Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.674
Filter
1.
Eur Radiol Exp ; 8(1): 61, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773044

ABSTRACT

BACKGROUND: Clinical magnetic resonance imaging (MRI) studies often use Cartesian gradient-echo (GRE) sequences with ~2-ms echo times (TEs) to monitor apparent total sodium concentration (aTSC). We compared Cartesian GRE and ultra-short echo time three-dimensional (3D) radial-readout sequences for measuring skeletal muscle aTSC. METHODS: We retrospectively evaluated 211 datasets from 112 volunteers aged 62.3 ± 12.1 years (mean ± standard deviation), acquired at 3 T from the lower leg. For 23Na MRI acquisitions, we used a two-dimensional Cartesian GRE sequence and a density-adapted 3D radial readout sequence with cuboid field-of-view (DA-3D-RAD-C). We calibrated the 23Na MR signal using reference tubes either with or without agarose and subsequently performed a relaxation correction. Additionally, we employed a six-echo 1H GRE sequence and a multi-echo spin-echo sequence to calculate proton density fat fraction (PDFF) and water T2. Paired Wilcoxon signed-rank test, Cohen dz for paired samples, and Spearman correlation were used. RESULTS: Relaxation correction effectively reduced the differences in muscle aTSC between the two acquisition and calibration methods (DA-3D-RAD-C using NaCl/agarose references: 20.05 versus 19.14 mM; dz = 0.395; Cartesian GRE using NaCl/agarose references: 19.50 versus 18.82 mM; dz = 0.427). Both aTSC of the DA-3D-RAD-C and Cartesian GRE acquisitions showed a small but significant correlation with PDFF as well as with water T2. CONCLUSIONS: Different 23Na MRI acquisition and calibration approaches affect aTSC values. Applying relaxation correction is advised to minimize the impact of sequence parameters on quantification, and considering additional fat correction is advisable for patients with increased fat fractions. RELEVANCE STATEMENT: This study highlights relaxation correction's role in improving sodium MRI accuracy, paving the way for better disease assessment and comparability of measured sodium signal in patients. KEY POINTS: • Differences in MRI acquisition methods hamper the comparability of sodium MRI measurements. • Measured sodium values depend on used MRI sequences and calibration method. • Relaxation correction during postprocessing mitigates these discrepancies. • Thus, relaxation correction enhances accuracy of sodium MRI, aiding its clinical use.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Middle Aged , Muscle, Skeletal/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Retrospective Studies , Sodium , Sodium Isotopes , Aged , Adult , Imaging, Three-Dimensional/methods
2.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732822

ABSTRACT

Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols.


Subject(s)
Magnetic Resonance Imaging , Phantoms, Imaging , Software , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/instrumentation , Sodium/chemistry , Humans , Sodium Isotopes , Image Processing, Computer-Assisted/methods , Reproducibility of Results
3.
Magn Reson Imaging ; 110: 184-194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642779

ABSTRACT

PURPOSE: 23Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low 23Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been proposed to mitigate low signal-to-noise ratio (SNR); although, these can result in unnatural images, suboptimal denoising and long processing times. Recently, machine learning has been increasingly used to denoise 1H MRI acquisitions; however, this approach typically requires large volumes of high-quality training data, which is not readily available for 23Na MRI. Here, we propose using 1H data to train a denoising convolutional neural network (CNN), which we subsequently demonstrate on prospective 23Na images of the calf. METHODS: 1893 1H fat-saturated transverse slices of the knee from the open-source fastMRI dataset were used to train denoising CNNs for different levels of noise. Synthetic low SNR images were generated by adding gaussian noise to the high-quality 1H k-space data before reconstruction to create paired training data. For prospective testing, 23Na images of the calf were acquired in 10 healthy volunteers with a total of 150 averages over ten minutes, which were used as a reference throughout the study. From this data, images with fewer averages were retrospectively reconstructed using a non-uniform fast Fourier transform (NUFFT) as well as CS, with the NUFFT images subsequently denoised using the trained CNN. RESULTS: CNNs were successfully applied to 23Na images reconstructed with 50, 40 and 30 averages. Muscle and skin apparent TSC quantification from CNN-denoised images were equivalent to those from CS images, with <0.9 mM bias compared to reference values. Estimated SNR was significantly higher in CNN-denoised images compared to NUFFT, CS and reference images. Quantitative edge sharpness was equivalent for all images. For subjective image quality ranking, CNN-denoised images ranked equally best with reference images and significantly better than NUFFT and CS images. CONCLUSION: Denoising CNNs trained on 1H data can be successfully applied to 23Na images of the calf; thus, allowing scan time to be reduced from ten minutes to two minutes with little impact on image quality or apparent TSC quantification accuracy.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Signal-To-Noise Ratio , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Leg/diagnostic imaging , Male , Adult , Female , Sodium Isotopes , Prospective Studies , Sodium , Healthy Volunteers , Muscle, Skeletal/diagnostic imaging
4.
NMR Biomed ; 35(2): e4627, 2022 02.
Article in English | MEDLINE | ID: mdl-34652040

