Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Life Sci ; 288: 120142, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34774621

ABSTRACT

AIMS: Determine the effect of palmitoylation on the sodium hydrogen exchanger isoform 1 (NHE1), a member of the SLC9 family. MAIN METHODS: NHE1 expressed in native rat tissues or in heterologous cells was assessed for palmitoylation by acyl-biotinyl exchange (ABE) and metabolic labeling with [3H]palmitate. Cellular palmitoylation was inhibited using 2-bromopalmitate (2BP) followed by determination of NHE1 palmitoylation status, intracellular pH, stress fiber formation, and cell migration. In addition, NHE1 was activated with LPA treatment followed by determination of NHE1 palmitoylation status and LPA-induced change in intracellular pH was determined in the presence and absence of preincubation with 2BP. KEY FINDINGS: In this study we demonstrate for the first time that NHE1 is palmitoylated in both cells and rat tissue, and that processes controlled by NHE1 including intracellular pH (pHi), stress fiber formation, and cell migration, are regulated in concert with NHE1 palmitoylation status. Importantly, LPA stimulates NHE1 palmitoylation, and 2BP pretreatment dampens LPA-induced increased pHi which is dependent on the presence of NHE1. SIGNIFICANCE: Palmitoylation is a reversible lipid modification that regulates an array of critical protein functions including activity, trafficking, membrane microlocalization and protein-protein interactions. Our results suggest that palmitoylation of NHE1 and other control/signaling proteins play a major role in NHE1 regulation that could significantly impact multiple critical cellular functions.


Subject(s)
Actins/metabolism , Cell Movement , Cell Proliferation , Lipoylation , Protein Processing, Post-Translational , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchanger 1/metabolism , Animals , Hydrogen-Ion Concentration , Rats
2.
Biomolecules ; 11(8)2021 08 09.
Article in English | MEDLINE | ID: mdl-34439840

ABSTRACT

Motifs within proteins help us categorize their functions. Intrinsically disordered proteins (IDPs) are rich in short linear motifs, conferring them many different roles. IDPs are also frequently highly charged and, therefore, likely to interact with ions. Canonical calcium-binding motifs, such as the EF-hand, often rely on the formation of stabilizing flanking helices, which are a key characteristic of folded proteins, but are absent in IDPs. In this study, we probe the existence of a calcium-binding motif relevant to IDPs. Upon screening several carefully selected IDPs using NMR spectroscopy supplemented with affinity quantification by colorimetric assays, we found calcium-binding motifs in IDPs which could be categorized into at least two groups-an Excalibur-like motif, sequentially similar to the EF-hand loop, and a condensed-charge motif carrying repetitive negative charges. The motifs show an affinity for calcium typically in the ~100 µM range relevant to regulatory functions and, while calcium binding to the condensed-charge motif had little effect on the overall compaction of the IDP chain, calcium binding to Excalibur-like motifs resulted in changes in compaction. Thus, calcium binding to IDPs may serve various structural and functional roles that have previously been underreported.


Subject(s)
Calcium/metabolism , Intrinsically Disordered Proteins , Protein Precursors/chemistry , Sodium-Hydrogen Exchanger 1/chemistry , Thymosin/analogs & derivatives , alpha-Synuclein/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Binding , Protein Domains , Protein Structure, Secondary , Thymosin/chemistry
3.
Nat Commun ; 12(1): 3474, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108458

ABSTRACT

Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchanger 1/metabolism , Binding Sites , Biological Transport , Cryoelectron Microscopy , Guanidines/metabolism , Humans , Models, Molecular , Multiprotein Complexes , Protein Binding , Protein Conformation , Protein Multimerization , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Sulfones/metabolism
4.
Commun Biol ; 3(1): 731, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273619

