Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.747
Filter
1.
PLoS One ; 19(5): e0301270, 2024.
Article in English | MEDLINE | ID: mdl-38722951

ABSTRACT

Mixed-species groups and aggregations are quite common and may provide substantial fitness-related benefits to group members. Individuals may benefit from the overall size of the mixed-species group or from the diversity of species present, or both. Here we exposed mixed-species flocks of songbirds (Carolina chickadees, Poecile carolinensis, tufted titmice, Baeolophus bicolor, and the satellite species attracted to these two species) to three different novel feeder experiments to assess the influence of mixed-species flock size and composition on ability to solve the feeder tasks. We also assessed the potential role of habitat density and traffic noise on birds' ability to solve these tasks. We found that likelihood of solving a novel feeder task was associated with mixed-species flock size and composition, though the specific social factor involved depended on the particular species and on the novel feeder. We did not find an influence of habitat density or background traffic noise on likelihood of solving novel feeder tasks. Overall, our results reveal the importance of variation in mixed-species group size and diversity on foraging success in these songbirds.


Subject(s)
Ecosystem , Animals , Songbirds/physiology , Feeding Behavior/physiology , Social Behavior , Species Specificity , Population Density , Behavior, Animal/physiology
2.
Commun Biol ; 7(1): 472, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724671

ABSTRACT

Many species communicate by combining signals into multimodal combinations. Elephants live in multi-level societies where individuals regularly separate and reunite. Upon reunion, elephants often engage in elaborate greeting rituals, where they use vocalisations and body acts produced with different body parts and of various sensory modalities (e.g., audible, tactile). However, whether these body acts represent communicative gestures and whether elephants combine vocalisations and gestures during greeting is still unknown. Here we use separation-reunion events to explore the greeting behaviour of semi-captive elephants (Loxodonta africana). We investigate whether elephants use silent-visual, audible, and tactile gestures directing them at their audience based on their state of visual attention and how they combine these gestures with vocalisations during greeting. We show that elephants select gesture modality appropriately according to their audience's visual attention, suggesting evidence of first-order intentional communicative use. We further show that elephants integrate vocalisations and gestures into different combinations and orders. The most frequent combination consists of rumble vocalisations with ear-flapping gestures, used most often between females. By showing that a species evolutionarily distant to our own primate lineage shows sensitivity to their audience's visual attention in their gesturing and combines gestures with vocalisations, our study advances our understanding of the emergence of first-order intentionality and multimodal communication across taxa.


Subject(s)
Animal Communication , Elephants , Gestures , Vocalization, Animal , Animals , Elephants/physiology , Female , Male , Vocalization, Animal/physiology , Social Behavior
3.
Curr Biol ; 34(9): R335-R337, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714157

ABSTRACT

A new study compiles compelling evidence that stingless bees construct their brood combs in a self-organised manner in which local modification of a structure stimulates further modifications, a process known as stigmergy.


Subject(s)
Nesting Behavior , Animals , Bees/physiology , Nesting Behavior/physiology , Social Behavior , Behavior, Animal/physiology
4.
Curr Biol ; 34(9): R353-R355, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714164

ABSTRACT

A new paper shows that rates of aggression are higher, and rates of coalition formation are lower, among male bonobos than among male chimpanzees. These findings are noteworthy because they challenge the view that female bonobos' preferences for less aggressive males favored a reduction in male aggression and an increase in social tolerance.


Subject(s)
Aggression , Behavior, Animal , Pan paniscus , Pan troglodytes , Animals , Pan paniscus/psychology , Pan paniscus/physiology , Male , Female , Pan troglodytes/psychology , Pan troglodytes/physiology , Behavior, Animal/physiology , Social Behavior
5.
Aggress Behav ; 50(3): e22148, 2024 May.
Article in English | MEDLINE | ID: mdl-38747497

