Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Sci Rep ; 14(1): 11911, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789719

ABSTRACT

Lack of understanding of the pathophysiology of gastrointestinal (GI) complications in type 1 diabetes (T1D), including altered intestinal transcriptomes and protein expression represents a major gap in the management of these patients. Human enteroids have emerged as a physiologically relevant model of the intestinal epithelium but establishing enteroids from individuals with long-standing T1D has proven difficult. We successfully established duodenal enteroids using endoscopic biopsies from pediatric T1D patients and compared them with aged-matched enteroids from healthy subjects (HS) using bulk RNA sequencing (RNA-seq), and functional analyses of ion transport processes. RNA-seq analysis showed significant differences in genes and pathways associated with cell differentiation and proliferation, cell fate commitment, and brush border membrane. Further validation of these results showed higher expression of enteroendocrine cells, and the proliferating cell marker Ki-67, significantly lower expression of NHE3, lower epithelial barrier integrity, and higher fluid secretion in response to cAMP and elevated calcium in T1D enteroids. Enteroids established from pediatric T1D duodenum identify characteristics of an abnormal intestinal epithelium and are distinct from HS. Our data supports the use of pediatric enteroids as an ex-vivo model to advance studies of GI complications and drug discovery in T1D patients.


Subject(s)
Diabetes Mellitus, Type 1 , Duodenum , Intestinal Mucosa , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Child , Duodenum/metabolism , Duodenum/pathology , Female , Male , Cell Proliferation , Adolescent , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/pathology , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Cell Differentiation , Organoids/metabolism , Organoids/pathology , Ki-67 Antigen/metabolism
2.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557357

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Subject(s)
Benzhydryl Compounds , Glucosides , Hypertension , Rats, Inbred SHR , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Up-Regulation , Animals , Male , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Up-Regulation/drug effects , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Blood Pressure/drug effects , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Kidney/drug effects
3.
Am J Physiol Renal Physiol ; 326(5): F737-F750, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482554

ABSTRACT

Chronic angiotensin II (ANG II) infusion is an experimental model that induces hypertension in rodents. The natriuresis, diuresis, and blood pressure responses differ between males and females. This is perhaps not unexpected, given the rodent kidney, which plays a key role in blood pressure regulation, exhibits marked sex differences. Under normotensive conditions, compared with males, the female rat nephron exhibits lower Na+/H+ exchanger 3 (NHE3) activity along the proximal tubule but higher Na+ transporter activities along the distal segments. ANG II infusion-induced hypertension induces a pressure natriuretic response that reduces NHE3 activity and shifts Na+ transport capacity downstream. The goals of this study were to apply a computational model of epithelial transport along a rat nephron 1) to understand how a 14-day ANG II infusion impacts segmental electrolyte transport in male and female rat nephrons and 2) to identify and explain any sex differences in the effects of loop diuretics, thiazide diuretics, and K+-sparing diuretics. Model simulations suggest that the NHE3 downregulation in the proximal tubule is a major contributor to natriuresis and diuresis in hypertension, with the effects stronger in males. All three diuretics are predicted to induce stronger natriuretic and diuretic effects under hypertension compared with normotension, with relative increases in sodium excretion higher in hypertensive females than in males. The stronger natriuretic responses can be explained by the downstream shift of Na+ transport load in hypertension and by the larger distal transport load in females, both of which limit the ability of the distal segments to further elevate their Na+ transport.NEW & NOTEWORTHY Sex differences in the prevalence of hypertension are found in human and animal models. The kidney, which regulates blood pressure, exhibits sex differences in morphology, hemodynamics, and membrane transporter distributions. This computational modeling study provides insights into how the sexually dimorphic responses to a 14-day angiotensin II infusion differentially impact segmental electrolyte transport in rats. Simulations of diuretic administration explain how the natriuretic and diuretic effects differ between normotension and hypertension and between the sexes.


Subject(s)
Angiotensin II , Hypertension , Natriuresis , Sodium-Hydrogen Exchanger 3 , Animals , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Male , Female , Sodium-Hydrogen Exchanger 3/metabolism , Natriuresis/drug effects , Diuretics/pharmacology , Blood Pressure/drug effects , Sex Factors , Computer Simulation , Sodium/metabolism , Rats , Sodium Chloride Symporter Inhibitors/pharmacology , Sex Characteristics , Disease Models, Animal , Diuresis/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Kidney/metabolism , Kidney/drug effects , Kidney/physiopathology
4.
Acta Physiol (Oxf) ; 240(4): e14125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533975

ABSTRACT

AIM: Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS: Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS: In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION: NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.


Subject(s)
Membrane Microdomains , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers , Animals , Mice , Cyclic GMP-Dependent Protein Kinases/metabolism , Intestine, Small/metabolism , Membrane Microdomains/metabolism , Microvilli/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism
5.
Pflugers Arch ; 476(4): 505-516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448727

ABSTRACT

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.


Subject(s)
Isoquinolines , Sodium-Hydrogen Exchangers , Sodium , Sulfonamides , Animals , Humans , Mice , Rats , Mice, Knockout , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G543-G554, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38252683

ABSTRACT

The pathogenesis of irritable bowel syndrome (IBS) is multifactorial, characterized in part by increased intestinal permeability, and visceral hypersensitivity. Increased permeability is associated with IBS severity and abdominal pain. Tenapanor is FDA-approved for the treatment of IBS with constipation (IBS-C) and has demonstrated improvements in bowel motility and a reduction in IBS-related pain; however, the mechanism by which tenapanor mediates these functions remains unclear. Here, the effects of tenapanor on colonic pain signaling and intestinal permeability were assessed through behavioral, electrophysiological, and cell culture experiments. Intestinal motility studies in rats and humans demonstrated that tenapanor increased luminal sodium and water retention and gastrointestinal transit versus placebo. A significantly reduced visceral motor reflex (VMR) to colonic distension was observed with tenapanor treatment versus vehicle in two rat models of visceral hypersensitivity (neonatal acetic acid sensitization and partial restraint stress; both P < 0.05), returning VMR responses to that of nonsensitized controls. Whole cell voltage patch-clamp recordings of retrogradely labeled colonic dorsal root ganglia (DRG) neurons from sensitized rats found that tenapanor significantly reduced DRG neuron hyperexcitability to capsaicin versus vehicle (P < 0.05), an effect not mediated by epithelial cell secretions. Tenapanor also attenuated increases in intestinal permeability in human colon monolayer cultures caused by incubation with proinflammatory cytokines (P < 0.001) or fecal supernatants from patients with IBS-C (P < 0.005). These results support a model in which tenapanor reduces IBS-related pain by strengthening the intestinal barrier, thereby decreasing permeability to macromolecules and antigens and reducing DRG-mediated pain signaling.NEW & NOTEWORTHY A series of nonclinical experiments support the theory that tenapanor inhibits IBS-C-related pain by strengthening the intestinal barrier. Tenapanor treatment reduced visceral motor responses to nonsensitized levels in two rat models of hypersensitivity and reduced responses to capsaicin in sensitized colonic nociceptive dorsal root ganglia neurons. Intestinal permeability experiments in human colon monolayer cultures found that tenapanor attenuates increases in permeability induced by either inflammatory cytokines or fecal supernatants from patients with IBS-C.


Subject(s)
Irritable Bowel Syndrome , Isoquinolines , Sulfonamides , Humans , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Colon/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Intestinal Barrier Function , Capsaicin/pharmacology , Sensory Receptor Cells/metabolism , Abdominal Pain/metabolism , Cytokines/metabolism , TRPV Cation Channels/metabolism
7.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38073487

ABSTRACT

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Subject(s)
Calcium , Fatty Acids, Volatile , Rats , Animals , Sodium-Hydrogen Exchanger 3/metabolism , Calcium/metabolism , Molecular Docking Simulation , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , Carrier Proteins/metabolism , Duodenum/metabolism , Glucose/metabolism , Intestinal Absorption
8.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084960

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Molecular Docking Simulation , Nucleocapsid Proteins/metabolism , Pemetrexed/metabolism , Porcine epidemic diarrhea virus/physiology , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Swine , Swine Diseases/drug therapy
9.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37463050

ABSTRACT

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Subject(s)
Cyclosporine , Hypertension , Adult , Humans , Male , Rats , Animals , Cyclosporine/adverse effects , Sodium-Hydrogen Exchanger 3/metabolism , Up-Regulation , Furosemide , Rats, Sprague-Dawley , Hypertension/chemically induced , Hypertension/metabolism , Sodium/metabolism , Solute Carrier Family 12, Member 1/metabolism
10.
Am J Physiol Cell Physiol ; 326(1): C50-C59, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38047302

ABSTRACT

Electroneutral NaCl transport by Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and decreased NHE3 activity contributes to diarrhea. Patients with diabetes often experience gastrointestinal adverse effects and medications are often a culprit for chronic diarrhea in type 2 diabetes (T2D). We have shown previously that metformin, the most widely prescribed drug for the treatment of T2D, induces diarrhea by inhibition of Na+/H+ exchanger 3 (NHE3) in rodent models of T2D. Metformin was shown to activate AMP-activated protein kinase (AMPK), but AMPK-independent glycemic effects of metformin are also known. The current study is undertaken to determine whether metformin inhibits NHE3 by activation of AMPK and the mechanism by which NHE3 is inhibited by AMPK. Inhibition of NHE3 by metformin was abolished by knockdown of AMPK-α1 or AMPK-α2. AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) phosphorylated NHE3 at S555. S555 is the primary site of phosphorylation by protein kinase A (PKA), but AMPK phosphorylated S555 independently of PKA. Using Mass spectrometry, we found S563 as a newly recognized phosphorylation site in NHE3. Altering either S555 or S563 to Ala was sufficient to block the inhibition of NHE3 activity by AMPK. NHE3 inhibition is dependent on ubiquitination by the E3 ubiquitin ligase Nedd4-2 and metformin was shown to induce NHE3 internalization via Nedd4-2-mediated ubiquitination. AICAR did not increase NHE3 ubiquitination when S555 or S563 was mutated. We conclude that AMPK activation inhibits NHE3 activity and NHE3 inhibition is associated with phosphorylation of NHE3 at S555 and S563.NEW & NOTEWORTHY We show that AMP-activated protein kinase (AMPK) phosphorylates NHE3 at S555 and S563 to inhibit NHE3 activity in intestinal epithelial cells. Phosphorylation of NHE3 by AMPK is necessary for ubiquitination of NHE3.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , AMP-Activated Protein Kinases/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Phosphorylation , Diabetes Mellitus, Type 2/drug therapy , Metformin/pharmacology , Intestines , Diarrhea , Aminoimidazole Carboxamide/pharmacology
11.
Vet Microbiol ; 289: 109916, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159369

ABSTRACT

Porcine deltacoronavirus (PDCoV) infection in piglets can cause small intestinal epithelial necrosis and atrophic enteritis, which leads to severe damages to host cells, and result in diarrhea. In this study, we investigated the relationship between miR-361, SLC9A3(Solute carrier family 9, subfamily A, member 3), and NHE3(sodium-hydrogen exchanger member 3) in in porcine intestinal epithelial cells (IPI-2I) cells after PDCoV infection. Our results showed that the ssc-miR-361-3p expression inhibits the mRNA level of SLC9A3 gene which lead to the descending of NHE3 protein expression, and the NHE3 activity was suppressed. NHE3 activity was suppressed via down-regulation expression of SLC9A3 mRNA by transfection with siRNA. Ssc-miR-361-3p mimics and inhibitors were used to change the expression of ssc-miR-361-3p in IPI-2I cells. Ssc-miR-361-3p overexpression reduced the mRNA level of SLC9A3 gene, the level of NHE3 protein expression and NHE3 activity in IPI-2I cells, while ssc-miR-361-3p inhibits NHE3. Furthermore, luciferase reporter assay showed that SLC9A3 gene was a direct target of ssc-miR-361-3p. Ssc-miR-361-3p inhibition restored NHE3 activity in PDCoV infected IPI-2I cells by up-regulating SLC9A3 mRNA expression and NHE3 protein expression. These results demonstrate that the PDCoV infection can inhibit NHE3 activity through miR-361-3p/SLC9A3 regulatory axis. The relevant research is reported for the first time in PDCoV, which has significance in exploring the pathogenic mechanism of PDCoV and can provide a theoretical basis for its prevention and control. suggesting that NHE3 and ssc-miR-361-3p may be potential therapeutic targets for diarrhea in infected piglets.


Subject(s)
Coronavirus Infections , Coronavirus , MicroRNAs , Swine Diseases , Swine , Animals , Coronavirus/physiology , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Coronavirus Infections/veterinary , Epithelial Cells , Diarrhea/veterinary , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
12.
BMC Nephrol ; 24(1): 309, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880610

ABSTRACT

INTRODUCTION: Nephrotic syndrome (NS) is characterized by renal sodium and water retention. The mechanisms are not fully elucidated. METHODS: The NS rat model was established by single intraperitoneal injection of 100 mg/kg puromycin aminonucleoside (PAN). The plasma electrolyte level and urinary sodium excretion were monitored dynamically. The changes of some sodium transporters, including epithelial Na+ channel (ENaC), Na+/H+ exchanger 3 (NHE3), Na+-K+-2Cl- cotransporter 2 (NKCC2) and Na+-Cl- cotransporter (NCC) in renal cortex at different time points and the level of peripheral circulation factors were detected. RESULTS: The urinary sodium excretion of the model group increased significantly on the first day, then decreased compared with the control group, and there was no significant difference between the model group and the control group on the 12th day. The changes of peripheral circulation factors were not obvious. Some sodium transporters in renal cortex increased in varying degrees, while NKCC2 decreased significantly compared with the control group. CONCLUSIONS: The occurrence of NS edema may not be related to the angiotensin system. The decrease of urinary sodium excretion is independent of the development of albuminuria. During the 18 days of observation, it can be divided into three stages: sodium retention, sodium compensation, and simple water retention. The mechanism is related to the increased expression of α-ENaC, γ-ENaC, NHE3 and NCC in a certain period of time, the compensatory decrease of NKCC2 expression and the continuous increase of aquaporin 2 (AQP2) expression.


Subject(s)
Nephrotic Syndrome , Rats , Animals , Nephrotic Syndrome/metabolism , Puromycin Aminonucleoside/toxicity , Sodium/urine , Sodium-Hydrogen Exchanger 3/metabolism , Aquaporin 2/metabolism , Epithelial Sodium Channels , Kidney/metabolism , Membrane Transport Proteins/metabolism , Solute Carrier Family 12, Member 3 , Water/metabolism
13.
J Hypertens ; 41(11): 1831-1843, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37682076

ABSTRACT

BACKGROUND: Kidney angiotensin (Ang) II is produced mainly from liver-derived, glomerular-filtered angiotensinogen (AGT). Podocyte injury has been reported to increase the kidney Ang II content and induce Na + retention depending on the function of megalin, a proximal tubular endocytosis receptor. However, how megalin regulates the renal content and action of Ang II remains elusive. METHODS: We used a mass spectrometry-based, parallel reaction-monitoring assay to quantitate Ang II in plasma, urine, and kidney homogenate of kidney-specific conditional megalin knockout (MegKO) and control (Ctl) mice. We also evaluated the pathophysiological changes in both mouse genotypes under the basal condition and under the condition of increased glomerular filtration of AGT induced by administration of recombinant mouse AGT (rec-mAGT). RESULTS: Under the basal condition, plasma and kidney Ang II levels were comparable in the two mouse groups. Ang II was detected abundantly in fresh spot urine in conditional MegKO mice. Megalin was also found to mediate the uptake of intravenously administered fluorescent Ang II by PTECs. Administration of rec-mAGT increased kidney Ang II, exerted renal extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, activated proximal tubular Na + -H + exchanger 3 (NHE3), and decreased urinary Na + excretion in Ctl mice, whereas these changes were suppressed but urinary Ang II was increased in conditional MegKO mice. CONCLUSION: Increased glomerular filtration of AGT is likely to augment Ang II production in the proximal tubular lumen. Thus, megalin-dependent Ang II uptake should be involved in the ERK1/2 signaling that activates proximal tubular NHE3 in vivo , thereby causing Na + retention.


Subject(s)
Angiotensin II , Angiotensinogen , Animals , Mice , Angiotensin II/pharmacology , Angiotensinogen/genetics , Angiotensinogen/metabolism , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism
14.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Article in English | MEDLINE | ID: mdl-37429363

ABSTRACT

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Subject(s)
Enterotoxins , Sodium-Hydrogen Exchangers , Mice , Animals , Humans , Sodium-Hydrogen Exchanger 3/metabolism , Enterotoxins/pharmacology , Enterotoxins/metabolism , Caco-2 Cells , Sodium-Hydrogen Exchangers/metabolism , Enterocytes/metabolism , Sodium/metabolism , Diarrhea/drug therapy , Diarrhea/prevention & control , Diarrhea/chemically induced , Peptides/adverse effects , Microvilli/metabolism
15.
Am J Physiol Renal Physiol ; 325(2): F224-F234, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37318989

ABSTRACT

The impact of chronic dietary K+ loading on proximal tubule (PT) function was measured using free-flow micropuncture along with measurements of overall kidney function, including urine volume, glomerular filtration rate, and absolute and fractional Na+ and K+ excretion in the rat. Feeding animals a diet with 5% KCl [high K+ (HK)] for 7 days reduced glomerular filtration rate by 29%, increased urine volume by 77%, and increased absolute K+ excretion by 202% compared with rats on a 1% KCl [control K+ (CK)] diet. HK did not change absolute Na+ excretion but significantly increased fraction excretion of Na+ (1.40% vs. 0.64%), indicating that fractional Na+ absorption is reduced by HK. PT reabsorption was assessed using free-flow micropuncture in anesthetized animals. At 80% of the accessible length of the PT, measurements of inulin concentration indicated volume reabsorption of 73% and 54% in CK and HK, respectively. At the same site, fractional PT Na+ reabsorption was 66% in CK animals and 37% in HK animals. Fractional PT K+ reabsorption was 66% in CK and 37% in HK. To assess the role of Na+/H+ exchanger isoform 3 (NHE3) in mediating these changes, we measured NHE3 protein expression in total kidney microsomes as well as surface membranes using Western blots. We found no significant changes in protein in either cell fraction. Expression of the Ser552 phosphorylated form of NHE3 was also similar in CK and HK animals. Reduction in PT transport may facilitate K+ excretion and help balance Na+ excretion by shifting Na+ reabsorption from K+-reabsorbing to K+-secreting nephron segments.NEW & NOTEWORTHY In rats fed a diet rich in K+, proximal tubules reabsorbed less fluid, Na+, and K+ compared with those in animals on a control diet. Glomerular filtration rates also decreased, probably due to glomerulotubular feedback. These reductions may help to maintain balance of the two ions simultaneously by shifting Na+ reabsorption to K+-secreting nephron segments.


Subject(s)
Kidney Tubules, Proximal , Nephrons , Rats , Animals , Sodium-Hydrogen Exchanger 3/metabolism , Kidney Tubules, Proximal/metabolism , Nephrons/metabolism , Kidney/metabolism , Sodium/metabolism , Glomerular Filtration Rate
16.
Cells ; 12(11)2023 05 28.
Article in English | MEDLINE | ID: mdl-37296613

ABSTRACT

The current prevailing paradigm in the renin-angiotensin system dictates that most, if not all, biological, physiological, and pathological responses to its most potent peptide, angiotensin II (Ang II), are mediated by extracellular Ang II activating its cell surface receptors. Whether intracellular (or intracrine) Ang II and its receptors are involved remains incompletely understood. The present study tested the hypothesis that extracellular Ang II is taken up by the proximal tubules of the kidney by an AT1 (AT1a) receptor-dependent mechanism and that overexpression of an intracellular Ang II fusion protein (ECFP/Ang II) in mouse proximal tubule cells (mPTC) stimulates the expression of Na+/H+ exchanger 3 (NHE3), Na+/HCO3- cotransporter, and sodium and glucose cotransporter 2 (Sglt2) by AT1a/MAPK/ERK1/2/NF-kB signaling pathways. mPCT cells derived from male wild-type and type 1a Ang II receptor-deficient mice (Agtr1a-/-) were transfected with an intracellular enhanced cyan fluorescent protein-tagged Ang II fusion protein, ECFP/Ang II, and treated without or with AT1 receptor blocker losartan, AT2 receptor blocker PD123319, MEK1/MEK2 inhibitor U0126, NF-кB inhibitor RO 106-9920, or p38 MAP kinase inhibitor SB202196, respectively. In wild-type mPCT cells, the expression of ECFP/Ang II significantly increased NHE3, Na+/HCO3-, and Sglt2 expression (p < 0.01). These responses were accompanied by >3-fold increases in the expression of phospho-ERK1/2 and the p65 subunit of NF-кB (p < 0.01). Losartan, U0126, or RO 106-9920 all significantly attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Deletion of AT1 (AT1a) receptors in mPCT cells attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Interestingly, the AT2 receptor blocker PD123319 also attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). These results suggest that, similar to extracellular Ang II, intracellular Ang II may also play an important role in Ang II receptor-mediated proximal tubule NHE3, Na+/HCO3-, and Sglt2 expression by activation of AT1a/MAPK/ERK1/2/NF-kB signaling pathways.


Subject(s)
Angiotensin II , NF-kappa B , Male , Mice , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , NF-kappa B/metabolism , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Glucose Transporter 2/metabolism , Losartan/pharmacology , MAP Kinase Signaling System , Sodium-Hydrogen Exchangers/metabolism , Signal Transduction
17.
Gut Microbes ; 15(1): 2225841, 2023.
Article in English | MEDLINE | ID: mdl-37350393

ABSTRACT

BACKGROUND & AIM: Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS: We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS: Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS: CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Animals , Female , Mice , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Diarrhea , Down-Regulation , Mice, Inbred C57BL , Permeability , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism
18.
Am J Physiol Cell Physiol ; 324(6): C1263-C1273, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37154494

ABSTRACT

In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.


Subject(s)
Epithelial Cells , Sodium Chloride , Humans , Caco-2 Cells , Epithelial Cells/metabolism , Anions/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Diarrhea/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Chloride-Bicarbonate Antiporters/metabolism
19.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047570

ABSTRACT

The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl- co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.


Subject(s)
Symporters , Zebrafish , Animals , Zebrafish/metabolism , Symporters/metabolism , Biological Transport , Ion Transport/physiology , Gills/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Fresh Water
20.
J Hypertens ; 41(6): 958-970, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37016934

ABSTRACT

OBJECTIVES: Functional impairment of renal sodium handling and blood pressure (BP) homeostasis is an early characteristic manifestation of type 1 diabetes. However, the underlying mechanisms remain unclear. METHODS: Metabolic cages, radio-telemetry, immunoblotting, and electrophysiology were utilized to examine effects of high salt (8% NaCl, HS) intake on Na + /K + balance, BP, Na + -Cl - cotransporter (NCC) function, and basolateral K + channel activity in the distal convoluted tubule (DCT) under diabetic conditions. RESULTS: Improper Na + balance, hypernatremia, and a mild but significant increase in BP were found in streptozotocin (STZ)-induced diabetic mice in response to HS intake for 7 days. Compared to the vehicle, STZ mice showed increased Kir4.1 expression and activity in the DCT, a more negative membrane potential, higher NCC abundance, and enhanced hydrochlorothiazide-induced natriuretic effect. However, HS had no significant effect on basolateral Kir4.1 expression/activity and DCT membrane potential, or NCC activity under diabetic conditions, despite a downregulation in phosphorylated NCC abundance. In contrast, HS significantly downregulated the expression of Na + -H + exchanger 3 (NHE3) and cleaved epithelial sodium channel-γ in STZ mice, despite an increase in NHE3 abundance after STZ treatment. Kir4.1 deletion largely abolished STZ-induced upregulation of NCC expression and prevented BP elevation during HS intake. Interestingly, HS causes severe hypokalemia in STZ-treated kidney-specific Kir4.1 knockout (Ks-Kir4.1 KO) mice and lead to death within a few days, which could be attributed to a higher circulating aldosterone level. CONCLUSIONS: We concluded that Kir4.1 is required for upregulating NCC activity and may be essential for developing salt-sensitive hypertension in early STZ-induced diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Hypertension , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Hypertension/metabolism , Kidney Tubules, Distal/metabolism , Mice, Knockout , Sodium/metabolism , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/pharmacology , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/pharmacology , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...