ABSTRACT

Dynamic interactions of proteins with lipid membranes are essential regulatory events in biology, but remain rudimentarily understood and particularly overlooked in membrane proteins. The ubiquitously expressed membrane protein Na+/H+-exchanger 1 (NHE1) regulates intracellular pH (pHi) with dysregulation linked to e.g. cancer and cardiovascular diseases. NHE1 has a long, regulatory cytosolic domain carrying a membrane-proximal region described as a lipid-interacting domain (LID), yet, the LID structure and underlying molecular mechanisms are unknown. Here we decompose these, combining structural and biophysical methods, molecular dynamics simulations, cellular biotinylation- and immunofluorescence analysis and exchanger activity assays. We find that the NHE1-LID is intrinsically disordered and, in presence of membrane mimetics, forms a helical αα-hairpin co-structure with the membrane, anchoring the regulatory domain vis-a-vis the transport domain. This co-structure is fundamental for NHE1 activity, as its disintegration reduced steady-state pHi and the rate of pHi recovery after acid loading. We propose that regulatory lipid-protein co-structures may play equally important roles in other membrane proteins.


Subject(s)
Lipids/chemistry , Sodium-Hydrogen Exchanger 1/chemistry , Animals , CHO Cells , Circular Dichroism , Cricetinae , Cricetulus , Humans , Protein Binding , Protein Conformation , Protein Domains , Sodium-Hydrogen Exchanger 1/metabolism
5.
Methods Mol Biol ; 2141: 569-584, 2020.
Article in English | MEDLINE | ID: mdl-32696378

ABSTRACT

Several intrinsically disordered proteins (IDPs) exhibit high affinity for lipid membranes. Among the different biophysical methods to probe protein-lipid interaction, neutron reflectometry (NR) can provide direct and structural detailed information on the location of the IDP with respect to the membrane. Supported lipid bilayers are commonly used as cell membrane models in such experiments. NR measurements can be collected on the supported lipid bilayer before and after the interaction with the IDP to characterize whether the protein molecules are mainly located on the membrane surface (interaction with the lipid headgroups), are penetrating into the hydrophobic region of the membrane (interaction with the lipid acyl chains), or are not interacting at all with the membrane. The lipid composition of the supported lipid bilayer can easily be tuned; hence the NR experiments can be designed to investigate selective IDP-lipid interactions.This chapter will describe the fundamental steps for performing an NR experiment and the subsequent data analysis aimed at characterizing IDP-lipid bilayer interactions. The specific case of an intrinsically disordered region (IDR) from the membrane protein Na+/H+ exchanger isoform 1 (NHE1) will be used as an example, but the same protocol can be easily adapted to other IDPs.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Neutrons , Scattering, Radiation , Unilamellar Liposomes/metabolism , Equipment Design , Hydrogen , Hydrophobic and Hydrophilic Interactions , Intrinsically Disordered Proteins/chemistry , Lipid Bilayers , Membrane Lipids/metabolism , Methods , Nitrogen Isotopes , Phosphatidylcholines/chemistry , Signal Processing, Computer-Assisted , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchanger 1/metabolism , Software
6.
Mol Cell Biochem ; 468(1-2): 13-20, 2020 May.
Article in English | MEDLINE | ID: mdl-32130622

ABSTRACT

Mammalian Na+/H+ exchanger type I isoform (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH (pHi) by removing one intracellular proton in exchange for one extracellular sodium ion. Abnormal activity of the protein occurs in cardiovascular disease and breast cancer. The purpose of this study is to examine the role of negatively charged amino acids of extracellular loop 3 (EL3) in the activity of the NHE protein. We mutated glutamic acid 217 and aspartic acid 226 to alanine, and to glutamine and asparagine, respectively. We examined effects on expression levels, cell surface targeting and activity of NHE1, and also characterized affinity for extracellular sodium and lithium ions. Individual mutation of these amino acids had little effect on protein function. However, mutation of both these amino acids together impaired transport, decreasing the Vmax for both Na+ and Li+ ions. We suggested that amino acids E217 and D226 form part of a negatively charged coordination sphere, which facilitates cation transport in the NHE1 protein.


