Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38608140

ABSTRACT

Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.


Subject(s)
Diploidy , Genome, Plant , Solanum , Solanum/genetics , Solanum tuberosum/genetics , Chromosomes, Plant/genetics , Molecular Sequence Annotation , Genomics/methods , Chromosome Mapping , Phylogeny , Mexico
2.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37818893

ABSTRACT

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Subject(s)
Gigantism , Solanum lycopersicum , Solanum , Solanum lycopersicum/genetics , Organ Size/genetics , Gigantism/genetics , Quantitative Trait Loci/genetics , Solanum/genetics , Fruit/genetics
3.
PLoS One ; 18(6): e0287178, 2023.
Article in English | MEDLINE | ID: mdl-37319140

ABSTRACT

Tomato plants are sensitive to drought stress throughout their growth cycle. To be considered drought-tolerant, a cultivar should display tolerance at all developmental stages. This study aimed to evaluate whether Solanum pennellii introgression lines (ILs) previously selected as drought-tolerant during germination/seedling growth maintained this tolerance in the vegetative/reproductive stage. We then investigated these ILs to uncover candidate genes. The plants were subjected to two different environmental conditions: well-watered and drought-stressed (water withheld for ≤ 20 d after flowering). Phenotyping for morphological, physiological, fruit quality, and yield-related traits was performed, and the data was analyzed using a mixed-model approach. Using a multi-trait index that relies on factor analysis and genotype-ideotype distance (FAI-BLUP index), the genotypes were ordered based on how far they were from the drought-tolerant ideotype. Afterward, the tomato IL population map furnished by the SOL Genomics Network was utilized to identify introgressed segments of significance for the identification of candidate genes. Significant genotypic differences were found in the yield, water content, mean weight, length, and width of the fruit, the percentage of fruits displaying blossom-end rot, and titratable acidity. The drought-tolerance ideotype was built considering the maximum values for the fruit water content, number of fruits, mean fruit weight, and yield, minimum values for blossom-end rot, and mean values for titratable acidity. IL 1-4-18, IL 7-4-1, IL 7-1, IL 7-5-5, and IL 1-2 were ranked above M-82 and therefore considered drought-tolerant during the vegetative/reproductive stage. IL 1-4-18 and IL1-2 sustained drought tolerance displayed during germination/seedling growth into the vegetative/reproductive stage. The following candidate genes associated with drought tolerance were identified: AHG2, At1g55840, PRXIIF, SAP5, REF4-RELATED 1, PRXQ, CFS1, LCD, CCD1, and SCS. Because they are already associated with genetic markers, they can be transferred to elite tomato cultivars through marker-assisted technology after validation.


Subject(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genetics , Solanum/genetics , Drought Resistance , Interleukin-7 , Droughts , Water , Interleukin-1
4.
PLoS One ; 17(9): e0273982, 2022.
Article in English | MEDLINE | ID: mdl-36136976

ABSTRACT

Potato (Solanum tuberosum L.) is the third largest source of antioxidants in the human diet, after maize and tomato. Potato landraces have particularly diverse contents of antioxidant compounds such as anthocyanins. We used this diversity to study the evolutionary and genetic basis of anthocyanin pigmentation. Specifically, we analyzed the transcriptomes and anthocyanin content of tubers from 37 landraces with different colorations. We conducted analyses of differential expression between potatoes with different colorations and used weighted correlation network analysis to identify genes whose expression is correlated to anthocyanin content across landraces. A very significant fraction of the genes identified in these two analyses had annotations related to the flavonoid-anthocyanin biosynthetic pathway, including 18 enzymes and 5 transcription factors. Importantly, the causal genes at the D, P and R loci governing anthocyanin accumulation in potato cultivars also showed correlations to anthocyanin production in the landraces studied here. Furthermore, we found that 60% of the genes identified in our study were located within anthocyanin QTLs. Finally, we identified new candidate enzymes and transcription factors that could have driven the diversification of anthocyanins. Our results indicate that many anthocyanins biosynthetic genes were manipulated in ancestral potato breeding and can be used in future breeding programs.