ABSTRACT

Although there is a large research base on the psychological impacts of violent and prosocial visual media, there is little research addressing the impacts of violent and prosocial music, and which facets of the music have the greatest impact. Four experiments tested the impact of lyrics and/or musical tone on aggressive and prosocial behavior, and on underlying psychological processes, using purpose-built songs to avoid the effect of music-related confounds. In study one, where mildly aggressive, overtly aggressive and violent lyrics were compared to neutral lyrics, any level of lyrical aggression caused an increase in behavioral aggression, which plateaued for all three aggression conditions. Violent lyrics were better recalled than other lyrics one week later. In studies two-three no significant effects of lyrics, or of aggressive versus nonaggressive musical tone, were found on aggressive or prosocial behavior. In terms of internal states, violent lyrics increased hostility/hostile cognitions in all studies, and negatively impacted affective state in three studies. Prosocial lyrics decreased hostility/hostile cognitions in three studies, but always in tandem with another factor. Aggressive musical tone increased physiological arousal in two studies and increased negative affect in one. In study four those who listened to violent lyrics drove more aggressively on a simulated drive that included triggers for aggression. Overall, violent lyrics consistently elicited hostility/hostile cognitions and negative affect, but these did not always translate to aggressive behavior. Violent music seems more likely to elicit behavioral aggression when there are aggression triggers and a clear way to aggress. Implications are discussed.


Subject(s)
Aggression , Music , Humans , Music/psychology , Aggression/psychology , Male , Female , Adult , Young Adult , Violence/psychology , Hostility , Social Behavior , Adolescent , Emotions/physiology , Thinking/physiology
6.
BMC Psychiatry ; 24(1): 359, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745143

ABSTRACT

BACKGROUND: Delays in early social and executive function are predictive of later developmental delays and eventual neurodevelopmental diagnoses. There is limited research examining such markers in the first year of life. High-risk infant groups commonly present with a range of neurodevelopmental challenges, including social and executive function delays, and show higher rates of autism diagnoses later in life. For example, it has been estimated that up to 30% of infants diagnosed with cerebral palsy (CP) will go on to be diagnosed with autism later in life. METHODS: This article presents a protocol of a prospective longitudinal study. The primary aim of this study is to identify early life markers of delay in social and executive function in high-risk infants at the earliest point in time, and to explore how these markers may relate to the increased risk for social and executive delay, and risk of autism, later in life. High-risk infants will include Neonatal Intensive Care Unit (NICU) graduates, who are most commonly admitted for premature birth and/or cardiovascular problems. In addition, we will include infants with, or at risk for, CP. This prospective study will recruit 100 high-risk infants at the age of 3-12 months old and will track social and executive function across the first 2 years of their life, when infants are 3-7, 8-12, 18 and 24 months old. A multi-modal approach will be adopted by tracking the early development of social and executive function using behavioural, neurobiological, and caregiver-reported everyday functioning markers. Data will be analysed to assess the relationship between the early markers, measured from as early as 3-7 months of age, and the social and executive function as well as the autism outcomes measured at 24 months. DISCUSSION: This study has the potential to promote the earliest detection and intervention opportunities for social and executive function difficulties as well as risk for autism in NICU graduates and/or infants with, or at risk for, CP. The findings of this study will also expand our understanding of the early emergence of autism across a wider range of at-risk groups.


Subject(s)
Cerebral Palsy , Executive Function , Intensive Care Units, Neonatal , Humans , Cerebral Palsy/psychology , Executive Function/physiology , Prospective Studies , Infant , Female , Male , Longitudinal Studies , Child Development/physiology , Autistic Disorder/psychology , Social Behavior , Risk Factors , Child, Preschool
7.
BMC Biol ; 22(1): 109, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735942

ABSTRACT

BACKGROUND: Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. RESULTS: We provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (< 200 k years), 8-Mb non-recombining region segregating with the observed social niche polymorphism. This region shares several characteristics with supergenes underlying social polymorphisms in other socially polymorphic ant species. However, we also find remarkable differences from previously described social supergenes. Particularly, four additional genomic regions not in linkage with the supergene show signatures of a selective sweep in the pleometrotic population. Within these regions, we find for example genes crucial for epigenetic regulation via histone modification (chameau) and DNA methylation (Dnmt1). CONCLUSIONS: Altogether, our results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift.