Subject(s)
Amino Acids, Acidic/chemistry , Cation Transport Proteins/chemistry , Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Amino Acids, Acidic/genetics , Animals , Cation Transport Proteins/genetics , Cell Line , Cell Membrane/chemistry , Cell Membrane/genetics , Cricetulus , Hydrogen-Ion Concentration , Ion Transport/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Domains/genetics , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchangers/genetics
7.
FASEB J ; 34(2): 3253-3266, 2020 02.
Article in English | MEDLINE | ID: mdl-31912575

ABSTRACT

Calcineurin B homologous proteins (CHPs) belong to the EF-hand Ca2+ -binding protein (EFCaBP) family. They have multiple important functions including the regulation of the Na+ /H+ exchanger 1 (NHE1). The human isoforms CHP1 and CHP2 share high sequence similarity, but have distinct expression profiles with CHP2 levels for instance increased in malignant cells. These CHPs bind Ca2+ with high affinity. Biochemical data indicated that Ca2+ can regulate their functions. Experimental evidence for Ca2+ -modulated structural changes was lacking. With a newly established fluorescent probe hydrophobicity (FPH) assay, we detected Ca2+ -induced conformational changes in both CHPs. These changes are in line with an opening of their hydrophobic pocket that binds the CHP-binding region (CBD) of NHE1. Whereas the pocket is closed in the absence of Ca2+ in CHP2, it is still accessible for the dye in CHP1. Both CHPs interacted with CBD in the presence and absence of Ca2+ . Isothermal titration calorimetry (ITC) analysis revealed high binding affinity for both CHPs to CBD with equilibrium dissociation constants (KD s) in the nanomolar range. The KD for CHP1:CBD was not affected by Ca2+ , whereas Ca2+ -depletion increased the KD 7-fold for CHP2:CBD showing a decreased affinity. The data indicate an isoform specific regulatory interaction of CHP1 and CHP2 with NHE1.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , Binding Sites , Calcium-Binding Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Sodium-Hydrogen Exchanger 1/chemistry
8.
Int J Mol Sci ; 20(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091671

ABSTRACT

The human Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane transport protein that plays an important role in pH regulation in mammalian cells. Because of the generation of protons by intermediary metabolism as well as the negative membrane potential, protons accumulate within the cytosol. Extracellular signal-regulated kinase (ERK)-mediated regulation of NHE1 is important in several human pathologies including in the myocardium in heart disease, as well as in breast cancer as a trigger for growth and metastasis. NHE1 has a N-terminal, a 500 amino acid membrane domain, and a C-terminal 315 amino acid cytosolic domain. The C-terminal domain regulates the membrane domain and its effects on transport are modified by protein binding and phosphorylation. Here, we discuss the physiological regulation of NHE1 by ERK, with an emphasis on the critical effects on structure and function. ERK binds directly to the cytosolic domain at specific binding domains. ERK also phosphorylates NHE1 directly at multiple sites, which enhance NHE1 activity with subsequent downstream physiological effects. The NHE1 cytosolic regulatory tail possesses both ordered and disordered regions, and the disordered regions are stabilized by ERK-mediated phosphorylation at a phosphorylation motif. Overall, ERK pathway mediated phosphorylation modulates the NHE1 tail, and affects the activity, structure, and function of this membrane protein.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , Animals , Humans , Phosphorylation , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchanger 1/genetics
9.
Biochem Cell Biol ; 97(3): 333-343, 2019 06.
Article in English | MEDLINE | ID: mdl-30058365

ABSTRACT

Na+/H+ exchanger isoform one (NHE1) is a mammalian plasma membrane protein that removes intracellular protons, thereby elevating intracellular pH (pHi). NHE1 uses the energy of allowing an extracellular sodium down its gradient into cells to remove one intracellular proton. The ubiquitous protein has several important physiological and pathological influences on mammalian cells as a result of its activity. The three-dimensional structure of human NHE1 (hNHE1) is not known. Here, we modeled NHE1 based on the structure of MjNhaP1 of Methanocaldoccocus jannaschii in combination with biochemical surface accessibility data. hNHE1 contained 12 transmembrane segments including a characteristic Na+/H+ antiporter fold of two transmembrane segments with a helix - extended region - helix conformation crossing each other within the membrane. Amino acids 363-410 mapped principally to the extracellular surface as an extracellular loop (EL5). A large preponderance of amino acids shown to be surface accessible by biochemical experiments mapped near to, or on, the extracellular surface. Docking of Na+/H+ exchanger inhibitors to the extracellular surface suggested that inhibitor binding on an extracellular site is made up from several amino acids of different regions of the protein. The results present a novel testable, three-dimensional model illustrating NHE1 structure and accounting for experimental biochemical data.