Subject(s)
Solanum tuberosum , Solanum , Anthocyanins/metabolism , Antioxidants/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Humans , Plant Breeding , RNA-Seq , Solanum/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Transcription Factors/metabolism
5.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35775942

ABSTRACT

There are over 100 known species of cultivated potatoes and their wild relatives. Many of these species, including cultivated potatoes, share the A genome; these species are mainly distributed in South America and are reproductively isolated from Mexican diploid species. The only diploid A-genome species distributed in Mexico is Solanum verrucosum Schlechtendal, which is also a maternal progenitor of Mexican polyploid species. In this study, we constructed a high-quality de novo assembly of the S. verrucosum genome using PacBio long-read sequencing and Hi-C scaffolding technologies. A monohaploid clone (2n = x = 12) of S. verrucosum was used to reduce assembly difficulty due to the heterozygous nature of the species. The final sequence assembly consisted of 780.2 Mb of sequence, 684.0 Mb of which were anchored to the 12 chromosomes, with a scaffold N50 of 55.2 Mb. Putative centromeres were identified using publicly available data obtained via chromatin immunoprecipitation sequencing against a centromere-specific histone 3 protein. Transposable elements accounted for approximately 61.8% (482.1 Mb) of the genome, and 46,904 genes were functionally annotated. High gene synteny and similarity were revealed among the genomes of S. verrucosum, Solanum commersonii, Solanum chacoense, Solanum phureja, Solanum tuberosum, and Solanum lycopersicum. The reference-quality S. verrucosum genome will provide new insights into the evolution of Mexican polyploid species and contribute to potato breeding programs.


Subject(s)
Solanum tuberosum , Solanum , Diploidy , Genome, Plant , Mexico , Plant Breeding , Polyploidy , Solanum/genetics , Solanum tuberosum/genetics
6.
Braz. j. biol ; 82: 1-7, 2022. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468447

ABSTRACT

Resource allocation to reproduction can change depending on size, as predicted by the size-dependent sex allocation. This theory is based on the fact that small individuals will invest in the allocation of sex with lower cost of production, usually male gender. In plants, there are some andromonoecy species, presence of hermaphrodite and male flowers in the same individual. Andromonoecy provides a strategy to optimally allocate resources to male and female function, evolving a reproductive energy-saving strategy. Thus, our objective was to investigate the size-dependent sex allocation in Solanum lycocarpum St. Hil. We tested the hypothesis that plants with larger size will invest in the production of hermaphrodite flowers, because higher individuals have greater availability of resources to invest in more complex structures involving greater energy expenditure. The studied species was S. lycocarpum, an andromonoecious species. From June 2016 to March 2017 the data were collected in 38 individuals, divided in two groups: the larger plant group (n=18; height=3-5 m) and the smaller plant group (n=20; height=1-2 m).Our data show that there was effect of plant size on the flower production and the sexual gender allocation. The larger plants showed more flowers and higher production of hermaphrodite flowers. Furthermore, in the flower scale, we observed allometric relationship among the flower's traits with proportional investments in biomass, anther size and gynoecium size. Our results are in agreement with size-dependent sex allocation theory and andromonoecy hypothesis related to mechanisms for optimal resource allocation to male and female function.