ABSTRACT

Despite the technical challenges that require lengthy acquisitions to overcome poor signal-to-noise ratio (SNR), sodium (23 Na) magnetic resonance imaging (MRI) is an intriguing area of research due to its essential role in human metabolism. Low SNR images can impact the measurement of the point-spread function (PSF) by adding uncertainty into the resulting quantities. Here, we present methods to calculate the PSF by using the modulation transfer function (MTF), and a 3D-printed line-pair phantom in the context of 23 Na MRI. A simulation study investigated the effect of noise on the resulting MTF curves, which were derived by direct modulation (DM) and a method utilizing Fourier harmonics (FHs). Experimental data utilized a line-pair phantom with nine spatial frequencies, filled with different concentrations (15, 30, and 60 mM) of sodium in 3% agar. MTF curves were calculated using both methods from data acquired from density-adapted 3D radial projections (DA-3DRP) and Fermat looped orthogonally encoded trajectories (FLORET). Simulations indicated that the DM method increased variability in the MTF curves at all tested noise levels over the FH method. For the experimental data, the FH method resulted in PSFs with a narrower full width half maximum with reduced variability, although the improvement in variability was not as pronounced as predicted by simulations. The DA-3DRP data indicated an improvement in the PSF over FLORET. It was concluded that a 3D-printed line-pair phantom represents a convenient method to measure the PSF experimentally. The MTFs from the noisy images in 23 Na MRI have reduced variability from a FH method over DM.


Subject(s)
Magnetic Resonance Imaging/methods , Computer Simulation , Humans , Phantoms, Imaging , Signal-To-Noise Ratio , Sodium Isotopes
5.
Cerebrovasc Dis ; 50(3): 347-355, 2021.
Article in English | MEDLINE | ID: mdl-33730735

ABSTRACT

INTRODUCTION: Sodium MRI (23Na MRI) derived biomarkers such as tissue sodium concentration (TSC) provide valuable information on cell function and brain tissue viability and has become a reliable tool for the assessment of brain tumors and ischemic stroke beyond pathoanatomical morphology. Patients with major stroke often suffer from different degrees of underlying white matter lesions (WMLs) attributed to chronic small vessel disease. This study aimed to evaluate the WM TSC in patients with an acute ischemic stroke and to correlate the TSC with the extent of small vessel disease. Furthermore, the reliability of relative TSC (rTSC) compared to absolute TSC in these patients was analyzed. METHODOLOGY: We prospectively examined 62 patients with acute ischemic stroke (73 ± 13 years) between November 2016 and August 2019 from which 18 patients were excluded and thus 44 patients were evaluated. A 3D 23Na MRI was acquired in addition to a T2-TIRM and a diffusion-weighted image. Coregistration and segmentation were performed with SPM 12 based on the T2-TIRM image. The extension of WM T2 hyperintense lesions in each patient was classified using the Fazekas scale of WMLs. The absolute TSC in the WM region was correlated to the Fazekas grades. The stroke region was manually segmented on the coregistered absolute diffusion coefficient image and absolute, and rTSC was calculated in the stroke region and compared to nonischemic WM region. Statistical significance was evaluated using the Student t-test. RESULTS: For patients with Fazekas grade I (n = 25, age: 68.5 ± 15.1 years), mean TSC in WM was 55.57 ± 7.43 mM, and it was not statistically significant different from patients with Fazekas grade II (n = 7, age: 77.9 ± 6.4 years) with a mean TSC in WM of 53.9 ± 6.4 mM, p = 0.58. For patients with Fazekas grade III (n = 9, age: 81.4 ± 7.9 years), mean TSC in WM was 68.7 ± 10.5 mM, which is statistically significantly higher than the TSC in patients with Fazekas grade I and II (p < 0.001 and p = 0.05, respectively). There was a positive correlation between the TSC in WM and the Fazekas grade with r = 0.48 p < 0.001. The rTSC in the stroke region was statistically significant difference between low (0 and I) and high (2 and 3) Fazekas grades (p = 0.0353) whereas there was no statistically significant difference in absolute TSC in the stroke region between low (0 and I) and high (2 and 3) Fazekas grades. CONCLUSION: The significant difference in absolute TSC in WM in patients with severe small vessel disease; Fazekas grade 3 can lead to inaccuracies using rTSC quantification for evaluation of acute ischemic stroke using 23 Na MRI. The study, therefore, emphasizes the importance of absolute tissue sodium quantification.