Subject(s)
Ants , Animals , Ants/genetics , Social Behavior , Genomics , Genome, Insect , Polymorphism, Genetic , Biological Evolution , Female , California , Evolution, Molecular
8.
Nat Commun ; 15(1): 4013, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740778

ABSTRACT

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Subject(s)
Basal Forebrain , Fear , Habenula , Neurons , Animals , Habenula/physiology , Male , Fear/physiology , Basal Forebrain/physiology , Basal Forebrain/metabolism , Mice , Neurons/physiology , Neurons/metabolism , Optogenetics , Mice, Inbred C57BL , Social Behavior , Behavior, Animal/physiology , Neural Pathways/physiology , Glutamic Acid/metabolism , Conditioning, Classical/physiology
9.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709918

ABSTRACT

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Subject(s)
Anxiety , Arginine Vasopressin , Receptors, Vasopressin , Septal Nuclei , Social Behavior , Animals , Male , Female , Anxiety/metabolism , Mice , Septal Nuclei/metabolism , Septal Nuclei/physiology , Arginine Vasopressin/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Sex Characteristics , Optogenetics , Behavior, Animal/physiology , Vasopressins/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology
10.
Proc Biol Sci ; 291(2022): 20240055, 2024 May.
Article in English | MEDLINE | ID: mdl-38689557

ABSTRACT

Cooperation is common in animals, yet the specific mechanisms driving collaborative behaviour in different species remain unclear. We investigated the proximate mechanisms underlying the cooperative behaviour of bumblebees in two different tasks, where bees had to simultaneously push a block in an arena or a door at the end of a tunnel for access to reward. In both tasks, when their partner's entry into the arena/tunnel was delayed, bees took longer to first push the block/door compared with control bees that learned to push alone. In the tunnel task, just before gaining access to reward, bees were more likely to face towards their partner than expected by chance or compared with controls. These results show that bumblebees' cooperative behaviour is not simply a by-product of individual efforts but is socially influenced. We discuss how bees' turning behaviours, e.g. turning around before first reaching the door when their partner was delayed and turning back towards the door in response to seeing their partner heading towards the door, suggest the potential for active coordination. However, because these behaviours could also be interpreted as combined responses to social and secondary reinforcement cues, future studies are needed to help clarify whether bumblebees truly use active coordination.


Subject(s)
Cooperative Behavior , Animals , Bees/physiology , Social Behavior , Behavior, Animal , Reward
11.
Nat Commun ; 15(1): 3685, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693116

ABSTRACT

Sleep, locomotor and social activities are essential animal behaviors, but their reciprocal relationships and underlying mechanisms remain poorly understood. Here, we elicit information from a cutting-edge large-language model (LLM), generative pre-trained transformer (GPT) 3.5, which interprets 10.2-13.8% of Drosophila genes known to regulate the 3 behaviors. We develop an instrument for simultaneous video tracking of multiple moving objects, and conduct a genome-wide screen. We have identified 758 fly genes that regulate sleep and activities, including mre11 which regulates sleep only in the presence of conspecifics, and NELF-B which regulates sleep regardless of whether conspecifics are present. Based on LLM-reasoning, an educated signal web is modeled for understanding of potential relationships between its components, presenting comprehensive molecular signatures that control sleep, locomotor and social activities. This LLM-aided strategy may also be helpful for addressing other complex scientific questions.


Subject(s)
Behavior, Animal , Drosophila melanogaster , Locomotion , Sleep , Animals , Sleep/physiology , Sleep/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Locomotion/physiology , Locomotion/genetics , Behavior, Animal/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Social Behavior , Male
12.
Sci Rep ; 14(1): 9971, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693325

ABSTRACT

Sociopositive interactions with conspecifics are essential for equine welfare and quality of life. This study aimed to validate the use of wearable ultra-wideband (UWB) technology to quantify the spatial relationships and dynamics of social behaviour in horses by continuous (1/s) measurement of interindividual distances. After testing the UWB devices' spatiotemporal accuracy in a static environment, the UWB measurement validity, feasibility and utility under dynamic field conditions was assessed in a group of 8 horses. Comparison of the proximity measurements with video surveillance data established the measurement accuracy and validity (r = 0.83, p < 0.0001) of the UWB technology. The utility for social behaviour research was demonstrated by the excellent accordance of affiliative relationships (preferred partners) identified using UWB with video observations. The horses remained a median of 5.82 m (95% CI 5.13-6.41 m) apart from each other and spent 20% (median, 95% CI 14-26%) of their time in a distance ≤ 3 m to their preferred partner. The proximity measurements and corresponding speed calculation allowed the identification of affiliative versus agonistic approaches based on differences in the approach speed and the distance and duration of the resulting proximity. Affiliative approaches were statistically significantly slower (median: 1.57 km/h, 95% CI 1.26-1.92 km/h, p = 0.0394) and resulted in greater proximity (median: 36.75 cm, 95% CI 19.5-62 cm, p = 0.0003) to the approached horse than agonistic approaches (median: 3.04 km/h, 95% CI 2.16-3.74 km/h, median proximity: 243 cm, 95% CI 130-319 cm), which caused an immediate retreat of the approached horse at a significantly greater speed (median: 3.77 km/h, 95% CI 3.52-5.85 km/h, p < 0.0001) than the approach.