Subject(s)
Methanocaldococcus/chemistry , Models, Molecular , Sodium Channel Blockers/pharmacology , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Amino Acid Sequence , Humans , Sodium Channel Blockers/chemistry , Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchanger 1/metabolism
10.
Biochim Biophys Acta Biomembr ; 1861(1): 191-200, 2019 01.
Article in English | MEDLINE | ID: mdl-30071192

ABSTRACT

The mammalian Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH (pHi) by removing a single intracellular proton in exchange for one extracellular sodium ion. It is involved in cardiac hypertrophy and ischemia reperfusion damage to the heart and elevation of its activity is a trigger for breast cancer metastasis. NHE1 has an extensive 500 amino acid N-terminal membrane domain that mediates transport and consists of 12 transmembrane segments connected by intracellular and extracellular loops. Intracellular loops are hypothesized to modulate the sensitivity to pHi. In this study, we characterized the structure and function of intracellular loop 5 (IL5), specifically amino acids 431-443. Mutation of eleven residues to alanine caused partial or nearly complete inhibition of transport; notably, mutation of residues L432, T433, I436, N437, R440 and K443 demonstrated these residues had critical roles in NHE1 function independent of effects on targeting or expression. The nuclear magnetic resonance (NMR) solution spectra of the IL5 peptide in a membrane mimetic sodium dodecyl sulfate solution revealed that IL5 has a stable three-dimensional structure with substantial alpha helical character. NMR chemical shifts indicated that K438 was in close proximity with W434. Overall, our results show that IL5 is a critical, intracellular loop with a propensity to form an alpha helix, and many residues of this intracellular loop are critical to proton sensing and ion transport.


Subject(s)
Sodium-Hydrogen Exchanger 1/chemistry , Sodium-Hydrogen Exchangers/chemistry , Alanine/chemistry , Animals , Cell Membrane/chemistry , Cytoplasm/chemistry , Humans , Hydrogen-Ion Concentration , Ion Transport , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Mutation , Peptides/chemistry , Protein Domains , Protein Isoforms/chemistry , Protein Structure, Secondary , Protons
11.
Cell Signal ; 37: 40-51, 2017 09.
Article in English | MEDLINE | ID: mdl-28554535

ABSTRACT

Intrinsically disordered proteins (IDPs) are involved in many pivotal cellular processes including phosphorylation and signalling. The structural and functional effects of phosphorylation of IDPs remain poorly understood and difficult to predict. Thus, a need exists to identify motifs that confer phosphorylation-dependent perturbation of the local preferences for forming e.g. helical structures as well as motifs that do not. The disordered distal tail of the Na+/H+ exchanger 1 (NHE1) is six-times phosphorylated (S693, S723, S726, S771, T779, S785) by the mitogen activated protein kinase 2 (MAPK1, ERK2). Using NMR spectroscopy, we found that two out of those six phosphorylation sites had a stabilizing effect on transient helices. One of these was further investigated by circular dichroism and NMR spectroscopy as well as by molecular dynamic simulations, which confirmed the stabilizing effect and resulted in the identification of a short linear motif for helix stabilisation: [S/T]-P-{3}-[R/K] where [S/T] is the phosphorylation-site. By analysing IDP and phosphorylation site databases we found that the motif is significantly enriched around known phosphorylation sites, supporting a potential wider-spread role in phosphorylation-mediated regulation of intrinsically disordered proteins. The identification of such motifs is important for understanding the molecular mechanism of cellular signalling, and is crucial for the development of predictors for the structural effect of phosphorylation; a tool of relevance for understanding disease-promoting mutations that for example interfere with signalling for instance through constitutive active and often cancer-promoting signalling.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Sodium-Hydrogen Exchanger 1/chemistry , Humans , Molecular Dynamics Simulation , Phosphorylation , Protein Stability , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...