Subject(s)
Cerebral Small Vessel Diseases/diagnostic imaging , Ischemic Stroke/diagnostic imaging , Leukoencephalopathies/diagnostic imaging , Magnetic Resonance Imaging , Sodium Isotopes/metabolism , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Cerebral Small Vessel Diseases/metabolism , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Interpretation, Computer-Assisted , Ischemic Stroke/metabolism , Leukoencephalopathies/metabolism , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , White Matter/metabolism
6.
Phys Med Biol ; 66(6): 064006, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33636710

ABSTRACT

Achieving direct imaging of the annihilation position of a positron on an event-by-event basis using an ultrafast detector would have a great impact on the field of nuclear medicine. Cherenkov emission is the most attractive physical phenomenon for realizing such an ultrafast timing performance. Moreover, a microchannel-plate photomultiplier tube (MCP-PMT) is one of the most promising photodetectors for fully exploiting the fast timing properties of Cherenkov emission owing to its excellent single photon time resolution of 25 ps full width at half maximum (FWHM). However, as the MCP structure generally contains a lead compound, the gamma rays frequently and directly interact with the MCP, resulting in the degradation of its timing performance and generation of undesirable side peaks in its coincidence timing histogram. To overcome this problem, we have developed a new MCP-PMT based on an MCP consisting of borosilicate glass, thus drastically reducing the probability of the photoelectric effect occurring in the MCP. To evaluate its insensitivity to gamma rays and its timing performance, a coincidence experiment was performed and showed that the probability of direct interactions was reduced by a factor of 3.4. Moreover, a coincidence time resolution of 35.4 ± 0.4 ps FWHM, which is equivalent to a position resolution of 5.31 mm, was obtained without any pulse height/area cut, improving to 28.7 ± 3.0 ps when selecting on the highest amplitude events by careful optimization of the voltage divider circuit of the new MCP-PMT. The timing performance of this new MCP-PMT presents an important step toward making direct imaging possible.


Subject(s)
Lead , Positron-Emission Tomography/methods , Silicon Dioxide/chemistry , Electrodes , Equipment Design , Gamma Rays , Glass , Hafnium/chemistry , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Materials Testing , Normal Distribution , Oscillometry , Oxides/chemistry , Photons , Physical Phenomena , Probability , Signal-To-Noise Ratio , Sodium Isotopes
7.
Methods Mol Biol ; 2216: 257-266, 2021.
Article in English | MEDLINE | ID: mdl-33476005

ABSTRACT

The handling of sodium by the renal system is a key indicator of renal function. Alterations in the corticomedullary distribution of sodium are considered important indicators of pathology in renal diseases. The derangement of sodium handling can be noninvasively imaged using sodium magnetic resonance imaging (23Na MRI), with data analysis allowing for the assessment of the corticomedullary sodium gradient. Here we introduce sodium imaging, describe the existing methods, and give an overview of preclinical sodium imaging applications to illustrate the utility and applicability of this technique for measuring renal sodium handling.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Subject(s)
Biomarkers/analysis , Image Processing, Computer-Assisted/methods , Kidney/physiology , Magnetic Resonance Imaging/methods , Monitoring, Physiologic/methods , Sodium Isotopes/analysis , Animals , Humans , Software
8.
Methods Mol Biol ; 2216: 473-480, 2021.
Article in English | MEDLINE | ID: mdl-33476018

ABSTRACT

Sodium handling is a key physiological hallmark of renal function. Alterations are generally considered a pathophysiologic event associated with kidney injury, with disturbances in the corticomedullary sodium gradient being indicative of a number of conditions. This experimental protocol review describes the individual steps needed to perform 23Na MRI; allowing accurate monitoring of the renal sodium distribution in a step-by-step experimental protocol for rodents.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Subject(s)
Image Processing, Computer-Assisted/methods , Kidney/physiology , Magnetic Resonance Imaging/methods , Monitoring, Physiologic/methods , Sodium Isotopes/analysis , Animals , Phantoms, Imaging , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Wistar , Software
9.
Methods Mol Biol ; 2216: 689-696, 2021.
Article in English | MEDLINE | ID: mdl-33476031

ABSTRACT

The signal acquired in sodium (23Na) MR imaging is proportional to the concentration of sodium in a voxel, and it is possible to convert between the two using external calibration phantoms. Postprocessing, and subsequent analysis, of sodium renal images is a simple task that can be performed with readily available software. Here we describe the process of conversion between sodium signal and concentration, estimation of the corticomedullary sodium gradient and the procedure used for quadrupolar relaxation analysis.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.