Subject(s)
Behavior, Animal , Social Behavior , Animals , Horses , Male , Female , Wearable Electronic Devices , Video Recording
13.
Cereb Cortex ; 34(13): 104-111, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696603

ABSTRACT

Autism is characterized by atypical social communication styles. To investigate whether individuals with high autistic traits could still have effective social communication among each other, we compared the behavioral patterns and communication quality within 64 dyads of college students paired with both high, both low, and mixed high-low (HL) autistic traits, with their gender matched. Results revealed that the high-high (HH) autistic dyads exhibited atypical behavioral patterns during conversations, including reduced mutual gaze, communicational turns, and emotional sharing compared with the low-low and/or HL autistic dyads. However, the HH autistic dyads displayed enhanced interpersonal neural synchronization during social communications measured by functional near-infrared spectroscopy, suggesting an effective communication style. Besides, they also provided more positive subjective evaluations of the conversations. These findings highlight the potential for alternative pathways to effectively communicate with the autistic community, contribute to a deeper understanding of how high autistic traits influence social communication dynamics among autistic individuals, and provide important insights for the clinical practices for supporting autistic people.


Subject(s)
Autistic Disorder , Communication , Spectroscopy, Near-Infrared , Humans , Male , Female , Young Adult , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Interpersonal Relations , Social Behavior , Social Interaction , Brain/physiopathology , Brain/physiology , Adult , Cortical Synchronization/physiology , Adolescent
14.
Cereb Cortex ; 34(13): 40-49, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696607

ABSTRACT

Attentional reorienting is dysfunctional not only in children with autism spectrum disorder (ASD), but also in infants who will develop ASD, thus constituting a potential causal factor of future social interaction and communication abilities. Following the research domain criteria framework, we hypothesized that the presence of subclinical autistic traits in parents should lead to atypical infants' attentional reorienting, which in turn should impact on their future socio-communication behavior in toddlerhood. During an attentional cueing task, we measured the saccadic latencies in a large sample (total enrolled n = 89; final sample n = 71) of 8-month-old infants from the general population as a proxy for their stimulus-driven attention. Infants were grouped in a high parental traits (HPT; n = 23) or in a low parental traits (LPT; n = 48) group, according to the degree of autistic traits self-reported by their parents. Infants (n = 33) were then longitudinally followed to test their socio-communicative behaviors at 21 months. Results show a sluggish reorienting system, which was a longitudinal predictor of future socio-communicative skills at 21 months. Our combined transgenerational and longitudinal findings suggest that the early functionality of the stimulus-driven attentional network-redirecting attention from one event to another-could be directly connected to future social and communication development.


Subject(s)
Attention , Parents , Humans , Male , Female , Infant , Attention/physiology , Parents/psychology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Social Behavior , Communication , Longitudinal Studies , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Cues , Saccades/physiology , Adult
15.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732220

ABSTRACT

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Subject(s)
Decision Making , Serotonin , Tryptophan Hydroxylase , Animals , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Serotonin/metabolism , Rats , Male , Social Behavior , Gene Knockdown Techniques , Behavior, Animal , Cognition , Hypothalamus/metabolism
16.
Neurosci Biobehav Rev ; 161: 105667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599356

ABSTRACT

Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.


Subject(s)
Body Temperature Regulation , Social Behavior , Body Temperature Regulation/physiology , Humans , Animals , Brain/physiology , Neurons/physiology , Neural Pathways/physiology
17.
J Neuroimmunol ; 390: 578341, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613873

ABSTRACT

Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.


