Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.044
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000115

ABSTRACT

Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Selenium-Binding Proteins , Selenium , Sodium Selenite , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Selenium-Binding Proteins/metabolism , Selenium-Binding Proteins/genetics , Selenium/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Selenite/metabolism , Edible Grain/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Molecular Docking Simulation , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Seeds/drug effects
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000544

ABSTRACT

Selenium (Se)-rich Cyclocarya paliurus is popular for its bioactive components, and exogenous Se fortification is the most effective means of enrichment. However, the effects of exogenous Se fortification on the nutritional quality of C. paliurus are not well known. To investigate the nutrient contents and antioxidant properties of C. paliurus following Se treatment, we used a foliar spray to apply Se in two forms-chemical nano-Se (Che-SeNPs) and sodium selenite (Na2SeO3). Sampling began 10 days after spraying and was conducted every 5 days until day 30. The Se, secondary metabolite, malondialdehyde contents, antioxidant enzyme activity, Se speciation, and Se-metabolism-related gene expression patterns were analyzed in the collected samples. Exogenous Se enhancement effectively increased the Se content of leaves, reaching a maximum on days 10 and 15 of sampling, while the contents of flavonoids, triterpenes, and polyphenols increased significantly during the same period. In addition, the application of Se significantly enhanced total antioxidant activity, especially the activity of the antioxidant enzyme peroxidase. Furthermore, a positive correlation between the alleviation of lipid peroxidation and Se content was observed, while methylselenocysteine formation was an effective means of alleviating Se stress. Finally, Na2SeO3 exhibited better absorption and conversion efficiency than Che-SeNPs in C. paliurus.


Subject(s)
Antioxidants , Plant Leaves , Selenium , Sodium Selenite , Antioxidants/metabolism , Selenium/metabolism , Selenium/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Sodium Selenite/pharmacology , Sodium Selenite/metabolism , Juglandaceae/chemistry , Flavonoids/metabolism , Flavonoids/analysis , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Polyphenols/metabolism , Gene Expression Regulation, Plant/drug effects , Triterpenes/metabolism
3.
BMC Nephrol ; 25(1): 226, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009991

ABSTRACT

BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is an acute renal complication that occurs after intravascular contrast agent administration. Sodium selenite (SS) is an inorganic source of Se and has potent antioxidant properties. This study intends to examine its anti-inflammatory and antioxidant effects in CI-AKI. METHODS: A rat CI-AKI model was established with the pretreatment of SS (0.35 mg/kg). Hematoxylin-eosin staining was employed for histopathological analysis of rat kidney specimens. Biochemical analysis was conducted for renal function detection. Tissue levels of oxidative stress-related markers were estimated. Reverse transcription-quantitative polymerase chain reaction revealed the mRNA levels of proinflammatory cytokines. Western blotting showed the Nrf2 signaling-related protein expression in the rat kidney. RESULTS: SS administration alleviated the renal pathological changes and reduced the serum levels of serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, cystatin C, and urinary level of kidney injury molecule-1 in CI-AKI rats. SS attenuated oxidative stress and inflammatory response in CI-AKI rat kidney tissues. SS activated the Nrf2 signaling transduction in the renal tissues of rats with CI-AKI. CONCLUSION: SS ameliorates CI-AKI in rats by reducing oxidative stress and inflammation via the Nrf2 signaling.


Subject(s)
Acute Kidney Injury , Contrast Media , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sodium Selenite , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Rats , Male , Contrast Media/adverse effects , Signal Transduction/drug effects , Sodium Selenite/pharmacology , Sodium Selenite/therapeutic use , Antioxidant Response Elements , Inflammation/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Creatinine/blood
4.
Nutrients ; 16(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892670