Subject(s)
Image Processing, Computer-Assisted/methods , Kidney/physiology , Magnetic Resonance Imaging/methods , Monitoring, Physiologic/methods , Phantoms, Imaging , Sodium Isotopes/analysis , Animals , Contrast Media/chemistry , Imaging, Three-Dimensional , Rats , Software
10.
Lupus ; 29(5): 455-462, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32070186

ABSTRACT

OBJECTIVES: Sodium (Na+) is stored in the skin and muscle and plays an important role in immune regulation. In animal models, increased tissue Na+ is associated with activation of the immune system, and high salt intake exacerbates autoimmune disease and worsens hypertension. However, there is no information about tissue Na+ and human autoimmune disease. We hypothesized that muscle and skin Na+ content is (a) higher in patients with systemic lupus erythematosus (SLE) than in control subjects, and (b) associated with blood pressure, disease activity, and inflammation markers (interleukin (IL)-6, IL-10 and IL-17 A) in SLE. METHODS: Lower-leg skin and muscle Na+ content was measured in 23 patients with SLE and in 28 control subjects using 23Na+ magnetic resonance imaging. Demographic and clinical information was collected from interviews and chart review, and blood pressure was measured. Disease activity was assessed using the SLE Disease Activity Index (SLEDAI). Plasma inflammation markers were measured by multiplex immunoassay. RESULTS: Muscle Na+ content was higher in patients with SLE (18.8 (16.7-18.3) mmol/L) than in control subjects (15.8 (14.7-18.3) mmol/L; p < 0.001). Skin Na+ content was also higher in SLE patients than in controls, but this difference was not statistically significant. Among patients with SLE, muscle Na+ was associated with SLEDAI and higher concentrations of IL-10 after adjusting for age, race, and sex. Skin Na+ was significantly associated with systolic blood pressure, but this was attenuated after covariate adjustment. CONCLUSION: Patients with SLE had higher muscle Na+ content than control subjects. In patients with SLE, higher muscle Na+ content was associated with higher disease activity and IL-10 concentrations.


Subject(s)
Inflammation/metabolism , Interleukin-10/metabolism , Lupus Erythematosus, Systemic/metabolism , Sodium Isotopes , Sodium/metabolism , Adult , Biomarkers/metabolism , Blood Pressure , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Muscles/metabolism , Skin/metabolism
11.
Invest Radiol ; 55(7): 430-437, 2020 07.
Article in English | MEDLINE | ID: mdl-32011573

ABSTRACT

OBJECTIVES: Several articles have investigated potential of sodium (Na) magnetic resonance imaging (MRI) for the in vivo evaluation of cartilage health, but so far no study tested its feasibility for the evaluation of focal cartilage lesions of grade 1 or 2 as defined by the International Cartilage Repair Society. The aims of this study were to evaluate the ability of Na-MRI to differentiate between early focal lesions and normal-appearing cartilage, to evaluate within-subject reproducibility of Na-MRI, and to monitor longitudinal changes in participants with low-grade, focal chondral lesions. MATERIALS AND METHODS: Thirteen participants (mean age, 50.1 ± 10.9 years; 7 women, 6 men) with low-grade, focal cartilage lesions in the weight-bearing region of femoral cartilage were included in this prospective cohort study. Participants were assessed at baseline, 1 week, 3 months, and 6 months using morphological MRI at 3 T and 7 T, compositional Na-MRI at 7 T, and the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. Na signal intensities corrected for coil sensitivity and partial volume effect (Na-cSI) were calculated in the lesion, and in weight-bearing and non-weight-bearing regions of healthy femoral cartilage. Coefficients of variation, repeated measures analysis of covariance models, and Pearson correlation coefficients were calculated to evaluate within-subject reproducibility as well as cross-sectional and longitudinal changes in Na-cSI values. RESULTS: The mean coefficients of variation of Na-cSI values between the baseline and 1-week follow-up were 5.1% or less in all cartilage regions. Significantly lower Na-cSI values were observed in lesion than in weight-bearing and non-weight-bearing regions at all time points (all P values ≤ 0.002). Although a significant decrease from baseline Na-cSI values in lesion was found at 3-month visit (P = 0.015), no substantial change was observed at 6 months. KOOS scores have improved in all subscales at 3 months and 6 months visit, with a significant increase observed only in the quality of life subscale (P = 0.004). CONCLUSIONS: In vivo Na-MRI is a robust and reproducible method that allows to differentiate between low-grade, focal cartilage lesions and normal-appearing articular cartilage, which supports the concept that compositional cartilage changes can be found early, before the development of advanced morphological changes visible at clinical 3-T MRI.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Sodium Isotopes , Adult , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged
12.
MAGMA ; 33(4): 495-505, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31950390