Subject(s)
Asthma , Interleukin-4 , Mice, Inbred C57BL , Mice, Knockout , Prenatal Exposure Delayed Effects , Animals , Female , Mice , Pregnancy , Asthma/immunology , Asthma/genetics , Interleukin-4/genetics , Interleukin-4/deficiency , Prenatal Exposure Delayed Effects/immunology , Behavior, Animal/physiology , Male , Ovalbumin/toxicity , Social Behavior , Motor Activity/physiology
18.
J Med Internet Res ; 26: e52646, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663006

ABSTRACT

BACKGROUND: Patients using web-based health care communities for e-consultation services have the option to choose their service providers from an extensive digital market. To stand out in this crowded field, doctors in web-based health care communities often engage in prosocial behaviors, such as proactive and reactive actions, to attract more users. However, the effect of these behaviors on the volume of e-consultations remains unclear and warrants further exploration. OBJECTIVE: This study investigates the impact of various prosocial behaviors on doctors' e-consultation volume in web-based health care communities and the moderating effects of doctors' digital and offline reputations. METHODS: A panel data set containing information on 2880 doctors over a 22-month period was obtained from one of the largest web-based health care communities in China. Data analysis was conducted using a 2-way fixed effects model with robust clustered SEs. A series of robustness checks were also performed, including alternative measurements of independent variables and estimation methods. RESULTS: Results indicated that both types of doctors' prosocial behaviors, namely, proactive and reactive actions, positively impacted their e-consultation volume. In terms of the moderating effects of external reputation, doctors' offline professional titles were found to negatively moderate the relationship between their proactive behaviors and their e-consultation volume. However, these titles did not significantly affect the relationship between doctors' reactive behaviors and their e-consultation volume (P=.45). Additionally, doctors' digital recommendations from patients negatively moderated both the relationship between doctors' proactive behaviors and e-consultation volume and the relationship between doctors' reactive behaviors and e-consultation volume. CONCLUSIONS: Drawing upon functional motives theory and social exchange theory, this study categorizes doctors' prosocial behaviors into proactive and reactive actions. It provides empirical evidence that prosocial behaviors can lead to an increase in e-consultation volume. This study also illuminates the moderating roles doctors' digital and offline reputations play in the relationships between prosocial behaviors and e-consultation volume.


Subject(s)
Internet , Humans , China , Female , Male , Physicians/psychology , Physicians/statistics & numerical data , Social Behavior , Adult , Remote Consultation/statistics & numerical data , Remote Consultation/methods
19.
Neurosci Biobehav Rev ; 161: 105675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608828

ABSTRACT

Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.


Subject(s)
Dopamine , Oxytocin , Social Interaction , Oxytocin/metabolism , Oxytocin/physiology , Humans , Animals , Dopamine/metabolism , Social Behavior , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Signal Transduction/physiology , Brain/metabolism , Brain/physiology
20.
Neurosci Biobehav Rev ; 161: 105674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614451

ABSTRACT

This review delves into the phenomenon of positive emotional contagion (PEC) in rodents, an area that remains relatively understudied compared to the well-explored realm of negative emotions such as fear or pain. Rodents exhibit clear preferences for individuals expressing positive emotions over neutral counterparts, underscoring the importance of detecting and responding to positive emotional signals from others. We thoroughly examine the adaptive function of PEC, highlighting its pivotal role in social learning and environmental adaptation. The developmental aspect of the ability to interpret positive emotions is explored, intricately linked to maternal care and social interactions, with oxytocin playing a central role in these processes. We discuss the potential involvement of the reward system and draw attention to persisting gaps in our understanding of the neural mechanisms governing PEC. Presenting a comprehensive overview of the existing literature, we focus on food-related protocols such as the Social Transmission of Food Preferences paradigm and tickling behaviour. Our review emphasizes the pressing need for further research to address lingering questions and advance our comprehension of positive emotional contagion.


Subject(s)
Emotions , Emotions/physiology , Animals , Humans , Social Behavior , Social Interaction , Social Learning/physiology , Behavior, Animal/physiology , Oxytocin
SELECTION OF CITATIONS
SEARCH DETAIL
...