ABSTRACT

Tumor cells are characterized by a delicate balance between elevated oxidative stress and enhanced antioxidant capacity. This intricate equilibrium, maintained within a threshold known as redox homeostasis, offers a unique perspective for cancer treatment by modulating reactive oxygen species (ROS) levels beyond cellular tolerability, thereby disrupting this balance. However, currently used chemotherapy drugs require larger doses to increase ROS levels beyond the redox homeostasis threshold, which may cause serious side effects. How to disrupt redox homeostasis in cancer cells more effectively remains a challenge. In this study, we found that sodium selenite and docosahexaenoic acid (DHA), a polyunsaturated fatty acid extracted from marine fish, synergistically induced cytotoxic effects in colorectal cancer (CRC) cells. Physiological doses of DHA simultaneously upregulated oxidation and antioxidant levels within the threshold range without affecting cell viability. However, it rendered the cells more susceptible to reaching the upper limit of the threshold of redox homeostasis, facilitating the elevation of ROS levels beyond the threshold by combining with low doses of sodium selenite, thereby disrupting redox homeostasis and inducing MAPK-mediated paraptosis. This study highlights the synergistic anticancer effects of sodium selenite and DHA, which induce paraptosis by disrupting redox homeostasis in tumor cells. These findings offer a novel strategy for more targeted and less toxic cancer therapies for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Docosahexaenoic Acids , Homeostasis , MAP Kinase Signaling System , Oxidation-Reduction , Reactive Oxygen Species , Sodium Selenite , Docosahexaenoic Acids/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Sodium Selenite/pharmacology , Humans , Oxidation-Reduction/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System/drug effects , Cell Line, Tumor , Oxidative Stress/drug effects , Cell Survival/drug effects , Antioxidants/pharmacology , Drug Synergism , Antineoplastic Agents/pharmacology , Paraptosis
5.
Medicina (Kaunas) ; 60(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929492

ABSTRACT

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Subject(s)
Kidney Tubules, Proximal , Reperfusion Injury , Selenoprotein P , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Biomarkers/analysis , Cell Line , Cell Survival , In Vitro Techniques , Kidney Tubules, Proximal/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Selenoprotein P/blood , Selenoprotein P/metabolism , Sodium Selenite/pharmacology
6.
Reprod Domest Anim ; 59(6): e14652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923052

ABSTRACT

This study aimed to investigate the protective effects of nanoparticle selenium (SeNP) and sodium selenite (SS) on preventing oxidative stress during the freezing process of dog semen. A total of six dogs were used in the study. The ejaculate was collected from dogs three times at different times by massage method. A total of 18 ejaculates were used and each ejaculate was divided in five experimental groups. The experimental groups were designed to tris extender containing no antioxidants control, 1 µg/mL SeNP1, 2 µg/mL SeNP2, and 1 µg/mL SS1 and 2 µg/mL SS2. Extended semen were equilibrated for 1 h at 4°C, then frozen in liquid nitrogen vapour and stored in liquid nitrogen (~-196°C). After thawing, semen samples were evaluated in terms of CASA motility and kinematic parameters, spermatozoa plasma membrane integrity and viability (HE Test), spermatozoa morphology (SpermBlue) and DNA fragmentation (GoldCyto). Antioxidant enzyme activity (glutathione peroxidase; GPX, superoxide dismutase; SOD, catalase; CAT) and lipid peroxidation (malondialdehyde; MDA) were evaluated in frozen-thawed dog sperm. When the results were evaluated statistically, the progressive motility, VCL, and VAP kinematic parameters in the SeNP1 group were significantly higher than the control group after thawing (p < .05). The highest ratio of plasma membrane integrity and viable spermatozoa was observed in the SeNP1 group, but there was no statistical difference found between the groups (p > .05). Although the ratio of total morphological abnormality was observed to be lower in all groups to which different selenium forms were added, compared to the control group, no statistical difference was found. Spermatozoa tail abnormality was significantly lower in the SeNP1 group than in the control and SS2 group (p < .05). The lowest ratio of fragmented DNA was observed in the SeNP1 group, but there was no statistical difference was found between the groups (p > .05). Although there was no statistical difference between the groups in the evaluation of sperm antioxidant profile, the highest GPX, SOD and CAT values and the lowest lipid peroxidation values were obtained in the SeNP1 group. As a result, it was determined that 1 µg/mL dose of SeNP added to the tris-based extender in dog semen was beneficial on spermatological parameters, especially sperm kinematic properties and sperm morphology, and therefore nanoparticle selenium, a nanotechnology product, made a significant contribution to the freezing of dog semen.