ABSTRACT

OBJECTIVE: To accelerate tissue sodium concentration (TSC) quantification of skeletal muscle using 23Na MRI and 3D dictionary-learning compressed sensing (3D-DLCS). MATERIALS AND METHODS: Simulations and in vivo 23Na MRI examinations of calf muscle were performed with a nominal spatial resolution of [Formula: see text]. Fully sampled and three undersampled 23Na MRI data sets (undersampling factors (USF) = 3, 4.4, 6.7) were evaluated. Ten healthy subjects were examined on a 3 Tesla MRI system. Results of the simulation study and the in vivo measurements were compared to the ground truth (GT) and the fully sampled fast Fourier transform (NUFFT) reconstruction, respectively. RESULTS: Reconstruction results of simulated data with optimized 3D-DLCS yielded a lower deviation (< 4%) from the GT than results of the NUFFT reconstruction (> 5%) and a lower standard deviation (SD). For in vivo measurements, a TSC of [Formula: see text] was observed. The mean deviation from the reference is lower for the undersampled 3D-DLCS reconstructions (3.4%) than for NUFFT reconstructions (4.6%). SD is reduced using 3D-DLCS. Compared to a fully sampled NUFFT reconstruction, acquisition time could be reduced by a factor of 4.4 while maintaining similar quantitative accuracy. DISCUSSION: The optimized 3D-DLCS reconstruction enables accelerated TSC measurements with high quantification accuracy.


Subject(s)
Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Sodium/chemistry , Adult , Algorithms , Artifacts , Computer Simulation , Data Compression/methods , Female , Fourier Analysis , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Machine Learning , Male , Phantoms, Imaging , Reproducibility of Results , Sodium Isotopes
13.
J Magn Reson Imaging ; 51(1): 90-97, 2020 01.
Article in English | MEDLINE | ID: mdl-31081564

ABSTRACT

BACKGROUND: There has been recent interest in nonproton MRI including hyperpolarized carbon-13 (13 C) imaging. Prostate cancer has been shown to have a higher tissue sodium concentration (TSC) than normal tissue. Sodium (23 Na) and 13 C nuclei have a frequency difference of only 1.66 MHz at 3T, potentially enabling 23 Na imaging with a 13 C-tuned coil and maximizing the metabolic information obtained from a single study. PURPOSE: To compare TSC measurements from a 13 C-tuned endorectal coil to those quantified with a dedicated 23 Na-tuned coil. STUDY TYPE: Prospective. POPULATION: Eight patients with biopsy-proven, intermediate/high risk prostate cancer imaged prior to prostatectomy. SEQUENCE: 3T MRI with separate dual-tuned 1 H/23 Na and 1 H/13 C endorectal receive coils to quantify TSC. ASSESSMENT: Regions-of-interest for TSC quantification were defined for normal peripheral zone (PZ), normal transition zone (TZ), and tumor, with reference to histopathology maps. STATISTICAL TESTS: Two-sided Wilcoxon rank sum with additional measures of correlation, coefficient of variation, and Bland-Altman plots to assess for between-test differences. RESULTS: Mean TSC for normal PZ and TZ were 39.2 and 33.9 mM, respectively, with the 23 Na coil and 40.1 and 36.3 mM, respectively, with the 13 C coil (P = 0.22 and P = 0.11 for the intercoil comparison, respectively). For tumor tissue, there was no statistical difference between the overall mean tumor TSC measured with the 23 Na coil (41.8 mM) and with the 13 C coil (46.6 mM; P = 0.38). Bland-Altman plots showed good repeatability for tumor TSC measurements between coils, with a reproducibility coefficient of 9 mM; the coefficient of variation between the coils was 12%. The Pearson correlation coefficient for TSC between coils for all measurements was r = 0.71 (r2 = 0.51), indicating a strong positive linear relationship. The mean TSC within PZ tumors was significantly higher compared with normal PZ for both the 23 Na coil (45.4 mM; P = 0.02) and the 13 C coil (49.4 mM; P = 0.002). DATA CONCLUSION: We demonstrated the feasibility of using a carbon-tuned coil to quantify TSC, enabling dual metabolic information from a single coil. This approach could make the acquisition of both 23 Na-MRI and 13 C-MRI feasible in a single clinical imaging session. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:90-97.