A alocação de recursos para reprodução pode mudar dependendo do tamanho, conforme previsto pela alocação sexual dependente do tamanho. Essa teoria é baseada no fato de que indivíduos pequenos investirão na alocação sexual com menor custo de produção, geralmente do sexo masculino. Nas plantas, existem algumas espécies andromonoicas, presença de hermafrodita e flores masculinas no mesmo indivíduo. A andromonoicia fornece uma estratégia para alocar recursos de maneira ideal às funções masculina e feminina, desenvolvendo uma estratégia reprodutiva de economia de energia. Assim, nosso objetivo foi investigar a alocação sexual dependente do tamanho em Solanum lycocarpum St. Hil. Testamos a hipótese de que plantas de maior tamanho investirão na produção de flores hermafroditas, pois indivíduos mais altos economizam mais disponibilidade de recursos para investir em estruturas mais complexas que envolvem maior gasto de energia. A espécie estudada foi S. lycocarpum, uma espécie andromonoica. De junho de 2016 a março de 2017, os dados foram coletados em 38 indivíduos, divididos em dois grupos: o maior grupo de plantas (n = 18; altura = 3-5 m) e o menor grupo de plantas (n = 20; altura = 1-2 m). Nossos dados mostram que houve efeito do tamanho da planta na produção de flores e na alocação sexual. As plantas maiores apresentaram mais flores e maior produção de flores hermafroditas. Além disso, observamos uma relação alométrica entre as características da flor, com investimentos proporcionais em biomassa, tamanho da antera e tamanho do gineceu. Nossos resultados estão de acordo com a teoria de alocação de sexo dependente de tamanho e a hipótese de andromonoicia relacionada a mecanismos para a alocação ótima de recursos para a função masculina e feminina.


Subject(s)
Hermaphroditic Organisms/growth & development , Solanum/growth & development , Solanum/genetics
7.
Braz. J. Biol. ; 82: 1-7, 2022. ilus, graf
Article in English | VETINDEX | ID: vti-32500

ABSTRACT

Resource allocation to reproduction can change depending on size, as predicted by the size-dependent sex allocation. This theory is based on the fact that small individuals will invest in the allocation of sex with lower cost of production, usually male gender. In plants, there are some andromonoecy species, presence of hermaphrodite and male flowers in the same individual. Andromonoecy provides a strategy to optimally allocate resources to male and female function, evolving a reproductive energy-saving strategy. Thus, our objective was to investigate the size-dependent sex allocation in Solanum lycocarpum St. Hil. We tested the hypothesis that plants with larger size will invest in the production of hermaphrodite flowers, because higher individuals have greater availability of resources to invest in more complex structures involving greater energy expenditure. The studied species was S. lycocarpum, an andromonoecious species. From June 2016 to March 2017 the data were collected in 38 individuals, divided in two groups: the larger plant group (n=18; height=3-5 m) and the smaller plant group (n=20; height=1-2 m).Our data show that there was effect of plant size on the flower production and the sexual gender allocation. The larger plants showed more flowers and higher production of hermaphrodite flowers. Furthermore, in the flower scale, we observed allometric relationship among the flower's traits with proportional investments in biomass, anther size and gynoecium size. Our results are in agreement with size-dependent sex allocation theory and andromonoecy hypothesis related to mechanisms for optimal resource allocation to male and female function.(AU)


A alocação de recursos para reprodução pode mudar dependendo do tamanho, conforme previsto pela alocação sexual dependente do tamanho. Essa teoria é baseada no fato de que indivíduos pequenos investirão na alocação sexual com menor custo de produção, geralmente do sexo masculino. Nas plantas, existem algumas espécies andromonoicas, presença de hermafrodita e flores masculinas no mesmo indivíduo. A andromonoicia fornece uma estratégia para alocar recursos de maneira ideal às funções masculina e feminina, desenvolvendo uma estratégia reprodutiva de economia de energia. Assim, nosso objetivo foi investigar a alocação sexual dependente do tamanho em Solanum lycocarpum St. Hil. Testamos a hipótese de que plantas de maior tamanho investirão na produção de flores hermafroditas, pois indivíduos mais altos economizam mais disponibilidade de recursos para investir em estruturas mais complexas que envolvem maior gasto de energia. A espécie estudada foi S. lycocarpum, uma espécie andromonoica. De junho de 2016 a março de 2017, os dados foram coletados em 38 indivíduos, divididos em dois grupos: o maior grupo de plantas (n = 18; altura = 3-5 m) e o menor grupo de plantas (n = 20; altura = 1-2 m). Nossos dados mostram que houve efeito do tamanho da planta na produção de flores e na alocação sexual. As plantas maiores apresentaram mais flores e maior produção de flores hermafroditas. Além disso, observamos uma relação alométrica entre as características da flor, com investimentos proporcionais em biomassa, tamanho da antera e tamanho do gineceu. Nossos resultados estão de acordo com a teoria de alocação de sexo dependente de tamanho e a hipótese de andromonoicia relacionada a mecanismos para a alocação ótima de recursos para a função masculina e feminina.(AU)