Subject(s)
Antioxidants , Cryopreservation , Selenium , Semen Preservation , Sodium Selenite , Spermatozoa , Animals , Dogs , Male , Sodium Selenite/pharmacology , Sodium Selenite/administration & dosage , Selenium/pharmacology , Selenium/administration & dosage , Selenium/chemistry , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , Cryopreservation/methods , Spermatozoa/drug effects , Antioxidants/pharmacology , Sperm Motility/drug effects , Nanoparticles , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Semen Analysis/veterinary , DNA Fragmentation/drug effects , Cryoprotective Agents/pharmacology , Freezing
7.
Biomolecules ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927033

ABSTRACT

It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.


Subject(s)
Proteomics , Rhodotorula , Selenium , Rhodotorula/metabolism , Rhodotorula/growth & development , Rhodotorula/drug effects , Selenium/metabolism , Selenium/pharmacology , Proteomics/methods , Biomass , Bioreactors/microbiology , Sodium Selenite/metabolism , Sodium Selenite/pharmacology , Hydrogen-Ion Concentration , Proteome/metabolism , Fungal Proteins/metabolism
8.
Antonie Van Leeuwenhoek ; 117(1): 81, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777900

ABSTRACT

A Gram-stain-negative, aerobic, non-motile, catalase- and oxidase-positive, pale orange, rod-shaped strain EF6T, was isolated from a natural wetland reserve in Hebei province, China. The strain grew at 25-37 °C (optimum, 30 °C), pH 5-9 (optimum, pH 7), and in the presence of 1.0-4.0% (w/v) NaCl (optimum, 2%). A phylogenetic analysis based on 16S rRNA gene sequence revealed that strain EF6T belongs to the genus Paracoccus, and the closest members were Paracoccus shandongensis wg2T with 98.1% similarity, Paracoccus fontiphilus MVW-1 T (97.9%), Paracoccus everestensis S8-55 T (97.7%), Paracoccus subflavus GY0581T (97.6%), Paracoccus sediminis CMB17T (97.3%), Paracoccus caeni MJ17T (97.0%), and Paracoccus angustae E6T (97.0%). The genome size of strain EF6T was 4.88 Mb, and the DNA G + C content was 65.3%. The digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain EF6T and the reference strains were all below the threshold limit for species delineation (< 32.8%, < 88.0%, and < 86.7%, respectively). The major fatty acids (≥ 5.0%) were summed feature 8 (86.3%, C18:1 ω6c and/or C18:1 ω7c) and C18:1 (5.0%) and the only isoprenoid quinone was Q-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, five unidentified phospholipids, and an unidentified aminolipid. Strain EF6T displays notable resistance to benzoate and selenite, with higher tolerance levels (25 g/L for benzoate and 150 mM for selenite) compared to the closely related species. Genomic analysis identified six benzoate resistance genes (acdA, pcaF, fadA, pcaC, purB, and catA) and twenty selenite resistance and reduction-related genes (iscR, ssuB, ssuD, selA, selD and so on). Additionally, EF6T possesses unique genes (catA, ssuB, and ssuC) absent in the closely related species for benzoate and selenite resistance. Its robust resistance to benzoate and selenite, coupled with its genomic makeup, make EF6T a promising candidate for the remediation of both organic and inorganic pollutants. It is worth noting that the specific resistance phenotypes described above were not reported in other novel species in Paracoccus. Based on the results of biochemical, physiological, phylogenetic, and chemotaxonomic analyses, combined with comparisons of the 16S rRNA gene sequence and the whole genome sequence, strain EF6T is considered to represent a novel species of the genus Paracoccus within the family Rhodobacteraceae, for which the name Paracoccus benzoatiresistens sp. nov. is proposed. The type strain is EF6T (= GDMCC 1.3400 T = JCM 35642 T = MCCC 1K08702T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Paracoccus , Phylogeny , RNA, Ribosomal, 16S , Wetlands , Paracoccus/genetics , Paracoccus/classification , Paracoccus/isolation & purification , Paracoccus/metabolism , Paracoccus/drug effects , RNA, Ribosomal, 16S/genetics , Fatty Acids/metabolism , Fatty Acids/chemistry , DNA, Bacterial/genetics , China , Sodium Selenite/metabolism , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Nucleic Acid Hybridization , Oxidation-Reduction , Drug Resistance, Bacterial
9.
J Trace Elem Med Biol ; 84: 127414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38489924