Subject(s)
Carbon Isotopes , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Sodium Isotopes , Sodium/metabolism , Aged , Feasibility Studies , Humans , Male , Middle Aged , Prospective Studies , Prostate/diagnostic imaging , Prostate/metabolism , Reproducibility of Results
14.
MAGMA ; 33(3): 439-446, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31625030

ABSTRACT

INTRODUCTION: Although relevant for assessment of sodium in multiple endocrine pathways, 23Na-T1 quantification is challenging due to technical limitations (SAR, B1 inhomogeneity) or influence of tissue's local molecular dynamics. Hereby, we propose T1 quantification of 23Na-MRI signal acquired over the abdomen using a centric-reordered saturation-recovery (SR) true fast imaging with steady state precession (TrueFISP) sequence. MATERIALS AND METHODS: Measurements were performed at 3T using a dual-tunable 23Na/1H coil in 7 healthy volunteers (TR/TE = 858-928/1.57 ms; flip angle = 90°; bandwidth = 450 Hz/px; voxel size = 5 × 5 × 10 mm3). Variable T1-weighting was achieved applying non-selective saturation pre-pulses delayed from the centre of the k-space acquisition by 25, 40, 60, 120 and 250 ms. T1-curve fitting was performed slice-wise, separately for average intensity values from the manually segmented areas of the renal parenchyma and spinal canal, over the increasing SR times- assuming monoexponential signal pattern. RESULTS: Mean ± standard deviation of 23Na-T1 was found as 29 ± 10 ms and 35 ± 8 ms for the renal parenchyma and the spinal canal, respectively. DISCUSSION: 23Na-T1 quantification using a SR-TrueFISP is feasible in clinical settings, in the images constrained by clinically applicable acquisition time of reduced spatial resolution or averages.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Sodium Isotopes , Abdomen , Adult , Algorithms , Calibration , Computer Simulation , Female , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional , Male , Normal Distribution , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio , Sodium , Water/chemistry
15.
MAGMA ; 33(1): 121-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797228

ABSTRACT

OBJECTIVE: Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T. MATERIALS AND METHODS: A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique. RESULTS: The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle. DISCUSSION: These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.


Subject(s)
Kidney/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Sodium Isotopes , Animals , Calibration , Equipment Design , Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Myocardium , Phantoms, Imaging , Radio Waves , Rats , Signal-To-Noise Ratio , Transducers , Translational Research, Biomedical
16.
Z Med Phys ; 30(2): 104-115, 2020 May.
Article in English | MEDLINE | ID: mdl-31866116

ABSTRACT

PURPOSE: To correct for the non-homogeneous receive profile of a phased array head coil in sodium magnetic resonance imaging (23Na MRI). METHODS: 23Na MRI of the human brain (n = 8) was conducted on a 7T MR system using a dual-tuned quadrature 1H/23Na transmit/receive birdcage coil, equipped with a 32-channel receive-only array. To correct the inhomogeneous receive profile four different methods were applied: (1) the uncorrected phased array image and an additionally acquired birdcage image as reference image were low-pass filtered and divided by each other. (2) The second method substituted the reference image by a support region. (3) By averaging the individually calculated receive profiles, a universal sensitivity map was obtained and applied. (4) The receive profile was determined by a pre-scanned large uniform phantom. The calculation of the sensitivity maps was optimized in a simulation study using the normalized root-mean-square error (NRMSE). All methods were evaluated in phantom measurements and finally applied to in vivo 23Na MRI data sets. The in vivo measurements were partial volume corrected and for further evaluation the signal ratio between the outer and inner cerebrospinal fluid compartments (CSFout:CSFin) was calculated. RESULTS: Phantom measurements show the correction of the intensity profile applying the given methods. Compared to the uncorrected phased array image (NRMSE = 0.46, CSFout:CSFin = 1.71), the quantitative evaluation of simulated and measured intensity corrected human brain data sets indicates the best performance utilizing the birdcage image (NRMSE = 0.39, CSFout:CSFin = 1.00). However, employing a support region (NRMSE = 0.40, CSFout:CSFin = 1.17), a universal sensitivity map (NRMSE = 0.41, CSFout:CSFin = 1.05) or a pre-scanned sensitivity map (NRMSE = 0.42, CSFout:CSFin = 1.07) shows only slightly worse results. CONCLUSION: Acquiring a birdcage image as reference image to correct for the receive profile demonstrates the best performance. However, when aiming to reduce acquisition time or for measurements without existing birdcage coil, methods that use a support region as reference image, a universal or a pre-scanned sensitivity map provide good alternatives for correction of the receive profile.


Subject(s)
Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Sodium Isotopes , Equipment Design , Humans , Phantoms, Imaging
17.
Sci Rep ; 9(1): 18626, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819118

ABSTRACT

Soil salinity is a global environmental challenge for crop production. Understanding the uptake and transport properties of salt in plants is crucial to evaluate their potential for growth in high salinity soils and as a basis for engineering varieties with increased salt tolerance. Positron emission tomography (PET), traditionally used in medical and animal imaging applications for assessing and quantifying the dynamic bio-distribution of molecular species, has the potential to provide useful measurements of salt transport dynamics in an intact plant. Here we report on the feasibility of studying the dynamic transport of 22Na in millet using PET. Twenty-four green foxtail (Setaria viridis L. Beauv.) plants, 12 of each of two different accessions, were incubated in a growth solution containing 22Na+ ions and imaged at 5 time points over a 2-week period using a high-resolution small animal PET scanner. The reconstructed PET images showed clear evidence of sodium transport throughout the whole plant over time. Quantitative region-of-interest analysis of the PET data confirmed a strong correlation between total 22Na activity in the plants and time. Our results showed consistent salt transport dynamics within plants of the same variety and important differences between the accessions. These differences were corroborated by independent measurement of Na+ content and expression of the NHX transcript, a gene implicated in sodium transport. Our results demonstrate that PET can be used to quantitatively evaluate the transport of sodium in plants over time and, potentially, to discern differing salt-tolerance properties between plant varieties. In this paper, we also address the practical radiation safety aspects of working with 22Na in the context of plant imaging and describe a robust pipeline for handling and incubating plants. We conclude that PET is a promising and practical candidate technology to complement more traditional salt analysis methods and provide insights into systems-level salt transport mechanisms in intact plants.


Subject(s)
Plant Proteins/genetics , Salinity , Salt Tolerance , Setaria Plant/metabolism , Sodium/metabolism , Biological Transport , Gene Expression Regulation, Plant , Genotype , Ions/metabolism , Positron-Emission Tomography , Setaria Plant/genetics , Sodium Isotopes/analysis , Soil , Stress, Physiological
18.
Magn Reson Imaging ; 63: 280-290, 2019 11.
Article in English | MEDLINE | ID: mdl-31425815

ABSTRACT

23Na inversion recovery (IR) imaging allows for a weighting toward intracellular sodium in the human calf muscle and thus enables an improved analysis of pathophysiological changes of the muscular ion homeostasis. However, sodium signal-to-noise ratio (SNR) is low, especially when using IR sequences. 23Na has a nuclear spin of 3/2 and therefore experiences a strong electrical quadrupolar interaction. This results in very short relaxation times as well as in possible residual quadrupolar splitting. Consequently, relaxation effects during a radiofrequency pulse can no longer be neglected and even allow for increasing SNR as has previously been shown for human brain and knee. The aim of this work was to increase the SNR in 23Na IR imaging of the human calf muscle by using long inversion pulses instead of the usually applied short pulses. First, the influence of the inversion pulse length (1 to 20 ms) on the SNR as well as on image contrast was simulated for different model environments and verified by phantom measurements. Depending on the model environment (agarose 4% and 8%, xanthan 2% and 3%), SNR values increased by a factor of 1.15 up to 1.35, while NaCl solution was successfully suppressed. Thus, image contrast between the non-suppressed model compartments changes with IR pulse length. Finally, in vivo measurements of the human calf muscle of ten healthy volunteers were conducted at 3 Tesla. On average, a 1.4-fold increase in SNR could be achieved by increasing the inversion pulse length from 1 ms to 20 ms, leaving all other parameters - including the scan time - constant. This enables 23Na IR MRI with improved spatial resolution or reduced acquisition time.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Sodium Isotopes/pharmacology , Adult , Brain/diagnostic imaging , Computer Simulation , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Male , Polysaccharides, Bacterial/chemistry , Sepharose/chemistry
19.
Magn Reson Med ; 82(6): 2343-2356, 2019 12.
Article in English | MEDLINE | ID: mdl-31257651

ABSTRACT

PURPOSE: Cardiorenal syndrome describes disorders of the heart and the kidneys in which a dysfunction of 1 organ induces a dysfunction in the other. This work describes the design, evaluation, and application of a 4/4-channel hydrogen-1/sodium (1 H/23 Na) RF array tailored for cardiorenal MRI at 7.0 Tesla (T) for a better physiometabolic understanding of cardiorenal syndrome. METHODS: The dual-frequency RF array is composed of a planar posterior section and a modestly curved anterior section, each section consisting of 2 loop elements tailored for 23 Na MR and 2 loopole-type elements customized for 1 H MR. Numerical electromagnetic field and specific absorption rate simulations were carried out. Transmission field ( B1+ ) uniformity was optimized and benchmarked against electromagnetic field simulations. An in vivo feasibility study was performed. RESULTS: The proposed array exhibits sufficient RF characteristics, B1+ homogeneity, and penetration depth to perform 23 Na MRI of the heart and kidney at 7.0 T. The mean B1+ field for sodium in the heart is 7.7 ± 0.8 µT/√kW and in the kidney is 6.9 ± 2.3 µT/√kW. The suitability of the RF array for 23 Na MRI was demonstrated in healthy subjects (acquisition time for 23 Na MRI: 18 min; nominal isotropic spatial resolution: 5 mm [kidney] and 6 mm [heart]). CONCLUSION: This work provides encouragement for further explorations into densely packed multichannel transceiver arrays tailored for 23 Na MRI of the heart and kidney. Equipped with this technology, the ability to probe sodium concentration in the heart and kidney in vivo using 23 Na MRI stands to make a critical contribution to deciphering the complex interactions between both organs.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Magnetic Resonance Imaging, Cine , Sodium Isotopes/chemistry , Electromagnetic Fields , Feasibility Studies , Female , Humans , Male , Phantoms, Imaging , Protons , Radio Waves , Reproducibility of Results , Torso/diagnostic imaging , Transducers
20.
Radiology ; 292(2): 422-428, 2019 08.
Article in English | MEDLINE | ID: mdl-31184559

ABSTRACT

Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects the upper and lower motor neurons. Recent sodium (23Na) MRI studies have shown that abnormal sodium concentration is related to neuronal suffering in neurodegenerative conditions. Purpose To use 23Na MRI to investigate abnormal sodium concentrations and map their distribution in the brains of study participants with ALS as compared with healthy control subjects. Materials and Methods Twenty-seven participants with ALS (mean age, 54 years ± 10 [standard deviation], eight women) and 30 healthy control subjects (mean age, 50 years ± 10; 16 women) were prospectively recruited between September 2015 and October 2017 and were examined by using conventional proton MRI and sodium MRI at 3 T. Voxel-based statistical mapping was used to compare quantitative whole-brain total sodium concentration (TSC) maps in participants with ALS with those in control subjects and to localize regions of abnormal elevated TSC. Potential overlap of abnormal elevated TSC with regions of atrophy as detected with 1H MRI also was investigated. Results Voxel-based statistical mapping analyses revealed higher sodium concentration in motor regions (bilateral precentral gyri, corticospinal tracts, and the corpus callosum) of participants with ALS (two-sample t test, P < .005; age and sex as covariates). In these regions, mean TSC was higher in participants with ALS (mean, 45.6 mmol/L wet tissue ± 3.2) than in control subjects (mean, 41.8 mmol/L wet tissue ± 2.7; P < .001; Cohen d = 1.28). Brain regions showing higher TSC represented a volume of 15.4 cm3 that did not overlap with gray matter atrophy occupying a volume of 16.9 cm3. Elevated TSC correlated moderately with corticospinal conduction failure assessed with transcranial magnetic stimulation in the right upper limb (Spearman ρ = -0.57; 95% confidence interval: -0.78, -0.16; P = .005; n = 23). Conclusion Quantitative 23Na MRI is sensitive to alterations of brain sodium homeostasis within disease-relevant regions in patients with amyotrophic lateral sclerosis (ALS). This supports further investigation of abnormal sodium concentration as a potential marker of neurodegenerative processes in patients with ALS that could be used as a secondary endpoint in clinical trials. © RSNA, 2019 Online supplemental material is available for this article.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging/methods , Pyramidal Tracts/pathology , Sodium Isotopes/pharmacokinetics , Adult , Aged , Amyotrophic Lateral Sclerosis/metabolism , Brain/pathology , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Prospective Studies , Pyramidal Tracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...