Subject(s)
Solanum/growth & development , Solanum/genetics , Hermaphroditic Organisms/growth & development
8.
Sci Rep ; 11(1): 15961, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354211

ABSTRACT

Cultivated tomato Solanum lycopersicum (Slyc) is sensitive to water shortages, while its wild relative Solanum peruvianum L. (Sper), an herbaceous perennial small shrub, can grow under water scarcity and soil salinity environments. Plastic Sper modifies the plant architecture when suffering from drought, which is mediated by the replacement of leaf organs, among other changes. The early events that trigger acclimation and improve these morphological traits are unknown. In this study, a physiological and transcriptomic approach was used to understand the processes that differentiate the response in Slyc and Sper in the context of acclimation to stress and future consequences for plant architecture. In this regard, moderate (MD) and severe drought (SD) were imposed, mediating PEG treatments. The results showed a reduction in water and osmotic potential during stress, which correlated with the upregulation of sugar and proline metabolism-related genes. Additionally, the senescence-related genes FTSH6 protease and asparagine synthase were highly induced in both species. However, GO categories such as "protein ubiquitination" or "endopeptidase inhibitor activity" were differentially enriched in Sper and Slyc, respectively. Genes related to polyamine biosynthesis were induced, while several cyclins and kinetin were downregulated in Sper under drought treatments. Repression of photosynthesis-related genes was correlated with a higher reduction in the electron transport rate in Slyc than in Sper. Additionally, transcription factors from the ERF, WRKY and NAC families were commonly induced in Sper. Although some similar responses were induced in both species under drought stress, many important changes were detected to be differentially induced. This suggests that different pathways dictate the strategies to address the early response to drought and the consequent episodes in the acclimation process in both tomato species.


Subject(s)
Acclimatization/genetics , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Acclimatization/physiology , Droughts , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/metabolism , Osmosis/physiology , Photosynthesis/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Salinity , Solanum/genetics , Solanum/metabolism , Transcription Factors/genetics , Transcriptome/genetics
9.
Elife ; 102021 06 24.
Article in English | MEDLINE | ID: mdl-34165082

ABSTRACT

Invasive species represent one of the foremost risks to global biodiversity. Here, we use population genomics to evaluate the history and consequences of an invasion of wild tomato-Solanum pimpinellifolium-onto the Galápagos Islands from continental South America. Using >300 archipelago and mainland collections, we infer this invasion was recent and largely the result of a single event from central Ecuador. Patterns of ancestry within the genomes of invasive plants also reveal post-colonization hybridization and introgression between S. pimpinellifolium and the closely related Galápagos endemic Solanum cheesmaniae. Of admixed invasive individuals, those that carry endemic alleles at one of two different carotenoid biosynthesis loci also have orange fruits-characteristic of the endemic species-instead of typical red S. pimpinellifolium fruits. We infer that introgression of two independent fruit color loci explains this observed trait convergence, suggesting that selection has favored repeated transitions of red to orange fruits on the Galápagos.


Subject(s)
Fruit/genetics , Fruit/physiology , Genetic Introgression , Introduced Species , Solanum/genetics , Solanum/physiology , Ecuador , Genetic Variation , Pigments, Biological , Species Specificity
10.
Planta ; 254(1): 11, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34160697

ABSTRACT

MAIN CONCLUSION: Cultivated tomatoes harboring the plastid-derived sesquiterpenes from S. habrochaites have altered type-VI trichome morphology and unveil additional genetic components necessary for piercing-sucking pest resistance. Arthropod resistance in the tomato wild relative Solanum habrochaites LA1777 is linked to specific sesquiterpene biosynthesis. The Sesquiterpene synthase 2 (SsT2) gene cluster on LA1777 chromosome 8 controls plastid-derived sesquiterpene synthesis. The main genes at SsT2 are Z-prenyltransferase (zFPS) and Santalene and Bergamotene Synthase (SBS), which produce α-santalene, ß-bergamotene, and α-bergamotene in LA1777 round-shaped type-VI glandular trichomes. Cultivated tomatoes have mushroom-shaped type-VI trichomes with much smaller glands that contain low levels of monoterpenes and cytosolic-derived sesquiterpenes, not presenting the same pest resistance as in LA1777. We successfully transferred zFPS and SBS from LA1777 to cultivated tomato (cv. Micro-Tom, MT) by a backcrossing approach. The trichomes of the MT-Sst2 introgressed line produced high levels of the plastid-derived sesquiterpenes. The type-VI trichome internal storage-cavity size increased in MT-Sst2, probably as an effect of the increased amount of sesquiterpenes, although it was not enough to mimic the round-shaped LA1777 trichomes. The presence of high amounts of plastid-derived sesquiterpenes was also not sufficient to confer resistance to various tomato piercing-sucking pests, indicating that the effect of the sesquiterpenes found in the wild S. habrochaites can be insect specific. Our results provide for a better understanding of the morphology of S. habrochaites type-VI trichomes and paves the way to obtain insect-resistant tomatoes.


Subject(s)
Arthropods , Sesquiterpenes , Solanum lycopersicum , Solanum , Animals , Solanum lycopersicum/genetics , Solanum/genetics , Trichomes
11.
Plant Sci ; 308: 110911, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034868

ABSTRACT

Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.


Subject(s)
Altitude , Droughts , Genotype , Solanum/physiology , Water/physiology , Argentina , Solanum/genetics
12.
Mol Biol Evol ; 38(8): 3202-3219, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33822137

ABSTRACT

Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites-a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4-6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone-a geographical landmark in the Andes with high endemism and isolated microhabitats-was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.


Subject(s)
Gene Flow , Self-Incompatibility in Flowering Plants/genetics , Solanum lycopersicum/genetics , Solanum/genetics , Acetylation , Ecuador , Solanum lycopersicum/metabolism , Peru , Phylogeography , Self-Fertilization , Solanum/metabolism
13.
Am J Bot ; 108(3): 520-537, 2021 03.
Article in English | MEDLINE | ID: mdl-33783814

ABSTRACT

PREMISE: Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS: Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS: Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.


Subject(s)
Solanum lycopersicum , Solanum , Chile , Solanum lycopersicum/genetics , Phylogeny , Plant Breeding , Solanum/genetics
14.
Physiol Plant ; 172(3): 1630-1640, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33547660

ABSTRACT

Flavonoids are natural pigments occurring in plants and are present in fruits, leaves, stems, roots, and flowers. Tobacco plants transformed with an MYB regulatory gene from either Solanum chilense (Sc) or S. lycopersicum (Sl) demonstrate that ScANT1 induces a higher level of anthocyanin accumulation in comparison to SlANT1 and that this gene is sufficient to promote increased anthocyanin levels. We compared the aptitude of ScANT1 protein to induce anthocyanin accumulation to that of SlANT1 protein in tobacco plants. We also tested the effect of amino acid substitutions in ScANT1 and SlANT1. We examined these synthetic alleles' effect following the over-expression of additional anthocyanin synthesis regulators, such as the tomato bHLH (SlJAF13) protein. Our results show that the amino acid changes that differentiate ScANT1 from SlANT1 are the main contributors to the advantage that ScANT1 has over SlANT1 in anthocyanin accumulation per transcript unit. We further demonstrated that altering the amino acid composition of SlANT1 could increase anthocyanin accumulation, while reciprocally modifying ScANT1 lowers the anthocyanin level. These results confirm the increased anthocyanin level in tobacco is attributed to the amino acid differences between ScANT1 and SlANT1. We also show that the co-expression of SlJAF13 with SlANT1 in tobacco plants represses the anthocyanin production.


Subject(s)
Solanum lycopersicum , Solanum , Alleles , Anthocyanins , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Solanum/genetics , Solanum/metabolism , Nicotiana/genetics , Nicotiana/metabolism
15.
Sci Rep ; 10(1): 15835, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985535

ABSTRACT

Soil salinity affects the plant growth and productivity detrimentally, but Solanum chilense, a wild relative of cultivated tomato (Solanum lycopersicum L.), is known to have exceptional salt tolerance. It has precise adaptations against direct exposure to salt stress conditions. Hence, a better understanding of the mechanism to salinity stress tolerance by S. chilense can be accomplished by comprehensive gene expression studies. In this study 1-month-old seedlings of S. chilense and S. lycopersicum were subjected to salinity stress through application of sodium chloride (NaCl) solution. Through RNA-sequencing here we have studied the differences in the gene expression patterns. A total of 386 million clean reads were obtained through RNAseq analysis using the Illumina HiSeq 2000 platform. Clean reads were further assembled de novo into a transcriptome dataset comprising of 514,747 unigenes with N50 length of 578 bp and were further aligned to the public databases. Genebank non-redundant (Nr), Viridiplantae, Gene Ontology (GO), KOG, and KEGG databases classification suggested enrichment of these unigenes in 30 GO categories, 26 KOG, and 127 pathways, respectively. Out of 265,158 genes that were differentially expressed in response to salt treatment, 134,566 and 130,592 genes were significantly up and down-regulated, respectively. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in cytokinin, ethylene, auxin, abscisic acid, gibberellin, and Ca2+ mediated signaling pathways were up-regulated. Furthermore, GO enrichment analysis was performed using REVIGO and up-regulation of multiple genes involved in various biological processes in chilense under salinity were identified. Through pathway analysis of DEGs, "Wnt signaling pathway" was identified as a novel pathway for the response to the salinity stress. Moreover, key genes for salinity tolerance, such as genes encoding proline and arginine metabolism, ROS scavenging system, transporters, osmotic regulation, defense and stress response, homeostasis and transcription factors were not only salt-induced but also showed higher expression in S. chilense as compared to S. lycopersicum. Thus indicating that these genes may have an important role in salinity tolerance in S. chilense. Overall, the results of this study improve our understanding on possible molecular mechanisms underlying salt tolerance in plants in general and tomato in particular.


Subject(s)
Salt Tolerance , Solanum/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Reactive Oxygen Species/metabolism , Seedlings/metabolism , Signal Transduction , Solanum/genetics , Solanum/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
16.
Sci Rep ; 10(1): 16052, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994541

ABSTRACT

Although intensively studied, few works had looked into S. pennellii's ability to cope with water-deficit conditions from a breeding point of view. In this study, we assessed potential traits of S. pennellii, that had previously been linked to high yields in other plant species, under long-term water-limited conditions and made a parallel with plant yield. For this purpose, the drought-resistant tomato genotypes IL 3-5 and IL 10-1, and the drought-sensitive IL 2-5 and IL 7-1 at seed level, together with both parents the S. pennellii accession LA 716 and the cultivar M82 were kept at 50 and 100% ASW throughout the growing season. Our findings confirm the superiority of LA 716 under water-limited conditions compared to the other S. lycopersicum genotypes in terms of plant water status maintenance. Percentual reduction on plant yield was higher in IL 3-5 and IL 10-1 than in M82 plants, indicating no correlation between drought resistance on germination and plant productive stages. A strong positive correlation was found between fruit yield and A, gs, and Ψleaf at 50% ASW, suggesting these traits as important selection criteria. LT and gmin, LA 716's most promising traits, did not show a linear correlation with fruit yield under low water regimes. This study unravels traits behind tomato performance under water-limited conditions and should work as guidance for breeders aiming at developing drought-resistant tomato cultivars.


Subject(s)
Plant Breeding/methods , Solanum/anatomy & histology , Solanum/genetics , Droughts , Fruit/genetics , Genotype , Solanum lycopersicum/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Selection, Genetic/genetics , Solanum/growth & development , Water
17.
Mol Ecol ; 29(12): 2204-2217, 2020 06.
Article in English | MEDLINE | ID: mdl-32419208

ABSTRACT

The wild currant tomato Solanum pimpinellifolium inhabits a wide range of abiotic habitats across its native range of Ecuador and Peru. Although it has served as a key genetic resource for the improvement of domestic cultivars, little is known about the genetic basis of traits underlying local adaptation in this species, nor what abiotic variables are most important for driving differentiation. Here we use redundancy analysis (RDA) and other multivariate statistical methods (structural equation modelling [SEM] and generalized dissimilarity modelling [GDM]) to quantify the relationship of genomic variation (6,830 single nucleotide polymorphisms [SNPs]) with climate and geography, among 140 wild accessions. RDA, SEM and GDM each identified environment as explaining more genomic variation than geography, suggesting that local adaptation to heterogeneous abiotic habitats may be an important source of genetic diversity in this species. Environmental factors describing temporal variation in precipitation and evaporative demand explained the most SNP variation among accessions, indicating that these forces may represent key selective agents. Lastly, by studying how SNP-environment associations vary throughout the genome (44,064 SNPs), we mapped the location and investigated the functions of loci putatively contributing to climatic adaptations. Together, our findings indicate an important role for selection imposed by the abiotic environment in driving genomic differentiation between populations.


Subject(s)
Environment , Genetics, Population , Solanum/genetics , Ecuador , Genomics , Multivariate Analysis , Peru , Polymorphism, Single Nucleotide
18.
PLoS One ; 15(1): e0227422, 2020.
Article in English | MEDLINE | ID: mdl-31923250

ABSTRACT

Studies of the interactions between plants and their microbiome have been conducted worldwide in the search for growth-promoting representative strains for use as biological inputs for agriculture, aiming to achieve more sustainable agriculture practices. With a focus on the isolation of plant growth-promoting (PGP) bacteria with ability to alleviate N stress, representative strains that were found at population densities greater than 104 cells g-1 and that could grow in N-free semisolid media were isolated from soils under different management conditions and from the roots of tomato (Solanum lycopersicum) and lulo (Solanum quitoense) plants that were grown in those soils. A total of 101 bacterial strains were obtained, after which they were phylogenetically categorized and characterized for their basic PGP mechanisms. All strains belonged to the Proteobacteria phylum in the classes Alphaproteobacteria (61% of isolates), Betaproteobacteria (19% of isolates) and Gammaproteobacteria (20% of isolates), with distribution encompassing nine genera, with the predominant genus being Rhizobium (58.4% of isolates). Strains isolated from conventional horticulture (CH) soil composed three bacterial genera, suggesting a lower diversity for the diazotrophs/N scavenger bacterial community than that observed for soils under organic management (ORG) or secondary forest coverture (SF). Conversely, diazotrophs/N scavenger strains from tomato plants grown in CH soil comprised a higher number of bacterial genera than did strains isolated from tomato plants grown in ORG or SF soils. Furthermore, strains isolated from tomato were phylogenetically more diverse than those from lulo. BOX-PCR fingerprinting of all strains revealed a high genetic diversity for several clonal representatives (four Rhizobium species and one Pseudomonas species). Considering the potential PGP mechanisms, 49 strains (48.5% of the total) produced IAA (2.96-193.97 µg IAA mg protein-1), 72 strains (71.3%) solubilized FePO4 (0.40-56.00 mg l-1), 44 strains (43.5%) solubilized AlPO4 (0.62-17.05 mg l-1), and 44 strains produced siderophores (1.06-3.23). Further, 91 isolates (90.1% of total) showed at least one PGP trait, and 68 isolates (67.3%) showed multiple PGP traits. Greenhouse trials using the bacterial collection to inoculate tomato or lulo plants revealed increases in plant biomass (roots, shoots or both plant tissues) elicited by 65 strains (54.5% of the bacterial collection), of which 36 were obtained from the tomato rhizosphere, 15 were obtained from the lulo rhizosphere, and 14 originated from samples of soil that lacked plants. In addition, 18 strains showed positive inoculation effects on both Solanum species, of which 12 were classified as Rhizobium spp. by partial 16S rRNA gene sequencing. Overall, the strategy adopted allowed us to identify the variability in the composition of culturable diazotroph/N-scavenger representatives from soils under different management conditions by using two Solanum species as trap plants. The present results suggest the ability of tomato and lulo plants to enrich their belowground microbiomes with rhizobia representatives and the potential of selected rhizobial strains to promote the growth of Solanum crops under limiting N supply.


Subject(s)
Bacteria/isolation & purification , Nitrogen Fixation/physiology , Rhizosphere , Soil Microbiology , Solanum/microbiology , Bacterial Physiological Phenomena , Biodiversity , Crops, Agricultural/growth & development , Solanum lycopersicum/microbiology , Microbiota , Nitrogen/metabolism , Plant Development , Proteobacteria/isolation & purification , Solanum/genetics , Species Specificity
19.
An Acad Bras Cienc ; 91(4): e20190149, 2019.
Article in English | MEDLINE | ID: mdl-31721922

ABSTRACT

This work aimed to study the inheritance of resistance to Phytophthora infestans in tomato plants, using the maximum likelihood estimation function. The susceptible cultivar Santa Clara (Solanum lycopersicum) was used as the female genitor and the P. infestans resistant S. habrochaites f. glabratum accession (BGH 6902) as the male genitor. F1 plants from the crossing were self-pollinated to produce F2 progenies, and also backcrossed with PR and PS to produce BC1:R and BC1:S generations, respectively. The tomato plants were inoculated 50 days after transplanting. Disease severity was evaluated via a diagrammatic scale. Comparison of the genetic models created using the maximum likelihood function revealed that the inheritance of resistance to P. infestans in S. habrochaites is conferred by a major gene with additive and dominance effects, polygenes with additive effects, plus the environmental effect. Vertical resistance can be explored using genes with major effects. Programs of recurrent and maker-assisted selection are considered efficient strategies with which to select genotypes that hold P. infestans resistance conferred by polygenes.


Subject(s)
Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Solanum/microbiology , Genotype , Solanum/genetics
20.
G3 (Bethesda) ; 9(12): 3933-3941, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31604826

ABSTRACT

Wild tomato species, like Solanum chilense, are important germplasm resources for enhanced biotic and abiotic stress resistance in tomato breeding. S. chilense also serves as a model to study adaptation of plants to drought and the evolution of seed banks. The absence of a well-annotated reference genome in this compulsory outcrossing, very diverse species limits in-depth studies on the genes involved.We generated ∼134 Gb of DNA and 157 Gb of RNA sequence data for S chilense, which yielded a draft genome with an estimated length of 914 Mb, encoding 25,885 high-confidence predicted gene models, which show homology to known protein-coding genes of other tomato species. Approximately 71% of these gene models are supported by RNA-seq data derived from leaf tissue samples. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models retrieved 93.3% of BUSCO genes. To further verify the genome annotation completeness and accuracy, we manually inspected the NLR resistance gene family and assessed its assembly quality. We find subfamilies of NLRs unique to S. chilense Synteny analysis suggests significant degree of the gene order conservation between the S. chilense, S. lycopersicum and S. pennellii genomesWe generated the first genome and transcriptome sequence assemblies for the wild tomato species Solanum chilense and demonstrated their value in comparative genomics analyses. These data are an important resource for studies on adaptation to biotic and abiotic stress in Solanaceae, on evolution of self-incompatibility and for tomato breeding.


Subject(s)
Genes, Plant , Solanum/genetics , Transcriptome/genetics , Base Sequence , Ecosystem , Likelihood Functions , Models, Genetic , Molecular Sequence Annotation , Phylogeny , Reference Standards , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL