAO, a new LAAO from the venom of Micrurus lemniscatus snake (ML-V), using size exclusion chromatography. ML-LAAO is a 69-kDa glycoprotein that represents ~2.0% of total venom proteins. This enzyme exhibited optimal activity at pH 8.5, displaying high specificity toward hydrophobic l-amino acids. MALDI TOF/TOF and Blast analysis identified internal segments in ML-LAAO that share high sequence identity with homologous snake venom LAAOs. Western blot analysis on two-dimensional SDS-PAGE of ML-V, using anti-LAAO revealed the presence of ML-LAAO isoforms (pI 6.3-8.9). ML-LAAO blocked aggregation induced by collagen on washed platelets in a rather weak manner, it did not, however, inhibit platelet aggregation induced by ADP on platelet-rich plasma. In addition, this enzyme displayed in vitro antibacterial activity against Staphylococcus aureus (MIC/MBC of 0.39 µg/mL) and in vitro leishmanicidal action against Leishmania amazonensis and L. chagasi (IC50 values of 0.14 and 0.039 µg/mL, respectively). These activities were significantly reduced by catalase, suggesting that hydrogen peroxide production is involved in some way. The data presented here revealed that ML-LAAO has bactericidal and leishmanicidal effects, suggesting that it may have therapeutic potential.


Subject(s)
Coral Snakes , L-Amino Acid Oxidase/chemistry , L-Amino Acid Oxidase/pharmacology , Snake Venoms/enzymology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , HEK293 Cells , Humans , Leishmania/drug effects , Mice , Platelet Aggregation/drug effects , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...