ABSTRACT

BACKGROUND: The rising incidence of prostate cancer in the U.S. necessitates innovative therapeutic approaches to this disease. Though extensive research has studied Selenium as an anticarcinogen against prostate cancer, results have varied due to overlooked experimental confounds. Recent studies have identified differential effects of various selenium compounds on prostate cancer cells. This study leverages Mixture Design Response Surface Methodology to characterize the ideal combination of select Se forms against the PC-3 prostate cancer cell line. METHODS: The PC-3 cell line was chosen as a model for its representation of advanced-stage malignancy. Three Se compounds-sodium selenite, methylseleninic acid, and nano-selenium-were selected for their promising antineoplastic potential. Nano-Se particles were synthesized and subsequently characterized by transmission electron microscopy. Cells were cultured, treated with Se compounds, and assessed for viability using an Alamar Blue Assay. IC50 values of individual Se compounds were determined, and treatment combinations evaluated. In collaboration with statical modeling experts, MDRSM was utilized to optimize Se compound combinations. RESULTS: Absolute IC50 values were identified for methylseleninic acid (5.01 µmol/L), sodium selenite (13.8 µmol/L), and nano-selenium (14.6 µmol/L). Combining methylseleninic acid and sodium selenite resulted in only 5% PC-3 cell viability, whereas individual treatments reduced viability by approximately 45%. Among the tested mixtures, the 50:50 combination of MSA and sodium selenite most effectively decreased PC-3 cell viability. Regression analysis indicated the special cubic model had a strong fit (multiple r² = 0.9853), predicting maximum cell viability reduction from the methylseleninic acid and selenite mixture. CONCLUSION: The specific form of Selenium plays a pivotal role in determining its physiological effects and therapeutic potential against prostate cancer. All three selenium compounds showed variable antineoplastic effects, with a 50:50 mixture of methylseleninic acid and selenite exhibiting optimal results. Nano-selenium, when combined with selenite, showed no additive effect, implying a shared mechanism of action. Our research underscores the critical need to consider Se compound forms as distinct entities in prostate cancer treatment and encourages further exploration of Se compounds against prostate cancer.


Subject(s)
Cell Survival , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Survival/drug effects , PC-3 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Selenium/pharmacology , Selenium/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Drug Screening Assays, Antitumor , Sodium Selenite/pharmacology , Nanoparticles/chemistry , Surface Properties , Dose-Response Relationship, Drug
10.
Chemosphere ; 354: 141712, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484991

ABSTRACT

The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.


Subject(s)
Actinobacteria , Selenium , Selenious Acid/toxicity , Sodium Selenite/metabolism , Sodium Selenite/toxicity , Actinobacteria/genetics , Actinobacteria/metabolism , Bacteria/metabolism , Selenium/metabolism , Oxidation-Reduction
11.
Poult Sci ; 103(5): 103615, 2024 May.
Article in English | MEDLINE | ID: mdl-38503137

ABSTRACT

This study aimed to explore the effects of selenized glucose (SeGlu) and Na selenite supplementation on various aspects of laying hens such as production performance, egg quality, egg Se concentration, microbial population, antioxidant enzymes activity, immunological response, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 laying hens at 27-wk of age were randomly divided into 4 treatment groups with 7 replications. Se source (Na selenite and SeGlu) and Se level (0.3 and 0.6 mg/kg) were used as treatments. When 0.3 mg SeGlu/kg was compared to 0.3 mg Na selenite/kg, the interaction findings revealed that 0.3 mg SeGlu/kg increased egg production percent and shell ash (P < 0.05). When compared to 0.3 mg Na selenite/kg, dietary supplementation with 0.3 and 0.6 mg SeGlu/kg resulted in an increase in albumen height, Haugh unit, and yolk color of fresh eggs (P < 0.05). SeGlu enhanced albumen height, Haugh unit, shell thickness (P < 0.01), albumen index, yolk share, specific gravity, shell ash (P < 0.05) of fresh eggs and shell thickness (P < 0.05) of stored eggs as compared to Na selenite. The interaction showed that 0.6 mg SeGlu/kg enhanced yolk Se concentration while decreasing malondialdehyde levels in fresh egg yolk (P < 0.05). SeGlu enhanced Se concentration in albumen and glutathione peroxidase activity in plasma (P < 0.05) as compared to Na selenite. 0.6 mg Se/kg increased lactic acid bacteria, antibody response to sheep red blood cells, and lowered ∑n-6 PUFA/ ∑n-3 PUFA ratio (P < 0.05). As a result, adding SeGlu to the feed of laying hens enhanced egg production, egg quality, egg Se concentration, fresh yolk lipid oxidation, and glutathione peroxidase enzyme activity.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Fatty Acids , Glucose , Ovum , Selenium , Sodium Selenite , Animals , Chickens/immunology , Chickens/physiology , Sodium Selenite/administration & dosage , Female , Animal Feed/analysis , Dietary Supplements/analysis , Fatty Acids/metabolism , Fatty Acids/analysis , Diet/veterinary , Antioxidants/metabolism , Ovum/chemistry , Ovum/drug effects , Selenium/administration & dosage , Selenium/pharmacology , Glucose/metabolism , Random Allocation , Eggs/analysis , Egg Yolk/chemistry , Dose-Response Relationship, Drug
12.
Biotechnol Appl Biochem ; 71(3): 609-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311980

ABSTRACT

In this study, the transcriptome analysis was practiced to identify potential genes of probiotic Bacillus subtilis BSN313 involved in selenium (Se) enrichment metabolism. The transcriptomic variation of the strain was deliberated in presence of three different sodium selenite concentrations (0, 3, and 20 µg/mL). The samples were taken at 1 and 13 h subsequent to inoculation of selenite and gene expression profiles in Se metabolism were analyzed through RNA sequencing. The gene expression levels of the pre log phase were lower than the stationary phase. It is because, the bacteria has maximum grown with high concentration of Se (enriched with organic Se), at stationary phase. Bacterial culture containing 3 µg/mL concentration of inorganic Se (sodium selenite) has shown highest gene expression as compared to no or high concentration of Se. This concentration (3 µg/mL) of sodium selenite (as Se) in the medium promoted the upregulation of thioredoxin reductase expression, whereas its higher Se concentration inhibited the formation of selenomethionine (SeMet). The result of 5 L bioreactor fermentation showed that SeMet was also detected in the fermentation supernatant as the growth entered in the late stationary phase and reached up to 857.3 ng/mL. The overall intracellular SeMet enriched content in BSN313 was extended up to 23.4 µg/g dry cell weight. The other two selenoamino acids (Se-AAs), methyl-selenocysteine, and selenocysteine were hardly detected in medium supernatant. From this study, it was concluded that SeMet was the highest content of organic Se byproduct biosynthesized by B. subtilis BSN313 strain in Se-enriched medium during stationary phase. Thus, B. subtilis BSN313 can be considered a commercial probiotic strain that can be used in the food and pharmaceutical industries. This is because it can meet the commercial demand for Se-AAs (SeMet) in both industries.


Subject(s)
Bacillus subtilis , Selenium , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Selenium/metabolism , Gene Expression Profiling , Metabolomics , Sodium Selenite/metabolism , Transcriptome
13.
Environ Sci Pollut Res Int ; 31(13): 20510-20520, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374507

ABSTRACT

In this study, we investigated the effects of different types of selenium (Se) (sodium selenite [SS], yeast selenium [YS], and nano-selenium [NS]) on the toxicity, growth, Se accumulation, and transformation of Lucilia sericata maggots (LSMs). We found that the 50% lethal concentration of LSMs exposed to SS was 2.18 and 1.96 times that of YS and NS, respectively. LSM growth was significantly promoted at exposure concentrations of 10-50 mg kg-1 in group SS and 10-30 mg kg-1 in group YS, whereas NS inhibited LSMs growth at all concentrations (p < 0.05). Total Se content in LSMs, conversion efficiency to organic and other forms of Se, and bioaccumulation factor of Se were the highest in the SS group when exposed to 50 mg kg-1 (81.6 mg kg-1, 94.6%, and 1.63, respectively). Transcriptomic results revealed that LSMs significantly upregulated the amino acid (alanine, aspartate, glutamic, and tyrosine) and tricarboxylic acid cycle signaling pathways (p < 0.05) on exposure to Se, resulting in a significant increase in LSMs biomass and quality. In conclusion, our study indicates that LSMs exhibit good tolerance to SS and can convert it into bioorganic or other forms of Se.


Subject(s)
Selenium , Sodium Selenite , Animals , Sodium Selenite/pharmacology , Sodium Selenite/metabolism , Selenium/metabolism , Saccharomyces cerevisiae/metabolism , Larva/metabolism , Bioaccumulation
14.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354318

ABSTRACT

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Subject(s)
Metal Nanoparticles , Nanoparticles , Saccharomyces boulardii , Selenium , Catalysis , Saccharomyces boulardii/metabolism , Selenium/metabolism , Sodium Selenite , Superoxide Dismutase/genetics , Superoxide Dismutase-1
15.
Braz J Biol ; 84: e277470, 2024.
Article in English | MEDLINE | ID: mdl-38422285

ABSTRACT

The research was carried out in order to find ways to optimize the system of protection of spring wheat crops. In the conducted studies, the effect of combinations of sodium selenite and various pesticides, differing in the specifics of action and biological activity, on the yield and quality of spring wheat of the Yubileinaya 80 variety was studied. Currently, there is a need to achieve a sufficient effect of the action of chemical plant protection products and to obtain a minimum impact on human health and the environment. The purpose of the research is to study the influence of various combinations of chemical plant protection products and methods of using sodium selenite on the yield and grain quality indicators of spring wheat variety Yubileinaya 80. The studies were carried out under the conditions of a vegetative experiment with spring wheat variety Yubileinaya 80. Two methods of using sodium selenite and chemical plant protection agents of different specifics of action were studied: fungicide, herbicide, and insecticide, which were applied in different combinations and at different times. As a result of the studies, the phytotoxicity of the studied preparations of chemical plant protection was revealed, which apparently manifests itself as a result of inhibition of the morphometric indicators of the growth of the root system and vegetative organs of wheat plants, resulting in a violation of the processes of accumulation of assimilates and their outflow to the reproductive organs. Optimal combinations of pesticides and sodium selenite have been established, allowing to obtain reliable changes in yield and quality indicators of wheat grain. It was revealed that the use of selenium treatment before sowing seeds contributed to a decrease in the phytotoxicity of the studied pesticides, as a result of stimulating the processes of absorption by plants and the redistribution of nitrogen to the reproductive organs of wheat, which had a positive effect not only on the yield and quality of spring wheat of the Yubileynaya 80 variety, but also on the external surface microstructure of the fruit shell of the grain. The noted features of the surface of the fruit shell of the grain will reduce losses during grain processing and obtain processed products from such grain of higher quality.


Subject(s)
Pesticides , Selenium , Humans , Selenium/pharmacology , Triticum , Pesticides/toxicity , Sodium Selenite/pharmacology , Edible Grain
16.
Sci Rep ; 14(1): 852, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38191898

ABSTRACT

During the cryopreservation of sperm, the production of highly reactive oxygen species (ROS) can reduce their viability and fertility. However, the addition of antioxidants can help reduce the harmful effects of ROS. One such antioxidant is selenium, which is a co-factor of the glutathione peroxidase enzyme that is effective in scavenging ROS. Cysteamine can also take part in the structure of this enzyme. The use of nanoparticles can be less toxic to cells than their salt form. To this end, researchers synthesized Se-NPs using the streptococcus bacteria and loaded cysteamine onto the synthesized Se-NPs. The biosynthesis of Se-NPs and cysteamine loaded on Se-NPs was confirmed by UV-visible spectroscopy, X-ray diffraction (EDX), Fourier transforms infrared (FTIR) spectroscopy, and Field Emission Scanning Electron Microscope (FE-SEM). For cryopreservation, ram semen samples were diluted, and different concentrations (0, 1, 5, 25, and 125 µg/mL) of cysteamine, Se-NPs, cysteamine loaded on Se-NPs, and sodium selenite were added. An extender containing no supplement was considered as control group. After cooling the semen samples, they were frozen and stored in liquid nitrogen for evaluation. The samples were thawed and analyzed for mobility, viability, membrane and DNA integrity, and sperm abnormalities, as well as malondialdehyde level (MDA) and superoxide dismutase (SOD). The data was processed using SPSS, and a significance level of p < 0.05 was considered. The results of this experiment showed that adding 1 µg/mL of cysteamine loaded on Se-NPs to the diluent significantly increased the motility, viability, and membrane integrity and SOD of spermatozoa compared to the other treatment groups and control group, and reduced the abnormality, apoptosis, and MDA level of spermatozoa in comparison with the other treatment groups and control group (p < 0.05). In conclusion, the addition of cysteamine loaded on Se-NPs was found to improve the quality of ram sperm after cryopreservation.


Subject(s)
Cysteamine , Sodium Selenite , Male , Animals , Sheep , Cysteamine/pharmacology , Reactive Oxygen Species , Semen , Cryopreservation , Antioxidants/pharmacology , Superoxide Dismutase
17.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38293320

ABSTRACT

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Selenium , Animals , Mice , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Sodium Selenite/pharmacology , Mice, Inbred C57BL , Cytotoxins , Helicobacter Infections/metabolism
18.
J Sci Food Agric ; 104(7): 4136-4144, 2024 May.
Article in English | MEDLINE | ID: mdl-38258891

ABSTRACT

BACKGROUND: Selenium is an important nutritional supplement that mainly exists naturally in soil as inorganic selenium. Saccharomyces cerevisiae cells are excellent medium for converting inorganic selenium in nature into organic selenium. RESULTS: Under the co-stimulation of sodium selenite (Na2SeO3) and potassium selenite (K2SeO3), the activity of selenophosphate synthetase (SPS) was improved up to about five folds more than conventional Na2SeO3 group with the total selenite salts content of 30 mg/L. Transcriptome analysis first revealed that due to the sharing pathway between sodium ion (Na+) and potassium ion (K+), the K+ largely regulates the metabolisms of amino acid and glutathione under the accumulation of selenite salt. Furthermore, K+ could improve the tolerance performance and selenium-biotransformation yields of Saccharomyces cerevisiae cells under Na2SeO3 salt stimulation. CONCLUSION: The important role of K+ in regulating the intracellular selenium accumulation especially in terms of amino acid metabolism and glutathione, suggested a new direction for the development of selenium-enrichment supplements with Saccharomyces cerevisiae cell factory. © 2024 Society of Chemical Industry.


Subject(s)
Saccharomyces , Selenium , Selenium/metabolism , Saccharomyces/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sodium Selenite/metabolism , Selenious Acid/metabolism , Glutathione/metabolism , Sodium/metabolism , Amino Acids/metabolism , Potassium/metabolism
19.
Biol Trace Elem Res ; 202(2): 685-700, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37202582

ABSTRACT

Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 µg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 µg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.


Subject(s)
Malnutrition , Selenium , Spirulina , Rats , Female , Animals , Antioxidants/metabolism , Sodium Selenite/pharmacology , Spirulina/metabolism , Rats, Wistar , Selenoproteins/metabolism , Dietary Supplements , Glutathione Peroxidase/metabolism
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2121-2132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37787783

ABSTRACT

Selenium is an essential antioxidative micronutrient. This study was conducted to characterize the arsenic toxicity induced on the African fig fly, Zaprionus indianus, and its possible amelioration by selenium. We used computational tools and in vivo experiments to elucidate the mechanism of action of arsenic and selenium on Z. indianus larvae. We conducted experiments to study neurobehavioral parameters including learning and memory ability test and crawling and contraction assays. Our in silico study revealed twelve primary targets of arsenic trioxide. The gene ontology annotation of primary and secondary targets of arsenic trioxide revealed selenocysteine metabolic processes as one of the most reliable targets. To validate our in silico data, we analyzed the effect of arsenic trioxide on larvae of Z. indianus and tested the possible amelioration by sodium selenite supplementation. Our data demonstrated that the arsenic trioxide deteriorated the learning and memory ability of 2nd instar larvae of Z. indianus and such effect was reversed by sodium selenite supplementation. Furthermore, crawling and contraction assay done on 3rd instar larvae showed that there was reduction in both parameters upon arsenic trioxide exposure, which was restored with sodium selenite supplementation. Altogether, our computational and in vivo results strongly indicated that the neurobehavioral defects induced by arsenic trioxide on the larvae of Z. indianus can be successfully alleviated in the presence of sodium selenite.


Subject(s)
Arsenic , Drosophilidae , Selenium , Animals , Larva , Arsenic Trioxide , Sodium Selenite , Drosophilidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL